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Abstract—

Bufferless, deflection-routed, Butterfly Fat Trees (BFTs) can
outperform state-of-the-art FPGAs overlay NoCs such as Hoplite
by as much as 2-5x on throughput and ~5x on worst-case
latency at identical PE counts, and by ~1.5x on throughput at
identical resource costs >16K LUTs for statistical traffic patterns.
In this paper, we show how to modify the tree connectivity
and routing function to support deflection routing on the BFT
topology. We introduce the idea of localized deflections that trap
deflected packets within a single level of a multi-level BFT to
avoid the long round-trip penalty traditionally associated with
deflection routing. Across a range of statistical traffic patterns,
we show a sustained throughput improvement of 2-5x over
for Hoplite for system sizes as large at 512 PEs at above
20% injection rates when using localized deflections. We also
show how the configurable bisection bandwidth of the BFT,
modeled with the Rent parameter 0<p<1, allows us to choose
the best performing NoC at a desired cost. For instance, our
NoC generator can produce simple trees (p=0) for low-cost
applications <2K LUTSs, mesh-equivalent BFTs (p=0.5) for real-
world applications with locality at <10K LUTs, and crossbars
(p=1) when cost is not a constraint >64K LUTs. For workloads
with locality, we recommend the BFT topology with p = 0.67.

I. INTRODUCTION

The exponential growth in transistor capacity has made
it possible to make FPGAs with hundreds of thousands of
LUTs and FFs, thousands of DSP and RAM blocks, hundreds
of 10 ports all supported by a statically configured, rich
interconnect network. One way to tame the rising capacity
of the FPGA chip is to adopt a modular design approach with
standardized communication interfaces such as AXI (part of
ARM’s AMBA Advanced Microcontroller Bus Architecture
specification). This allows the FPGA developer to compose
large FPGA designs by stitching together modules using these
standard interfaces and a flexible communication fabric for
data movement between the modules. Furthermore, modern
FPGA are able to interface with a wide variety of 10 protocols
and interface specifications such as PCI Express, multi-channel
DRAM busses, gigabit Ethernet ports, among others. Efficient
movement of data from these system-level interfaces to various
portions of the chip is also a challenge. FPGA-based overlay
NoCs can solve both these problems. Communication over a
NoC can be switched allowing the design to share communica-
tion infrastructure in different phases of the FPGA execution.

Typical real-world designs exhibit traffic patterns with lo-
cality that can be explained using Rent’s rule. Rent’s rule [1]
(IO=cNP) is an empirical observation of communication
growth in a design hierarchy. For real-world designs, com-
munication requirements tend to decrease as we ascend the

hierarchy i.e. traffic tends to be concentrated in local sub-
regions. Most contemporary FPGA-based NoCs [2], [3] built
on 2D mesh and torus topologies do not directly exploit this
observation. For instance, the CMU Connect Mesh [2], Penn
Split-Merge Mesh [3], use network topologies with a Rent
parameter p=0.5. These structures may match the rectangular
FPGA organization but do not reflect communication require-
ments of FPGA applications. In contrast, the CMU Connect [2]
Fat Tree and Butterfly Fat Tree (BFT) [4] use fat-tree-based
topology [5] that is better matched to communication locality
observed in real-world communication workloads. They can
outperform their mesh counterparts by 1.5-2x [6] but do not
reduce FPGA implementation costs significantly.

With the advent of the Hoplite [7], it is possible to imple-
ment FPGA overlay NoCs with very low cost (60 LUTs +
100 FFs for a 32b router) that is up to 25-30x smaller than
CONNECT and Split Merge NoCs. Under this new reality, we
investigate whether BFT topologies still remain competitive
against 2D topologies. In this paper, we adapt the BFT
routing function to support bufferless deflection routing in a
manner inspired by Hoplite. A naive formulation of the routing
function to exploit bufferless deflections does not deliver the
full benefits against Hoplite. We redesign the routing function
to support localized deflections within each level of the BFT
to lower switch costs without sacrificing performance. In fact,
we show how to exceed the performance and area efficiency
of the Hoplite NoC using our design for large system sizes.

We make the following key contributions in this paper:

« We formulate a bufferless deflection routing function for
BFTs that lowers FPGA implementation cost of switches.

e« We develop the idea of local deflections, which lowers
the penalty of deflected packets at the expense of extra
LUTs. We quantify the area-performance tradeoffs due to
this modification of the switch architecture.

o We characterize the throughput, latency trends of the
NoC under various traffic patterns and demonstrate its
superiority over contemporary state-of-the-art NoCs like
Hoplite.

II. BUTTERFLY FAT TREES ON FPGAS

A Butterfly Fat Tree [5] (BFT) is a multi-level switching
topology with statically configured bisection bandwidth that
can be adapted for engineering efficient FPGA NoCs. Bisec-
tion bandwidth represents the ability of the NoC to transport
traffic across a cut along the middle of the NoC topology. To
capture varying bandwidth needs, a BFT is constructed using



two kinds of switches with different routing capabilities: a
t switch (2 in:1 out with half the outgoing bandwidth) and
a pi switch (2 in:2 out with identical incoming and outgoing
bandwidth). All switches in a given level are of the same kind,
but each levels can be independently configured as either ¢ or
pi types. For this paper, we consider arity-2 (2-input) switches
but higher arity networks are possible. Thus, to support N
processing elements (PEs) at the leaves, we need a BFT with
log, IN levels. For instance, the various NoC topologies shown
in Figure 1 represent the range of network configurations that
can be generated using the BFT template by simply adjusting
the switching structure in the NoC levels.

The Rent parameter for the application is computed by
recursively bisecting the application and measuring the com-
munication required (data transfers in the form of messages,
streams, packets) in the various partitions. Similarly, by re-
cursively partitioning the NoC, we can measure bisection
bandwidths of wires at various local partitions to compute the
Rent parameter of the NoC architecture. A balanced NoC will
match the bisection bandwidth in the physical topology of the
chip to the communication requirements in the application. An
ordinary binary tree (Figure la) has a bisection bandwidth of
O(1), and a Rent parameter p=0, making is equivalent to a
simple ring. This topology will support the application with
little communication requirements, or nearest-neighbour style
systolic communication. A crossbar (Figure 1b) has a bisection
bandwidth of O(N), and a Rent parameter p=1, which allows
all-to-all communication between the application partitions.
This means that in a given cycle, a non-conflicting permutation
of N messages can be delivered to their destinations. Since
the BFT is a multi-stage network, the number of switches
required to support this is O(N logy N) instead of O(N?)
at the expense of extra log, N switch hops. For most real-
world applications this is overprovisioned and expensive. An
ordinary mesh (Figure Ic) has a bisection of O(v/N), and
a Rent Parameter p=0.5, due to the rectangular \/JV X \/N
layout of the NoC. A BFT can be setup to support all of these
topologies by careful configuration of the switch connectivity
in each layer.

We tabulate the various BFT NoC topologies for a 16-
PE (Processing Element) design in Table I. We can deliver
a crossbar by only using pi switches at all levels in the NoC
(32 pe switches), and a binary tree by only selecting ¢ switches
(16 t switches). In addition to these, we can also configure a
topology equivalent to a Mesh in bisection bandwidth in two
ways shown in Figure 1c (alternating ¢ and p: switches for a
total cost of 12 ¢ and 12 pi switches) or Figure 1d (pi switches
in lower levels, and ¢ switches in upper levels for a total cost of
12 t switches and 16 pi switches). This preserves the top-level
bisection bandwidth at O(v/N) but reallocates bandwidth to
the lower levels at the expense of more pi switches. Depending
on application requirements and cost constraints, we can target
other bandwidth configurations.

Traditional designs for FPGA-based overlay NoCs have
focussed on rectangular layout-friendly topologies such as
Meshes [2] and Tori [7]. These offer a simpler mapping to

(a) TREE (O(1) bisection),
t-t-t-t config.

(b) XBAR (O(N) bisection),
pi-pi-pi-pi config.

(c) MESHO (O(v/N) bisection),
pi-t-pi-t config.

(d) MESH1 (O(V/N) bisection),
pi-pi-t-t config.

Fig. 1: 16-PE Butterfly Fat Tree Topologies.

rectangular 2D fabrics, but do not provide a cost-effective way
to scale bandwidth. The only way to add more bandwidth to
such fabrics at a fixed system size NV is to add parallel channels
c. Increasing channel count uniformly adds bandwidth to all
segments of the NoC, often where it may not be needed. This
is particularly the case when the NoC link width is configured
to match the system-level interface widths of PCle, DRAM, or
Ethernet IPs. Instead, we can use the configurable structure of
the BFT topology to provide wider links in the top-level of the
NoC and use these to split and distribute traffic to leaf-level
compute blocks. Additionally, we can configure each level of
the BFT to match user’s communication demands.

III. DEFLECTION ROUTED BFTSs ON FPGAS

In this section, we describe the FPGA design of the
switching elements that compose a BFT NoC and discuss the
implementation of deflection routing in the switch. For our
bufferless, deflection-routed scenario, we consider single-flit
packets carrying address and payload in a single wide packet.

A. Routing in BFTs

Routing packets on a switched BFT is simple. Unlike
mesh and torus topologies, where we must supply X and Y
addresses, a BFT only requires a single numeric identifier for
address. As the packet climbs the tree, it has complete freedom
to choose the ascending path irrespective of the destination
address. The packet must turn at the height defined by the sub-
tree that contains both the source and destination addresses.
This is trivially calculated as the length of the common prefix
shared between the switch and destination addresses. For ¢

TABLE I: BFT Topology Configurations for 16-PE design.

Topology Rent p Switch Config.  Num. of S/W  Bisection
B/W
t pL
TREE 0 t-t-t-t 15 0 1
MESHO 0.5 pi-t-pi-t 12 12 4
MESH1 0.5 pi-pi-t-t 12 16 4
XBAR 1 pi-pi-pi-pi O 32 16
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Fig. 2: Xilinx LUT mapping for ¢ and p: switches using
Root Deflections approach.
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Fig. 3: Xilinx LUT mapping for ¢ and p: switches using
Local Deflections approach.

switches, there is only a single upward-bound port, and for
pt switches we have a choice of two ports sending packets
up the tree. Thus, as we climb multiple levels of pi switches,
we get exponentially more choices on the uphill paths. The
descending path is strictly defined by the destination address
and no path freedom is available. The routing decision is made
by simply extracting the ¢th bit corresponding to the ith level
in the fat tree. This makes the routing function simpler than
the mesh and can be implemented with effectively a single FF
for uphill ports (toggles for fair distribution of bandwidth),
and no LUTSs/FFs for downhill decisions (directly use the ¢th
wire as multiplexer select).

B. FPGA Mapping of Switch Multiplexers

In Figure 2, we show how to implement the switching
crossbar in the BFT ¢t and pi switches on a Xilinx FPGA.
As we can see the ¢ switch has three inputs (R, L from lower
level, U from top) and three outputs (R, L to lower level, and
U to top). This can be compactly fit in 3x 5-LUTSs as each
output port needs a simple 2-input multiplexer element. The ps
switch, in contrast, has two ports going up. The switching for
packets bound upwards is a simple choices between the R and
L inputs from the lower level which can be mapped to 2-input
multiplexer elements. However, downward bound packets can

either be packets that are turning from the R or L inputs, of
descending packets arriving at the U or U’ inputs. This requires
a 3-input multiplexer for the R and L output ports. For the ¢
switch we can map the design to fractured Xilinx 5-LUTs.
For the p: switch, only the upward-bound multiplexers can be
efficiently mapped to fractured 5-LUTs, while the other two
require 6-LUTs. In presence of contention, the traditional BFT
implementation [4] buffers packets at the inputs. Our bufferless
deflection router will send packets to an available output port
in presence of contention.

C. Deflection Routing in BFTs

Deflection Routing is a long-studied topic in NoC design
and is most popular in mesh [8] and torus [7] topologies. We
show how to apply this idea to the BFT topology with suitable
adaptations to the routing function and wiring of the NoC.

Root Deflections: The simplest implementation of deflec-
tion routing can be built using the switching structure shown in
Figure 2. Instead of buffering packets, the deflection function
simply routes the packet along the next available port. For
upward-bound packets in a p: switch, this is naturally possible
as part of the BFT routing function. For pi switches, since
there are two ports going UP, it is sufficient to take either
of those exits without compromising performance. In other
cases, such as a t switch with a upward-bound packet, or
any downward-bound packet in either ¢ or p:i switches, we
have to deflect along an undesirable port. For upward-bound
packets in a ¢ switch, this will deflect a packet downwards
prematurely, while for downward-bound packets, packets may
be sent down the wrong sub-tree. To ensure packets get
delivered to their destinations eventually we need physical
loopback connection at (1) the root of the BFT tree, and (2) at
the PE interfaces. In comparison, for a deflection-routed NoC
like Hoplite, the loopback connections are naturally part of the
torus topology. Our BFT approach is simple to implement and
requires no modification of the ¢ and pi switches apart from
adding deflection rules in the routing function. However, we
do need to sacrifice bandwidth at the root (the top-most level)
of the BFT to implement the loopback for deflected packets
as well as some storage costs at the PE interfaces to turn back
deflected packets. We show FPGA costs in Table II.

Local Deflections: A different approach towards supporting
deflections is to localize them within a level of the BFT with
loopback. The switch structure to support this idea is shown
in Figure 3. In this case, the deflected packed is bounced back
along the direction of arrival at the contention switch. At the
point of contention, the deflected packet will return back in
the next cycle after turning around at the next switch. The
routing function is modified to prefer deflected packets for
turn-back. This also requires inserting a return path in the
switch multiplexers but needs no extra wiring between the BFT
levels. For the ¢ switch this upgrades the 2-input multiplexers
to 3-input ones while for the pi switch, we now need 4-input
multiplexers. This increases the LUT-mapping cost of the ¢
and pi switches (See Table II) due to non-fracturability of the
multiplexers. However, we no longer require the top-level BFT



wiring to be sacrificed for loopbacks, but can instead be used
to inject system-level traffic from high-bandwidth interfaces
such as PCle, DRAM, and Ethernet ports for distribution
across the chip. Furthermore, as we show later in Section V,
when compare to cheap Hoplite switches (which are equivalent
in cost to the Root ¢ switch), this overhead is recovered
through lowered deflection penalties and consequently better
throughputs at large system sizes.

TABLE II: FPGA Costs of BFT Switches.

Router LUTs FFs Clock Power
(MHz) (W)
Root ¢ switch 59 109 500 0.247
Root pi switch 122 145 470 0.252
Local t switch 141 113 597 0.252
Local pi switch 218 150 430 0.255

We can better understand how the deflections work through
a simple conflict example shown in Figure 4. Let us assume
that a conflict arises, as shown for the L exit port in the
lowermost switch, with both the blue and red packets trying
to use this port, we have to deflect. For the Root Deflection
design, the packet must traverse all the way to the root of the
tree before its deflected down. It then gets a second attempt
to take the correct path to its destination. Recall, the ¢ and
pi switches here do not have the internal multiplexer path
to support support turning back at arbitrary level of the tree.
As all deflected packets will reach the top before deflecting
down, there’s a system-wide impact of the bandwidth loss due
to each deflected packet. In contrast, for the Local Deflection
design, packets can turn back on the direction of arrival and
reattempt routing along the correct path in the next cycle. This
is possible because each multiplexer now supports an extra
input requiring more FPGA LUTs. In this case, the packet
only needs to traverse one extra level up the tree before turning
back. Additionally, the bandwidth impact of the deflection is
restricted primarily to the subtree being affected. Thus, the
Local Deflection design offers lower latency packet delivery,
and reduced impact of deflection on system-wide bandwidth
when compared to the Root Deflection at the expense of extra
hardware.

IV. METHODOLOGY

We describe the BFT NoC architecture using paramet-
ric RTL that can support generation of arbitrary-sized NoC
topologies. In this paper we focus on system sizes between
2 and 512 PEs. Our RTL is flexible and can support any
interleaving of ¢ and p:i switches. While it is possible to
generate an 2F possible configurations for BFTs with k levels,
we only evaluate the four BFT configurations shown earlier
in Figure 1 and Table I. The TREE configuration is built
simply with ¢ switches, while XBAR configuration uses only
pi switches in all levels. These two NoCs represent the
two extreme bandwidth scenarios. We also consider mesh-
like topologies MESHO (alternating ¢ and p¢ switches) and
MESH1 (pi-pi-t-t repeating pattern) with identical bisections

(a) Root Deflection

(b) Local Deflection

Fig. 4: Example of conflict at switch and deflection route.
Grey boxes=switches, green boxes=PEs. Red and blue
packets conflict on the L exit of the lowermost switch. In
the Root Deflection case, the packets must traverse all the
way to the top before turning back. For Local Deflection
packet will turn in a single level of the BFT.

but different switch counts. These configurations allow us to
compare performance with 2D FPGA overlay NoCs.

Simulation: We run extensive cycle-accurate Verilog simu-
lations of different NoC configurations (number of PEs N, in-
jection rates, traffic pattern, BFT structure) using iverilog.
For simulation, we connect the NoC to PEs that implement
NoC traffic under various synthetic patterns and programmable
injection rates. We measure sustained rates (bandwidth), worst
case latencies and source queueing delays. We evaluate vari-
ous traffic patterns such as RANDOM, LOCAL, BITREV, and
TORNADO. We modify these patterns to work with the linear
BFT addressing where a single index is used for routing
(unlike mesh and torus with X and Y fields are needed). The
TRANSPOSE pattern, where X and Y fields are swapped, does
not apply to the linear BFT PE arrangement.

Synthesis and Place and Route: We compile the various
BFT RTL configurations using Vivado 2016.4 FPGA CAD
tool targeting the XC7V485T FPGA. For synthesis, we use
a dummy PE that avoids logic pruning during compilation.
We assume the payload width for our data to be 32b with a
variable number of address bits log IV.

When reporting resource costs of the NoCs, we consider
LUTs and Wirelength. LUT costs are in terms of 6-LUTs used
by the design as reported after Place and Route. For a BFT
with IV nodes, we consider the lowermost level of the NoC to
have unit length wires. For upper stages of the network, we
consider doubling the wirelength at each level. Thus the total
wirelength can be expressed as Z;‘fON_l Z;”Zg"—sw[l] (211 x
typeli]?(2 : 1) + 2% x 2) x B where B is the portwidth
which is set to 32b for our designs. If the switch type at
level ¢ is a pi switch, we account for the cost of four output
ports, while a ¢ switch would be charged the cost of three
output ports. Upward-bound outputs pay twice the wirelength
cost of downward-bound outputs. The sequence of t or pi
configuration is determined by the Rent parameter p. This



also determines the number of switches num_sw]i] at a given
level . When comparing with 2D v/N x v/N NoC layouts for
Hoplite, we assume two unit length wires between consecutive
routers with an interleaved folded layout for high performance.
Here the total cost of the wires is IV X 2 x 2 x B with 2 output
ports, and a length of 2 wire accounted for each port (again
B=32b ports).

V. RESULTS

In this section, we evaluate the NoC metrics of the BFT
topology such as throughput, latency, resource costs to under-
stand when to use these architectures in a user application.
In particular, we investigate the effectiveness of the Local
approach vs. Root Deflections, and compare our NoC against
the state-of-the-art Hoplite torus NoC. We consider uniform
RANDOM and LOCAL traffic pattern (with locality diameter of
2 nodes).

A. Throughput

We first quantify the sustained throughputs achieved by
the NoC under various injection rates for RANDOM traffic in
Figure 5 at a system size of 256 PEs. We observe a higher
throughput (gap of 10x) for the richer networks such as Cross-
bars over vanilla Binary Trees. This is expected as these richer
networks have higher bisection bandwidths. We also observe a
30% better throughput for MESH1 over MESHO even through
both networks have identical bisection bandwidths. This was
due to more switching capacity and richer communication
bandwidth in the lower level networks for MESHI1. As we will
see later in Figure 12a, this represents a 2—5 X improvement in
sustained rates over Hoplite NoC without considering FPGA
resource costs. When comparing the effect of supporting local
loopbacks (Figure 5b) instead of root deflections (Figure 5a),
we observe a 20-50% improvement in performance with the
higher wins evident in the less bandwidth rich topologies.
Further throughput wins of ~30% are evident when LOCAL
traffic pattern is routed on the tree as seen in Figure 6. For
local loopback with LOCAL traffic, observed in Figure 6b,
we see a drop in performance at 100% injection rates due to
congestion caused by packets crossing sub-tree boundaries. In
this scenario, locality extends just beyond the sub-tree and due
to 100% injection rates, there are no empty slots for crossing
over.

B. Impact of Loopback

Next, we investigate the effect of providing local loopback
over root-based deflections in greater detail. In Figure 7,
we compare the two alternatives for RANDOM traffic with a
50% injection rate (highly loaded NoC). At low injection
rates below 15%, there is not much difference between the
networks (Figure 5), and a designer should simply pick the
cheapest NoC. The reader may recall, that the local loopback
avoids long roundtrips to the root of the tree for deflections
at additional expense. We observe that local loopback helps
scalability by allowing sustained rates to be 20—40% better
than the root deflection design. For both topologies, local
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Fig. 5: Sustained Rate trends for 256 PEs under RANDOM
workload for various BFT NoC configurations.
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Fig. 6: Sustained Rate trends for 256 PEs under LOCAL
workload for various BFT NoC configurations.

loopback starts to deliver better scalability for designs as small
as 4 PEs. It is also clear that the MESH1 topology offers better
scalability than a MESHO NoC. When considering LOCAL
traffic pattern with 50% injection rate and local deflections,
illustrated in Figure 8, we observe that the sustained rates
stay remarkably high and show very little degradation as
system size is increased. This provides a strong evidence
that (1) local traffic patterns map particularly well to tree-
structured hierarchical networks, and (2) localizing deflections
helps sustain the throughput trends.

We now plot the latency trends in Figure 9 with separate
measurements for worst-case latency, and average source
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O0bL v v v vy L O e S T
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(a) MESHO Topology
(pi-t-pi-t)

(b) MESH1 Topology
(pi-pi-t-t)

Fig. 7: Sustained Rate trends for various PE counts for
the Mesh-like BFT topologies, RANDOM + 50% injection.
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Fig. 9: Latency breakdown for 256 PEs MESH1 BFT
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queueing delay (already included in worst-case latency) in the
PE. As shown in Figure 9a, for the MESH1 topology with 256
PEs, we observe a performance advantage for local loopback
design opening up above 10% injection rate for RANDOM
workload. In this case, we see 50-60% higher worst case
latency when using root deflections. We also see a consistency
larger source queueing delays for the root deflection design
(Figure 9b). We should expect this as the root deflection
design can deflect packets in either direction (upwards, or
downwards). Each packet deflected downwards blocks the PE
from injecting its own packet and instead deflecting this packet
back into the network. The source queueing delay can account

Local Deflection
- Root Deflection

Local Deflection
- Root Deflection

o
x

10K

—l/ A;~‘~‘nn;—l~;f‘/f
20 100 1 5 20 100
Injection Rate

X
X

Worst Latency
(&)}
x

Avg. Src. Delay
(¢}
P

1 5
Injection Rate

(a) Worst Case Latency (b) Source Queueing Delay

Fig. 10: Latency breakdown for 256 PEs MESH1 BFT
topology, LOCAL workload.
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Fig. 11: Area-Throughput Tradeoffs across various BFT
Topologies, 50% injection rate.

for >2x the total packet latency (3-5K average queueing
delay vs. 4-7K worst case latencies at 100% injection rate).
The results for LOCAL traffic patterns, shown in Figure 10,
are again improved significantly.

C. Impact of Resource Costs

On a typical NoC topology, if an application wants more
bandwidth, it can trade-off area for increased performance.
In Figure 11a, we show the effect of two scenarios for 50%
injection rate and RANDOM traffic with variable system size
2<N<b512. Here, we show how an developer may select
a NoC based on cost/performance tradeoffs along with a
selection crossovers marked with arrows. If a developer wants
to route RANDOM traffic and can only afford to spend <2K
LUTs for a NoC (<8 PEs), a TREE NoC is the best choice.
The MESHO is the best NoC at >2K and <10K LUTs (<8
PEs). At >10K LUTs, the richer MESH1 topology offers the
best choices. The XBAR topology only makes sense if you
have >64K LUTs (>64 PEs), and even then the performance
advantage over a MESH1 NoC is marginal (1.1x). If the de-
veloper has an application with spatial locality, which is more
likely, they should prefer MESHO topology. In Figure 11b,
we see conclusive evidence that richer topologies like MESH1
and XBAR simply occupy resources without delivering any
performance improvements for LOCAL traffic pattern. The
Figure 11 also highlights the danger of drawing conclusions
exclusively from a uniform RANDOM workload as it leads to
overprovisioning of resources in the NoC.

D. Comparing Hoplite

We now compare the cost and throughput trends of the
BFT NoC against the state-of-the-art Hoplite FPGA NoC [7].
In Figure 12, we show absolute sustained throughputs, LUT-
throughput and Wirelength-Throughput trends for a LOCAL
workload. Figure 12a, shows the extent of possible sustained
throughputs for the NoC under various injection rates at 16
PEs (lower end), to 256 PEs (higher end) for Hoplite and
MESHO and MESH1 BFT configurations that mimic the bisec-
tion bandwidth of the Mesh. Here the throughput advantage is
2-5x in favour of the BFTs at identical PE counts. For <8K
LUTs, the Hoplite NoC offers better throughput/area than the
BFT by 1.6x but at larger sizes >16K LUTs, the BFT offers
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Fig. 12: Throughput Tradeoffs between the BFT NoCs and Hoplite. LOCAL workload.
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Fig. 13: Latency distribution for Hoplite vs. BFT MESH1
NoC for 256 PEs and RANDOM traffic+50% injection rate.

superior throughput by factors as much as 1.5x. Here, we
only show the pareto-optimal design points extracted from
Figure 11b. These trends suggest the higher cost of the ¢ and
pt switches may deliver better absolute throughput (packet-
s/cycle/PE), but the low cost implementation of the Hoplite
NoC using fractured Xilinx 6-LUTs remains a formidable
challenge at small system sizes. BFT-based topologies show
better scalability at large system sizes above 16K LUTs. Not
shown on the plot is the reduced FF cost of the BFT NoCs
compared to the Hoplite NoC that closes the gap down to
1.3-1.5x.

We also plot the packet latency distribution for the compet-
ing NoCs in Figure 13. In this experiment, we route RANDOM
traffic with 50% injection rate and 2K packets injected by each
of the 256 PEs (512K packets total). We see that the Hoplite
NoC has 3.2x larger worst-case latency than even the Root
Deflection BFT MESH1 NoC and =5 x higher latency over the
Local Deflection approach. This result is in agreement with the
throughput improvements possible for the BFT-based NoCs
over Hoplite at large system sizes.

Finally, in Figure 14, we show the effect of routing various
synthetic NoC patterns on Hoplite and the MESH1 NoC
topology. Our previous plots focussed on RANDOM pattern as
it does not unfairly advantage the BFT topology. In particular,
the LOCAL pattern benefits from the hierarchical tree structure
of the BFT particularly well and delivers >4x throughput
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Fig. 14: Sustained Throughputs across various NoC traffic
patterns for 256 PEs (note y-axis extents).

boost compared to Hoplite (at the cost of larger ¢ and pi
switches). For other patterns, we see a ~2x throughput boost
across all injection rates for the BFT NoC over Hoplite. The
BITREV traffic pattern, which is known to be tough to route,
performs particularly poorly on the Hoplite NoC, but manages
to scale well on the BFT up to 10% injection rate before
suffering from bottlenecks.

VI. DISCUSSION

In this section we discuss the relevance of our work in the
context of other FPGA overlay NoCs (See Table III) and also
explore a few FPGA implementation scenarios for the BFT.

Comparison with other NoCs: One of earliest FPGA NoC
designs that used BFT topology is the decade-old Split-Merge
design [4]. The switches in that design were composed of Split
and Merge blocks with buffered inputs resulting in high re-
source cost per switch. Despite this, at the time, these designs
were still the fastest and among the cheaper NoC designs of
the day. The CMU Connect [2], and an improved Split-Merge
architecture [3] are faster, and more suited for the newer FPGA
architectures. The recent Hoplite [7] design drastically reduces
resource cost while boosting performance of the NoC routers.
It is able to do so by using bufferless deflection routing, and
a careful LUT-mapping of the multiplexer elements in the
switches. Our BFT design applies deflection routing to BFTs
FPGA NoCs, and introduces a novel BFT-specific optimization
(local loopbacks) to reduce the penalty of deflections. The idea
of localizing conflicts in a NoC has been previously explored



in MinBD [9] in the context of Mesh topologies, and at the cost
of extra wires, registers, and multiplexers to hold and process
the local loopback packet. In contrast, our approach reuses
existing links and registers of the BFT topology to route the
loopback packets, but increases the cost of multiplexing in the
switch in a manner similar to MinBD. In Table III, we show
the FPGA router costs of a BFT FPGA design [4] and Hoplite
NoC [7]. We easily beat the Split-Merge design mapped to V2-
6000 switches by 2-3.5x in area and speed. The Hoplite NoC
is 1.4-5x smaller than the largest pi switch, but comparable
to the cheapest ¢ switch in our repository (see Table II). The
clock speeds of both designs are comparable. As we saw in
Section V-D, despite this lower area cost, the Hoplite NoC is
beat by the BFT NoCs at larger system sizes. Mesh routers
such as the CMU Connect [2] and Penn Mesh-Topology Split-
Merge [3] designs have been shown to be 20-30x larger than
Hoplite. Thus, the improvements possible with the proposed
BFT deflection-routed NoC are additive on top of previously
established result [7]. The CMU Connect NoC generator can
construct Fat Trees [10], but our design is 2x smaller and
faster than their generator even when considering the most
expensive pi switch with Local Deflection support. Our BFT
generator can produce a rich set of NoCs, in a manner similar
to the CONNECT NoC generator, with varying bandwidth
capacity and costs while exploiting the configurability of the
switching richness at each level of the NoC.

TABLE III: Comparing FPGA Costs of NoC routers.

Router Ref FPGA LUTs FFs Clock
Device (MHz)
Split-Merge t [4] Virtex-2 486 224 200
6000 (3.5%) 2x) (2.7x)
Split-Merge pi [4] Virtex-2 820 576 200
6000 (2.6%) (3.8%) (2.1x)
Hoplite [7] Virtex-6 60 100 350
LX240T (0.2x%) (0.7x) (1.2x%)
CONNECT Fat [10]  Virtex-6 450! N/A? 203
Tree LX760 2x) 2.1x)

1450 LUTs/router calculated from Table 1 of [10] — 20 routers in Fat Tree
with 16 PEs, 32b links, 1.9% of LX760 used, LX760 has 474K LUTSs.
2No FFs reported in [10].

Usage Scenarios: We consider two scenarios for interfacing
the NoC with system-level traffic sources on the FPGA. In
the first case, we can replace a few leaf PEs with PCle,
DRAM, Ethernet, or other forms of high-bandwidth system-
level communication. We may need to replace multiple PEs to
ensure all bandwidth from these interfaces can enter the NoC
for chip-wide distribution. For the Root Deflection design, this
is the only way to interface system-level traffic as the top-most
level of the NoC needs to be wired back to itself for supporting
deflections. Even with Hoplite NoC, or other mesh-based
NoCs, we either need to provision the full link bandwidth
with sufficient wiring capacity in the channel. Alternatively,
the bandwidth may be distributed across multiple links at the
expense of an equal number of PE injection slots. In the second
case, we can imagine a better alternative for interfacing these
system-level sources at the root of the NoC. This has two

advantages: (1) the high-bandwidth traffic can be distributed
across multiple top-level links, and (2) we do not have to
sacrifice any PE bandwidth. This arrangement is only possible
with the Local Deflections implementation as the top-level
ports are freely available for communication.

VII. CONCLUSIONS

Butterfly Fat Trees (BFTs) modified to support deflection
routing can outperform state-of-the-art FPGA overlay NoCs
such as Hoplite by as much as 2-5x for uniform random traffic
when considering sustained throughputs for highly loaded
networks at identical PE counts and by as much as 1.5x
when considering identical resource costs at large system sizes
>16K LUTs. BFTs also deliver superior worst-case latency be-
havior improving it by ~5x for 256 PEs with uniform random
traffic. We modify the routing function to localize deflections
with loopbacks to avoid the long deflection delays to the root
of the NoC. This allows us to deliver 20-40% improvements
in throughput and 50-60% better worst-case latencies over the
root-based deflection designs when routing uniform random
traffic above 15% injection rate. BFTs are multi-level networks
that offer configurable bandwidth in each level, allowing an
FPGA developer to tailor the NoC capability to application
requirements and constraints. We show that the best BFT
configuration for RANDOM workloads varies from a binary
tree (p=0) for systems with <2K LUTs, mesh-equivalent BFTs
(p=0.5) for systems <10K LUTS, and crossbars (p=1) if cost
is not a constraint. For workloads with locality, the (p=0.67)
BFT topology delivers robust performance at different system
sizes.
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