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Abstract—
Bufferless, deflection-routed, Butterfly Fat Trees (BFTs) can

outperform state-of-the-art FPGAs overlay NoCs such as Hoplite
by as much as 2–5× on throughput and ≈5× on worst-case
latency at identical PE counts, and by ≈1.5× on throughput at
identical resource costs >16K LUTs for statistical traffic patterns.
In this paper, we show how to modify the tree connectivity
and routing function to support deflection routing on the BFT
topology. We introduce the idea of localized deflections that trap
deflected packets within a single level of a multi-level BFT to
avoid the long round-trip penalty traditionally associated with
deflection routing. Across a range of statistical traffic patterns,
we show a sustained throughput improvement of 2–5× over
for Hoplite for system sizes as large at 512 PEs at above
20% injection rates when using localized deflections. We also
show how the configurable bisection bandwidth of the BFT,
modeled with the Rent parameter 0<p<1, allows us to choose
the best performing NoC at a desired cost. For instance, our
NoC generator can produce simple trees (p=0) for low-cost
applications <2K LUTs, mesh-equivalent BFTs (p=0.5) for real-
world applications with locality at <10K LUTs, and crossbars
(p=1) when cost is not a constraint >64K LUTs. For workloads
with locality, we recommend the BFT topology with p = 0.67.

I. INTRODUCTION

The exponential growth in transistor capacity has made

it possible to make FPGAs with hundreds of thousands of

LUTs and FFs, thousands of DSP and RAM blocks, hundreds

of IO ports all supported by a statically configured, rich

interconnect network. One way to tame the rising capacity

of the FPGA chip is to adopt a modular design approach with

standardized communication interfaces such as AXI (part of

ARM’s AMBA Advanced Microcontroller Bus Architecture

specification). This allows the FPGA developer to compose

large FPGA designs by stitching together modules using these

standard interfaces and a flexible communication fabric for

data movement between the modules. Furthermore, modern

FPGA are able to interface with a wide variety of IO protocols

and interface specifications such as PCI Express, multi-channel

DRAM busses, gigabit Ethernet ports, among others. Efficient

movement of data from these system-level interfaces to various

portions of the chip is also a challenge. FPGA-based overlay

NoCs can solve both these problems. Communication over a

NoC can be switched allowing the design to share communica-

tion infrastructure in different phases of the FPGA execution.

Typical real-world designs exhibit traffic patterns with lo-

cality that can be explained using Rent’s rule. Rent’s rule [1]

(IO=cNp) is an empirical observation of communication

growth in a design hierarchy. For real-world designs, com-

munication requirements tend to decrease as we ascend the

hierarchy i.e. traffic tends to be concentrated in local sub-

regions. Most contemporary FPGA-based NoCs [2], [3] built

on 2D mesh and torus topologies do not directly exploit this

observation. For instance, the CMU Connect Mesh [2], Penn

Split-Merge Mesh [3], use network topologies with a Rent

parameter p=0.5. These structures may match the rectangular

FPGA organization but do not reflect communication require-

ments of FPGA applications. In contrast, the CMU Connect [2]

Fat Tree and Butterfly Fat Tree (BFT) [4] use fat-tree-based

topology [5] that is better matched to communication locality

observed in real-world communication workloads. They can

outperform their mesh counterparts by 1.5–2× [6] but do not

reduce FPGA implementation costs significantly.

With the advent of the Hoplite [7], it is possible to imple-

ment FPGA overlay NoCs with very low cost (60 LUTs +

100 FFs for a 32b router) that is up to 25–30× smaller than

CONNECT and Split Merge NoCs. Under this new reality, we

investigate whether BFT topologies still remain competitive

against 2D topologies. In this paper, we adapt the BFT

routing function to support bufferless deflection routing in a

manner inspired by Hoplite. A naive formulation of the routing

function to exploit bufferless deflections does not deliver the

full benefits against Hoplite. We redesign the routing function

to support localized deflections within each level of the BFT

to lower switch costs without sacrificing performance. In fact,

we show how to exceed the performance and area efficiency

of the Hoplite NoC using our design for large system sizes.

We make the following key contributions in this paper:

• We formulate a bufferless deflection routing function for

BFTs that lowers FPGA implementation cost of switches.

• We develop the idea of local deflections, which lowers

the penalty of deflected packets at the expense of extra

LUTs. We quantify the area-performance tradeoffs due to

this modification of the switch architecture.

• We characterize the throughput, latency trends of the

NoC under various traffic patterns and demonstrate its

superiority over contemporary state-of-the-art NoCs like

Hoplite.

II. BUTTERFLY FAT TREES ON FPGAS

A Butterfly Fat Tree [5] (BFT) is a multi-level switching

topology with statically configured bisection bandwidth that

can be adapted for engineering efficient FPGA NoCs. Bisec-

tion bandwidth represents the ability of the NoC to transport

traffic across a cut along the middle of the NoC topology. To

capture varying bandwidth needs, a BFT is constructed using



two kinds of switches with different routing capabilities: a

t switch (2 in:1 out with half the outgoing bandwidth) and

a pi switch (2 in:2 out with identical incoming and outgoing

bandwidth). All switches in a given level are of the same kind,

but each levels can be independently configured as either t or

pi types. For this paper, we consider arity-2 (2-input) switches

but higher arity networks are possible. Thus, to support N

processing elements (PEs) at the leaves, we need a BFT with

log
2
N levels. For instance, the various NoC topologies shown

in Figure 1 represent the range of network configurations that

can be generated using the BFT template by simply adjusting

the switching structure in the NoC levels.

The Rent parameter for the application is computed by

recursively bisecting the application and measuring the com-

munication required (data transfers in the form of messages,

streams, packets) in the various partitions. Similarly, by re-

cursively partitioning the NoC, we can measure bisection

bandwidths of wires at various local partitions to compute the

Rent parameter of the NoC architecture. A balanced NoC will

match the bisection bandwidth in the physical topology of the

chip to the communication requirements in the application. An

ordinary binary tree (Figure 1a) has a bisection bandwidth of

O(1), and a Rent parameter p=0, making is equivalent to a

simple ring. This topology will support the application with

little communication requirements, or nearest-neighbour style

systolic communication. A crossbar (Figure 1b) has a bisection

bandwidth of O(N), and a Rent parameter p=1, which allows

all-to-all communication between the application partitions.

This means that in a given cycle, a non-conflicting permutation

of N messages can be delivered to their destinations. Since

the BFT is a multi-stage network, the number of switches

required to support this is O(N log
2
N) instead of O(N2)

at the expense of extra log
2
N switch hops. For most real-

world applications this is overprovisioned and expensive. An

ordinary mesh (Figure 1c) has a bisection of O(
√
N), and

a Rent Parameter p=0.5, due to the rectangular
√
N ×

√
N

layout of the NoC. A BFT can be setup to support all of these

topologies by careful configuration of the switch connectivity

in each layer.

We tabulate the various BFT NoC topologies for a 16-

PE (Processing Element) design in Table I. We can deliver

a crossbar by only using pi switches at all levels in the NoC

(32 pi switches), and a binary tree by only selecting t switches

(16 t switches). In addition to these, we can also configure a

topology equivalent to a Mesh in bisection bandwidth in two

ways shown in Figure 1c (alternating t and pi switches for a

total cost of 12 t and 12 pi switches) or Figure 1d (pi switches

in lower levels, and t switches in upper levels for a total cost of

12 t switches and 16 pi switches). This preserves the top-level

bisection bandwidth at O(
√
N) but reallocates bandwidth to

the lower levels at the expense of more pi switches. Depending

on application requirements and cost constraints, we can target

other bandwidth configurations.

Traditional designs for FPGA-based overlay NoCs have

focussed on rectangular layout-friendly topologies such as

Meshes [2] and Tori [7]. These offer a simpler mapping to
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Fig. 1: 16-PE Butterfly Fat Tree Topologies.

rectangular 2D fabrics, but do not provide a cost-effective way

to scale bandwidth. The only way to add more bandwidth to

such fabrics at a fixed system size N is to add parallel channels

c. Increasing channel count uniformly adds bandwidth to all

segments of the NoC, often where it may not be needed. This

is particularly the case when the NoC link width is configured

to match the system-level interface widths of PCIe, DRAM, or

Ethernet IPs. Instead, we can use the configurable structure of

the BFT topology to provide wider links in the top-level of the

NoC and use these to split and distribute traffic to leaf-level

compute blocks. Additionally, we can configure each level of

the BFT to match user’s communication demands.

III. DEFLECTION ROUTED BFTS ON FPGAS

In this section, we describe the FPGA design of the

switching elements that compose a BFT NoC and discuss the

implementation of deflection routing in the switch. For our

bufferless, deflection-routed scenario, we consider single-flit

packets carrying address and payload in a single wide packet.

A. Routing in BFTs

Routing packets on a switched BFT is simple. Unlike

mesh and torus topologies, where we must supply X and Y

addresses, a BFT only requires a single numeric identifier for

address. As the packet climbs the tree, it has complete freedom

to choose the ascending path irrespective of the destination

address. The packet must turn at the height defined by the sub-

tree that contains both the source and destination addresses.

This is trivially calculated as the length of the common prefix

shared between the switch and destination addresses. For t

TABLE I: BFT Topology Configurations for 16-PE design.

Topology Rent p Switch Config. Num. of S/W Bisection

B/W

t pi

TREE 0 t-t-t-t 15 0 1
MESH0 0.5 pi-t-pi-t 12 12 4
MESH1 0.5 pi-pi-t-t 12 16 4
XBAR 1 pi-pi-pi-pi 0 32 16
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Fig. 2: Xilinx LUT mapping for t and pi switches using

Root Deflections approach.
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Fig. 3: Xilinx LUT mapping for t and pi switches using

Local Deflections approach.

switches, there is only a single upward-bound port, and for

pi switches we have a choice of two ports sending packets

up the tree. Thus, as we climb multiple levels of pi switches,

we get exponentially more choices on the uphill paths. The

descending path is strictly defined by the destination address

and no path freedom is available. The routing decision is made

by simply extracting the ith bit corresponding to the ith level

in the fat tree. This makes the routing function simpler than

the mesh and can be implemented with effectively a single FF

for uphill ports (toggles for fair distribution of bandwidth),

and no LUTs/FFs for downhill decisions (directly use the ith

wire as multiplexer select).

B. FPGA Mapping of Switch Multiplexers

In Figure 2, we show how to implement the switching

crossbar in the BFT t and pi switches on a Xilinx FPGA.

As we can see the t switch has three inputs (R, L from lower

level, U from top) and three outputs (R, L to lower level, and

U to top). This can be compactly fit in 3× 5-LUTs as each

output port needs a simple 2-input multiplexer element. The pi

switch, in contrast, has two ports going up. The switching for

packets bound upwards is a simple choices between the R and

L inputs from the lower level which can be mapped to 2-input

multiplexer elements. However, downward bound packets can

either be packets that are turning from the R or L inputs, of

descending packets arriving at the U or U’ inputs. This requires

a 3-input multiplexer for the R and L output ports. For the t

switch we can map the design to fractured Xilinx 5-LUTs.

For the pi switch, only the upward-bound multiplexers can be

efficiently mapped to fractured 5-LUTs, while the other two

require 6-LUTs. In presence of contention, the traditional BFT

implementation [4] buffers packets at the inputs. Our bufferless

deflection router will send packets to an available output port

in presence of contention.

C. Deflection Routing in BFTs

Deflection Routing is a long-studied topic in NoC design

and is most popular in mesh [8] and torus [7] topologies. We

show how to apply this idea to the BFT topology with suitable

adaptations to the routing function and wiring of the NoC.

Root Deflections: The simplest implementation of deflec-

tion routing can be built using the switching structure shown in

Figure 2. Instead of buffering packets, the deflection function

simply routes the packet along the next available port. For

upward-bound packets in a pi switch, this is naturally possible

as part of the BFT routing function. For pi switches, since

there are two ports going UP, it is sufficient to take either

of those exits without compromising performance. In other

cases, such as a t switch with a upward-bound packet, or

any downward-bound packet in either t or pi switches, we

have to deflect along an undesirable port. For upward-bound

packets in a t switch, this will deflect a packet downwards

prematurely, while for downward-bound packets, packets may

be sent down the wrong sub-tree. To ensure packets get

delivered to their destinations eventually we need physical

loopback connection at (1) the root of the BFT tree, and (2) at

the PE interfaces. In comparison, for a deflection-routed NoC

like Hoplite, the loopback connections are naturally part of the

torus topology. Our BFT approach is simple to implement and

requires no modification of the t and pi switches apart from

adding deflection rules in the routing function. However, we

do need to sacrifice bandwidth at the root (the top-most level)

of the BFT to implement the loopback for deflected packets

as well as some storage costs at the PE interfaces to turn back

deflected packets. We show FPGA costs in Table II.

Local Deflections: A different approach towards supporting

deflections is to localize them within a level of the BFT with

loopback. The switch structure to support this idea is shown

in Figure 3. In this case, the deflected packed is bounced back

along the direction of arrival at the contention switch. At the

point of contention, the deflected packet will return back in

the next cycle after turning around at the next switch. The

routing function is modified to prefer deflected packets for

turn-back. This also requires inserting a return path in the

switch multiplexers but needs no extra wiring between the BFT

levels. For the t switch this upgrades the 2-input multiplexers

to 3-input ones while for the pi switch, we now need 4-input

multiplexers. This increases the LUT-mapping cost of the t

and pi switches (See Table II) due to non-fracturability of the

multiplexers. However, we no longer require the top-level BFT











in MinBD [9] in the context of Mesh topologies, and at the cost

of extra wires, registers, and multiplexers to hold and process

the local loopback packet. In contrast, our approach reuses

existing links and registers of the BFT topology to route the

loopback packets, but increases the cost of multiplexing in the

switch in a manner similar to MinBD. In Table III, we show

the FPGA router costs of a BFT FPGA design [4] and Hoplite

NoC [7]. We easily beat the Split-Merge design mapped to V2-

6000 switches by 2–3.5× in area and speed. The Hoplite NoC

is 1.4–5× smaller than the largest pi switch, but comparable

to the cheapest t switch in our repository (see Table II). The

clock speeds of both designs are comparable. As we saw in

Section V-D, despite this lower area cost, the Hoplite NoC is

beat by the BFT NoCs at larger system sizes. Mesh routers

such as the CMU Connect [2] and Penn Mesh-Topology Split-

Merge [3] designs have been shown to be 20–30× larger than

Hoplite. Thus, the improvements possible with the proposed

BFT deflection-routed NoC are additive on top of previously

established result [7]. The CMU Connect NoC generator can

construct Fat Trees [10], but our design is 2× smaller and

faster than their generator even when considering the most

expensive pi switch with Local Deflection support. Our BFT

generator can produce a rich set of NoCs, in a manner similar

to the CONNECT NoC generator, with varying bandwidth

capacity and costs while exploiting the configurability of the

switching richness at each level of the NoC.

TABLE III: Comparing FPGA Costs of NoC routers.

Router Ref FPGA

Device

LUTs FFs Clock

(MHz)

Split-Merge t [4] Virtex-2
6000

486
(3.5×)

224
(2×)

200
(2.7×)

Split-Merge pi [4] Virtex-2
6000

820
(2.6×)

576
(3.8×)

200
(2.1×)

Hoplite [7] Virtex-6
LX240T

60
(0.2×)

100
(0.7×)

350
(1.2×)

CONNECT Fat
Tree

[10] Virtex-6
LX760

4501

(2×)
N/A2 203

(2.1×)

1450 LUTs/router calculated from Table 1 of [10] – 20 routers in Fat Tree
with 16 PEs, 32b links, 1.9% of LX760 used, LX760 has 474K LUTs.

2No FFs reported in [10].

Usage Scenarios: We consider two scenarios for interfacing

the NoC with system-level traffic sources on the FPGA. In

the first case, we can replace a few leaf PEs with PCIe,

DRAM, Ethernet, or other forms of high-bandwidth system-

level communication. We may need to replace multiple PEs to

ensure all bandwidth from these interfaces can enter the NoC

for chip-wide distribution. For the Root Deflection design, this

is the only way to interface system-level traffic as the top-most

level of the NoC needs to be wired back to itself for supporting

deflections. Even with Hoplite NoC, or other mesh-based

NoCs, we either need to provision the full link bandwidth

with sufficient wiring capacity in the channel. Alternatively,

the bandwidth may be distributed across multiple links at the

expense of an equal number of PE injection slots. In the second

case, we can imagine a better alternative for interfacing these

system-level sources at the root of the NoC. This has two

advantages: (1) the high-bandwidth traffic can be distributed

across multiple top-level links, and (2) we do not have to

sacrifice any PE bandwidth. This arrangement is only possible

with the Local Deflections implementation as the top-level

ports are freely available for communication.

VII. CONCLUSIONS

Butterfly Fat Trees (BFTs) modified to support deflection

routing can outperform state-of-the-art FPGA overlay NoCs

such as Hoplite by as much as 2–5× for uniform random traffic

when considering sustained throughputs for highly loaded

networks at identical PE counts and by as much as 1.5×
when considering identical resource costs at large system sizes

>16K LUTs. BFTs also deliver superior worst-case latency be-

havior improving it by ≈5× for 256 PEs with uniform random

traffic. We modify the routing function to localize deflections

with loopbacks to avoid the long deflection delays to the root

of the NoC. This allows us to deliver 20–40% improvements

in throughput and 50–60% better worst-case latencies over the

root-based deflection designs when routing uniform random

traffic above 15% injection rate. BFTs are multi-level networks

that offer configurable bandwidth in each level, allowing an

FPGA developer to tailor the NoC capability to application

requirements and constraints. We show that the best BFT

configuration for RANDOM workloads varies from a binary

tree (p=0) for systems with <2K LUTs, mesh-equivalent BFTs

(p=0.5) for systems <10K LUTs, and crossbars (p=1) if cost

is not a constraint. For workloads with locality, the (p=0.67)

BFT topology delivers robust performance at different system

sizes.
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