eBSP: Managing NoC traffic for BSP workloads on
the 16-core Adapteva Epiphany-III Processor

Siddhartha
Nanyang Technological University
50 Nanyang Avenue, Singapore
siddhart005 @e.ntu.edu.sg

Abstract—We can deliver high performance and energy effi-
cient operation on the multi-core NoC-based Adapteva Epiphany-
III SoC for bulk-synchronous workloads using our proposed
eBSP communication API. We characterize and automate per-
formance tuning of spatial parallelism for supporting (1) ran-
dom access load-store style traffic suitable for irregular sparse
computations, as well as (2) variable, data-dependent traffic
patterns in neural networks or PageRank-style workloads in a
manner tailored for the Epiphany NoC. We aggressively optimize
traffic by exposing spatial communication structure to the fabric
through offline pre-computation of destination addresses, un-
rolling of message-passing loops, selective squelching of messages,
and careful ordering of communication and compute. Using our
approach, across a range of applications and datasets such as
Sparse Matrix-Vector multiplication (Matrix Market datasets),
PageRank (BerkStan SNAP dataset), and Izhikevich spiking
neural evaluation, we deliver speedups of 6.5-10x while lowering
power use by 2x over optimized ARM-based mappings. When
compared to optimized OpenMP x86 mappings, we observe
a 11-31x improvement in energy efficiency (GFLOP/s/W) for
the Epiphany SoC. Epiphany is also able to beat state-of-the-
art spatial FPGA (ZC706) and embedded GPU (Jetson TK1)
mappings due to our communication optimizations. Our library
is open-source and available at github.com/sidmontu/ebsp.git.

I. INTRODUCTION

Modern embedded SoCs (systems-on-chip) are increasingly
composed of host CPUs supported by custom accelerators
capable of accelerating certain classes of problems with high
efficiency. It is vital that such SoCs are augmented by a fast
and capable communication fabric (NoC, network-on-chip)
that makes it possible to accelerate a range of communication-
intensive problems while lowering power requirements by
avoiding complex shared-memory controllers. In this paper, we
investigate the raw potential and tuneability of the Epiphany III
SoC, a bespoke computing platform optimized for processing
of communication-rich floating-point applications. A high-
level diagram of this Parallella development board we use in
this study is shown in Figure [I] The Epiphany-III SoC consists
of 16 RISC eCores operating at 667 MHz, equipped with
single-precision floating-point ALUs supported by a 32 KB
scratchpad RAM per eCore. The centerpiece of this parallel
organization is the communication fabric that is composed
of three separate NoCs for on-chip writes, off-chip writes
and reads. The chip provides simple bare-metal programming
control over the RISC eCores with software control over local

Nachiket Kapre
University of Waterloo
200 University Ave W, Waterloo, Canada
nachiket@uwaterloo.ca

Offchip DRAM Epiphany Il SoC

¢
e
PP

ARMv7 Mem - T

CPU Ctrl ALU ||||
FPGA ALU

Zynq 7010 SoC Logic I!I!I!I

Fig. 1: Parallella Board with Zynq 7010 SoC and 16-core
single-precision floating-point Epiphany-IIT SoC.

32 KB scratchpads in each eCore, and dedicated communi-
cation APIs that allow the RISC eCores to directly inject
appropriate load/store or DMA-style traffic into the NoC.
In this paper, we develop the eBSP API for exposing and
optimizing communication for NoC-based SoCs such as the
Epiphany-III through a graph-centric bulk-synchronous model.
We expect our ideas to be broadly applicable to other NoC-
based accelerators such as Kalray [6] and Tilera [4]] SoCs.

The key contributions in our paper include:

1) Development of a communication library for expressing
bulk-synchronous communication patterns with underly-
ing optimizations targeting the Epiphany SoC.

2) Performance analysis and microbenchmarking of the
Epiphany-III NoC to build an understanding of commu-
nication capabilities in the system and contrast it against
FPGA overlay NoCs.

3) Characterization of Epiphany performance and power
across a variety of workloads including: (a) Sparse
Matrix-Vector multiplication (SpMV), (b) Google PageR-
ank, and (c) the Izhikevich spiking neural network eval-
uation. Also, performance and energy-efficiency compar-
isons of Epiphany against state-of-the-art FPGA (ZC706),
GPU (Jetson TK1) and x86 (Xeon) implementations.

II. BACKGROUND
A. Epiphany-Ill SoC

We use the Parallella SoC board [17], [12] for our exper-
iments. The board consists of a Xilinx Zynq 7010 SoC with
an ARM CPU, an on-die FPGA co-processor and a separate
Epiphany-III SoC [11]. The Zynq SoC provides the frontend
to the Epiphany chip for programming and debugging. The
Epiphany chip interfaces with the Zynq SoC over an eLink
interface implemented on the FPGA that allows loading of

flat_write =% dma_write 48 flat_read dma_read
m
=100
[
]
=
o A
@ 10
o 1]
g
= 1
NOR 0O R W RN O RN
(2] N N N ol = o o
© o N N B
N~ ®

Size of transfer (bytes)

Fig. 2: Understanding e_dma_copy and flat-addressing.

program binary as well as DMA transfers of data between the
host (ARM) and the accelerator (Epiphany).

Hardware: The Epiphany SoC is a custom architecture with
a RISC-style ISA optimized for floating-point processing and
NoC communication. Each eCore supports a single-precision
floating-point ALU capable of achieving up to 1.2 GFLOPs/s
per eCore (667 MHz fused multiply-add). The minimal RISC
implementation of the eCore enables a lightweight implemen-
tation optimized for fast, energy-efficient operation i.e. the 16-
core chip only draws 1-2 W power. The program and data are
stored in the 4-bank 32 KB scratchpad that must be explicitly
managed by the programmer.

Software: The Epiphany cores are programmed bare-metal
directly in C and are supported by the Epiphany SDK that
is hosted on the ARMv7 Zynq CPU. Each Epiphany eCore
can be loaded with a unique binary in MIMD style. Thus, the
programmer is able to run host code on the ARMv7 CPU with
full Linux OS support for management of acceleration while
the accelerated code runs on the Epiphany eCore as a bare
metal executable. Special low-level functions are provided for
NoC communication and synchronization.

B. Microbenchmarking the Epiphany NoC

Instead of relying on coherent caches for sharing state
between parallel processing units, the Epiphany eCores co-
ordinate and move data between each other explicitly us-
ing message-passing on the NoC. The eMesh NoC on the
Epiphany consists of three parallel physical channels: one
channel for on-chip write traffic (cMesh), one channel for
off-chip write requests (xMesh) and the last channel for
read-request style traffic (rMesh). The on-chip write channel
handles 8-byte transfer per cycle, the off-chip write channel
only supports 1-byte transfer per cycle, while the read request
channel supports a single request every 8 cycles. This repre-
sents a wide variance in capabilities and also represents peak
behavior rather than real-world performance. Thus, to get a
better understanding of what the NoC can do for us, we run
a series of microbenchmark tests to stress-test the design and
identify opportunities and find bottlenecks.

Communication between each eCore is supported with
two types of memory transfers: an explicit f£1lat-addressing
memory transfer or an e_dma_copyﬂ (streaming read/write)

T All routines prefixed with “e_” only run on Epiphany eCores.

that uses the DMA channel. Since the address space of the
16 eCore scratchpads is global, the flat-addressing style
memory transfer allows any eCore to write or read any value
from any eCore by simply instantiating global pointers to the
local memory banks.

In Fig. [2| we show performance results for both the sup-
ported strategies with varying transfer sizes. Note that each
write request is sent as a packet with an 8-byte payload on
the cMesh, and hence, any <8-byte payloads are zero-padded
appropriately. The DMA operation is managed by dedicated
DMA engines that can orchestrate memory transfers over
two DMA channels alongside regular instruction execution
by the eCores’ CPUs. However, there is a startup cost to
launch DMA transfers (= 500 cycles), which is amortized
only for long transfers. Fig. [2] shows the performance of
flat addressing transfer strategy vs the performance of the
e_dma_copy, with varying total transfer sizes. The plot
suggests crossover threshold of 256-512 bytes for using DMA-
based communication. Furthermore, we observe that read
understandably has lower bandwidth than write transfers as
the wider 8-byte NoC channels are available for writes while
only 1-byte NoC channel is available for reads.

As NoC performance for short packets is slower than
larger bulk transfers, this is a significant concern for irregular,
communication-bound problems. Computations such as sparse
graph-oriented processing that exchanges a larger number
of short messages are affected. Hence, we need to exploit
opportunities for NoC optimizations for these workloads.

III. COMMUNICATION OPTIMIZATION

In this paper, we model our communication workload as a
graph G where computation happens at the graph node n while
communication is along graph edge e. The edges represent
communication within the application. The implementation
model for the applications is an instance of Bulk Synchronous
Parallelism [21] (BSP). Under this model, in each application
iteration (or epoch), all graph nodes first perform computations
based on state stored in the node followed by a communication
along the edges. For our application scenarios, the nodes may
be matrix rows (SpMV), webpages (PageRank), or neurons
(Izhikevich model). Computation performed at each node is
supplied by the programmer separately while the eBSP opti-
mization APIs are generic. The iterations are separated from
each other with a global barrier implemented on the Epiphany
using the fast e_barrier () routine (=300 cycles/call). As
the write bandwidth on the Epiphany is 8 x higher, we describe
all our BSP message transfers as write-oriented operations.
The basic communication template used in our optimization is
shown in Listing [T} Here, we have a for loop over all message
injections into the NoC. Each message transfer requires the
destination address of the remote eCore, the memory address
within the remote, and the actual data being sent. We use a
CSR-inspired [20] storage format optimized for compressed
storage of the sparse communication graph structure on the
32 KB/eCore scratchpad. As a result, we need to unpack and
process relevant fields to generate destination address.

for (int m=0; mM<MESSAGES; m++) {
float data = state[m];
int addr = node_id[m]~*offset + edge_id[m];
int dest = remote[m];
send (dest, addr, data) ;
}

Listing 1: Original BSP Message-Passing Code Template.

e Address Precomputation: For typical BSP workloads,
the graph connectivity information is statically known and
does not change structure at runtime. This means that for
each NoC message, we can store the physical destination
address in suitably encoded data structures directly on the
eCores. Hence, instead of calculating destination memory
addresses for the data movement at runtime, we can simply
look them up. This is particularly effective on the Epiphany
eCore because (1) it has poor 32b integer support which
is critical for memory address calculation, and (2) the
BSP model requires repeated evaluation of the complete
communication graph across multiple epochs. However, this
comes at the expense of extra storage cost to hold the calcu-
lated address information within the 32 KB scratchpad, typ-
ically doubling memory requirements for storing each edge.

send (dest [m], addr [m],data[m]) ;

e Communication Squelching: For certain BSP applica-
tions (see PageRank and Neural Network descriptions later
in Section[[V)), it is frequently observed that certain message
values sent along an edge in a given BSP iteration are
not different from those in the previous iteration. This
happens when a PageRank score for a node has stabilized,
or a neuron has not fired in a given step. We exploit this
observation to significantly reduce NoC message activity
by squelching a message that has not changed state. The
destination node may simply reuse an older value cached in
the message buffer for that edge.
if (cond) {send(dest[m],addr[m],data[m]);}

e Message Loop Unrolling: As highlighted earlier, poor
support for 32b integer operations results in non-trivial run-
time overhead in Epiphany code for managing loop iterators,
data loads, and function calls to the communication API
within the loop body. This results in very low message
injection rate particularly for short transfers. For these cases,
we manually unrolled the loops that generate traffic for the
NoC to help push more data into the NoC and encourage
higher utilization.

send (dest [2*m],addr[2+m],data[2+m]) ;

send (dest [2+m+1],addr[2+m+1],data[2+m+1]) ;

Finally, all optimizations discussed in this section are
part of our eBSP library’s API, full documentation for
which can be found on our open-source github repository at
github.com/sidmontu/ebsp.git.

IV. CASE STUDIES

In this section, we describe the various bulk synchronous
applications we evaluate, and associated code sketches. We
report the resulting performance achieved when mapped to the

Epiphany-III SoC as well a performance breakdown explaining
the trends. We also compare results against state-of-the-art
FPGA (ZC706) and embedded GPU (Jetson TK1) mappings
reported in literature. These platforms consume less than
10 W power and have approximately similar capabilities as
the Epiphany-III. We develop reference C implementations
of each of the applications on the ARMv7 and x86 CPUs
for timing evaluation and functional correctness testing. We
measure runtime using the lightweight PAPI library for C
code compiled using —03 optimization that exploits SIMD
vectorization where possible. We develop a lightweight mem-
ory manager to help perform memory layout (for both code
and data) in the tight 32 KB scratchpad space (e.g. e_malloc to
assign memory on each eCore). We measure accelerated eCore
runtime using the lightweight Epiphany event timer API.

Since we manage the local data memories ourselves, we
partition the graph into sub-graphs and load them via over-
lapped DMA transfers. In state-of-the-art parallel CPU and
GPU implementations, this partitioning (or load-balancing) of
the workload is performed as row permutations for SpMV ker-
nels, k-means clustering for PageRank workloads and pseudo-
random partitioning for Neural networks. We use identical
one-time heuristics to decompose the graph and reuse the par-
titions across iterative BSP steps. We use real-world datasets
from the Matrix Market benchmark suite [3l], and BerkStan
web graphs from the Stanford SNAP [15] datasets.

A. Limitations of epiphany-bsp library (git hash 437c01b,
github.com/codeuin/epiphany-bsp)

The epiphany-bsp library provides an easy-to-program BSP
framework for the Parallella SoC, and offers several high-
level software routines for moving and organizing data. Our
experiments show that the performance of the epiphany-
bsp library suffers at the expense of keeping the abstraction
compatible with BSPLib. We attribute this poor performance to
complex design strategies that incorporate interrupts, mutexes
and off-chip buffering techniques to implement the software
routines in the library. While the library does offer powerful
software abstractions (e.g. tagged message-passing between
eCores using buffered queues), they are unsuitable for practical
use on the bulk synchronous designs we evaluate in this study.
We observe that the epiphany-bsp is 16x slower than even
ARMVv7 implementations in the best case scenario. We expect
the optimizations proposed in our work can be adapted to
help improve and enhance the software abstractions provided
by epiphany-bsp library.

B. Sparse-Matrix Vector Multiply (SpMV)

Irregular floating-point computations such as sparse matrix-
vector multiplication A - z = b (commonly used in embedded
scenarios such as software defined radio, computer vision)
are constrained by the cost of irregular memory accesses and
subsequent poor utilization of sequential processing engines.
It is often repeatedly called inside an iterative algorithm
(e.g. conjugate-gradient) and it quickly becomes a compute
bottleneck as problem sizes exceed cache limits.

cot

(a) Sparse Matrix Form of SpMV Input

(b) Graph Form of the Sparse
Matrix

Fig. 3: Graph representation of sparse matrix A where each
A;j is an edge and each row is a vertex.

To parallelize SpMV [7], [1l], we represent the computation
as a graph, which is partitioned and evaluated on multiple
processors using the BSP abstraction. We consider datasets
derived from the Matrix Market benchmark set and evaluate
those for multiple BSP iterations. On the Epiphany, we can
partition the graph across 16 eCores, where each eCore
processes fanins and fanouts of all nodes local to the eCore.
We show high-level code sketches of SpMV on the Epiphany
in Listing 2] The outer loop iterates over all nodes in the eCore,
the first loop over fanins performs the row-vector product
while the last loop sends the resulting vector values to other
eCores in preparation for the next SpMV iteration. Here, the
send function sends the data along the graph edge to the
appropriate eCore and is a dominant component of parallel
runtime when left unoptimized. The communication pattern
seen in this application is an instance of Irregular, Fine-
Grained Store.

In Figure] we show the performance comparison of our
fully-optimized BSP implementation against optimized ARM
mapping of the SpMV application across various datasets (ma-
trices). We observe speedups of 2—8x across our benchmark
set while consuming ~50% power for the Epiphany chip
over the Zynq baseline. We provide a performance breakdown
in Figure |§| for the jpwh_991 benchmark. Without NoC
optimizations, the parallel Epiphany code runs 1-2x faster
than the ARMvV7 reference implementation. We deliver a
further 2—4 x speedup by adopting the address precomputation
optimization. Loop unrolling of the fanin and fanout computa-

foreach node n in eCore {

sum = 0;

foreach fanin f of n {
// x(f) is the received value on edge
sum += A(n,f) » x(f); // multiply-accum

}

x(n) = sum; //row result

e_barrier(); // global barrier

foreach fanout f of n {
val = x(n); //x(n) is the value to send
c = get_coreid(f);
o = get_local_offset (f);
address = e_get_global_address(c,0);
send (val, address); // NoC

Listing 2: SpMV Code Sketch. Each message needs
destination eCore, destination address and value being sent.

bp_1000 == gre1l1l5 == jpwh_991

ﬂ simucad_dac
=~ bp_400 == hor_131 = mcca

simucad_ringosc

Speedup over ARM
P NWDS OO N

1 10 100 1000
Number of BSP lterations

10000

Fig. 4: SpMV speedups on representative sparse matrices
over optimized ARM implementation.

Dhaseline.addrgen.unroll_oulDunroII_in

10000

1000

Number of BSP Iterations
=
[o
o o

I

[N

1 2 3 4 5 6 7 8
Speedup over ARM

Fig. 5: SpMV Performance Breakdown by NoC
optimizations for the jpwh_991 dataset.

tions yield a marginal further improvement of ~10-20%. We
observe that speedups increase and saturate around 2—-8 x when
we run multiple BSP iterations as the cost of launching the
Epiphany accelerator gets amortized out with more launches.
Each iteration is separated by an on-chip e_barrier () call
that avoids a round-trip to the host ARMv7 CPU.

C. Google PageRank

PageRank is a well-known link-analysis algorithm used
by Google to rank webpages for its search engine. An accel-
erated energy-efficient implementation of this computation is
highly desirable due to the dynamic nature of web content
and power and cost constraints of existing implementations.
Each webpage in the Google database is given a PageRank
score based on its connectivity to other webpages. The input
to the PageRank algorithm is a web connectivity graph, where
each vertex represents a webpage, and each directed edge
represents a hyperlink from edge-source to edge-sink webpage.
The PageRank algorithm is highly parallel and we directly
formulate it as a BSP graph problem instead of the SpMV-
based Power Iteration method. The algorithm runs in multiple
bulk-synchronous timesteps. In each step, the nodes send
updates along fanout edges. The algorithm terminates when
all PageRank scores have stabilized. Here the transmission of
messages from a node is conditional to whether the node has
stabilized already. This application is an instance of Data-
Dependent, Fine-Grained Store as messages are selectively
squelched (suppressed) if a certain threshold condition is met.

Dbaseline-squelch-unrollioutDunrolliin

)

X

=

2 oo | —
(]

)

(9]

=

5 oo |

ks

5 00| (]

Qo

:

2 1 2 3 4

Speedup over ARM

Fig. 6: Google PageRank binned-average speedup
contributions by optimization type.

In the context of this Epiphany implementation, we expect a
cluster of low-power, floating-point, message-passing proces-
sors to provide a customized energy-efficient implementation
of PageRank for a cloud-based accelerator. Hence, the amount
of network traffic varies depending on the specific conditions
of the network and distribution of activity across the network.
This implies we have NoC traffic patterns that vary over time
and stress the network with lightly loaded conditions in one
phase and heavy load in another phase. We use the BerkStan
web graph from the SNAP [15]] library as input. We threshold
the minimum PageRank to 0.15 and set the damping factor, d,
to 0.85. The PageRank results are verified with reference CPU
implementations once all nodes on all eCores have stabilized.

We show a breakdown of speedups due to various NoC
optimizations in Figure[6] Here, the various datasets are binned
into groups based on the number of edges and then each bin
is averaged. For these workloads, the inherent parallelism in
the PageRank algorithm delivers the first 1.5-2x improve-
ments when mapped to the 16-eCore Epiphany. Additional
speedups are delivered by a combination of squelching (as
much as 9x for certain large graphs), and loop unrolling
optimizations (10-20%). Thus, squelching delivers bulk of the
speedup improvements by eliminating needless NoC traffic.
This also has an effect on the addrgen optimization we
use in the SpMV case study. Due to the lower activation
rate of the edges with squelching enabled, the performance
gains from addrgen optimization are significantly reduced,
and therefore, the memory-performance tradeoff is no longer
favorable here.

For smaller graphs <500 edges, the baseline Epiphany
performance is slower than the ARM (0.1-0.9x slower) as
the problem size fits within the ARM caches. However, as
the graph sizes increase, the ARM can no longer avoid cache
misses, and with the added advantage of multicore parallelism
from the Epiphany, we observe speedups of up to 10x for
larger graphs. We see a spread in speedups due to variations
in fanin and fanout sizes of certain bottleneck nodes. These
nodes are popular webpages with multiple links.

D. Spiking Neural Networks

In computing, a neural network is an information processing
architecture inspired by the biological ways in which the
human nervous system and human brain neurons process in-

formation. Energy-efficient, configurable implementations of a
neural network is useful to help build large-scale simulators of
neural and biological phenomena. In this paper, we represent
the neural network as a graph of neurons interconnected by
synaptic edges. Each node in the graph is a neuron, while all
directed edges between nodes are synapses that relay infor-
mation between connected neurons. In each timestep, based
on modeled heuristics, a neuron (node) can “fire”. A “fire”
trigger event is then relayed downstream to any other neurons
(nodes) that are connected to the “firing” neuron. This trigger
event is modeled as a bulk synchronous communication step
in the evaluation. Each neuron then processes any incoming
trigger events and does a compute and local update, which
can vary depending on the neuron model adopted. We map
the simple model of spiking neurons by E.M. Izhikevich [13]]
to the Epiphany using synthetically generated neural graphs.
Here, the local compute at each neuron is composed of simple
addition, subtraction and multiplication operations that are
suitable for parallel execution on simple RISC eCores.

Number of synapses

256 512 = 1024 - 2048 4096 8192
256 512 1024 2048 4096 6144
2 neurons neurons neurons neurons neurons neurons
o
<£ 7 —t =0 N:\—\Fu
o 6 =< / | 2 i
> -
© 5 [¥ /
% 4 / |
S 3
Q
8 2
(7)) RPRRRRRPERERREPRERERRERRERRBRRE
OC0o0 ©0O0 O0OO ©00O0 OO0OQ ©O©O0Oo9
o o o o o o o o o o o o
S) S) S) S S)

Number of Timesteps

Fig. 7: Overall speedups achieved when simulating
Izhikevich model neural networks.

In Figure |7, we show overall speedups for various synthetic
neural network graphs generated from the Izhikevich spiking
model for various combinations of neuron and synapse counts.
We are able to deliver high speedups 5-7x when running 100
or more iterations of the spiking evaluation. The speedups are
consistently higher at larger neuron counts. As we increase
number of neurons in the network, we increase the amount
of overall work that needs to be done to evaluate local
computations at each neuron.

V. RELATED WORK AND DISCUSSION

For the SpMV kernel, the authors in [9] report a best-case
efficiency of 0.11 GFLOPs/W on the Jetson TK1 GPU and
as opposed to the 0.24 GFLOPs/W we are able to achieve
on the Epiphany. A recent effort on a Stratix V custom
FPGA board [8] reports a best-case 0.221 GFLOPs/W (25W
total power). Considering a 5x improvement possible from
CoRAM++ [22], an SpMV mapping could potentially im-
prove from 50 MFLOPs/s for CoRAM to 250 MFLOP/s for
CoRAM++ on an 8 W ZC706 system while still delivering a

TABLE I: Energy-efficiency comparison of Epiphany SoC.

Application Our mapping State-of-the-Art
Epiphany ARM x86 FPGA GPU x86
SpMV 276 45 26 221 110 75
(MFLOP/s/W) 8] Bl (8]
PageRank 55 13 5 - 3.6 1.9
(MEPS/W) (101 1ol
NeuralSim?* 1.9 13 59 6.3 22 9.8
(uJ/synap. event) 2] (o] 19

TLower is better for Neural Network, for other rows, higher is better

paltry 0.03 GFLOPs/W. For PageRank, in [10], the authors re-
port peak edges per second (EPS) of 0.18 billion EPS (BEPS)
on a single Intel Nehalem Xeon X5650 CPU. In contrast,
we achieve a peak EPS of 0.11 BEPS on the Epiphany,
at almost 50x less power. In [19]], the authors simulate
a Izhikevich spiking network with 10K neurons and 18M
synapses for 3s on a cluster composed of Jetson TK1 boards.
An FPGA implementation on a ZC706 board [2] with 746
neurons and 174K synapses is evaluated for a 1s simulation
of an oscillatory grid. The Epiphany NoC delivers an energy
efficiency of 1.9uJ/synaptic event (2W power, 544ms, 581k
synaptic events), compared to 2.2uJ/synaptic event for the
Jetson TK1 and 6.3uJ/synaptic event on the ZC70

In Table [, we compare the performance of our optimized
Epiphany implementations with ARM (and x86 for context).
While the x86 outperforms the alternatives on absolute per-
formance, it loses to the ARM by 2-5x and the Epiphany
by 11-31x when considering energy efficiency. This suggests
a clear advantage for simpler RISC-like cores for optimized
processing of floating-point workloads while also supporting
spatial parallelism using a fine-grained packet-switched NoC.
For the neural network simulations, communication intensity
is sporadic and a less dominant component of total runtime,
hence the optimizations deliver lower improvements.

For FPGA-based overlays, NoC traffic compilation strate-
gies were previously explored in [14]. NoC-optimizations have
also been previously explored in [16] (Computational Biol-
ogy), [6] (Timing Critical systems), [4] (community detection),
among others. Our work attempts to develop a reusable API
that is generalizable to these application domains, and other
NoC-centric architectures.

VI. CONCLUSIONS

We show how to expose and optimize communication on
the floating-point Epiphany-III embedded SoC to deliver 4—
7x energy-efficiency improvements over ARMv7, and 11-
31x improvements over OpenMP-optimized x86 mappoings
(GFLOP/s/W) with our eBSP API. Epiphany is also able to
deliver superior results to other platforms in its class such
as CUDA-optimized implementations on the embedded GPUs
(Jetson TK1) as well as spatial FPGA mappings (ZC706).
The use of offline calculation of destination addresses, un-
rolling of message-passing loops, selective squelching of

2Calculated based on ZC706 platform power of ~8 W with 120K spiking
events and 94 ms of compute time reported in [2].

NoC traffic, and careful ordering of compute and commu-
nicate phases are the key optimizations provided by our
library. Our eBSP library is open-source and available at
github.com/sidmontu/ebsp.git.

REFERENCES

[1] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication
on CUDA. In NVIDIA Tech. Report NVR-2008-004, pages 1-32, 2008.

[2] H. Blair, J. Cong, and D. Wu. Fpga simulation engine for customized
construction of neural microcircuits. In Computer-Aided Design (IC-
CAD), 2013 IEEE/ACM Int. Conf. on, pages 607-614, Nov 2013.

[3] R.F. Boisvert, R. Pozo, K. A. Remington, R. F. Barrett, and J. Dongarra.
Matrix market: a web resource for test matrix collections. 1996.

[4] D. Chavarria-Miranda, M. Halappanavar, and A. Kalyanaraman. Scaling
graph community detection on the tilera many-core architecture. In 2074
21st International Conference on High Performance Computing (HiPC),
pages 1-11, Dec 2014.

[5] J. D. Davis and E. S. Chung. Spmv: A memory-bound application on
the gpu stuck between a rock and a hard place. Technical Report MSR-
TR-2012-95, September 2012.

[6] B. D. de Dinechin, D. van Amstel, M. Poulhies, and G. Lager. Time-
critical computing on a single-chip massively parallel processor. In
Proceedings of the Conference on Design, Automation & Test in Europe,
DATE ’14, pages 97:1-97:6, 3001 Leuven, Belgium, Belgium, 2014.
European Design and Automation Association.

[71 M. Delorimier and A. DeHon. Floating-point sparse matrix-vector
multiply for FPGAs. 2005 ACM/SIGDA 13th, page 75, 2005.

[8] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt. A high
memory bandwidth fpga accelerator for sparse matrix-vector multiplica-
tion. In Proceedings of the 2014 IEEE 22Nd International Symposium on
Field-Programmable Custom Computing Machines, FCCM ’14, pages
36-43, Washington, DC, USA, 2014. IEEE Computer Society.

[91 M. Geveler, T. Stefan, and R. Dirk. Realization of a low energy HPC

platform powered by renewables - a case study: Technical, numerical

and implementation aspects. 2015.

A. Gharaibeh, L. Beltrao Costa, E. Santos-Neto, and M. Ripeanu. On

graphs, gpus, and blind dating: A workload to processor matchmaking

quest. In Parallel Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium on, pages 851-862, May 2013.

L. Gwennap. Adapteva: More flops, less watts. Microprocessor Report,

6(13):11-02, 2011.

S. J. Hollis and S. Kerrison. Swallow: Building an energy-transparent

many-core embedded real-time system. In 2016 Design, Automation Test

in Europe Conference Exhibition (DATE), pages 73—78, March 2016.

E. M. Izhikevich. Which model to use for cortical spiking neurons?

IEEE transactions on neural networks, 15(5):1063-1070, 2004.

N. Kapre and A. Dehon. An noc traffic compiler for efficient fpga im-

plementation of sparse graph-oriented workloads. International Journal

of Reconfigurable Computing, 2011, 2011.

[15] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network

dataset collection. http://snap.stanford.edu/data, June 2014.

T. Majumder, P. P. Pande, and A. Kalyanaraman. On-chip network-

enabled many-core architectures for computational biology applications.

In 2015 Design, Automation Test in Europe Conference Exhibition

(DATE), pages 259-264, March 2015.

A. Olofsson, T. Nordstrom, and Zain-ul-Abdin. Kickstarting high-

performance energy-efficient manycore architectures with epiphany.

CoRR, abs/1412.5538, 2014.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation

ranking: bringing order to the web. 1999.

P. S. Paolucci, R. Ammendola, A. Biagioni, O. Frezza, F. L. Cicero,

A. Lonardo, M. Martinelli, E. Pastorelli, F. Simula, and P. Vicini.

Power, energy and speed of embedded and server multi-cores applied

to distributed simulation of spiking neural networks: ARM in NVIDIA

tegra vs intel xeon quad-cores. CoRR, abs/1505.03015, 2015.

Y. Saad. Sparskit: a basic tool kit for sparse matrix computations, 1994.

L. G. Valiant. Why BSP computers? [bulk-synchronous parallel comput-

ers]. In Parallel Processing Symposium, 1993., Proceedings of Seventh

International, pages 2-5, 1993.

G. Weisz and J. C. Hoe. Coram++: Supporting data-structure-specific

memory interfaces for fpga computing. In 2015 25th International

Conference on Field Programmable Logic and Applications (FPL),

pages 1-8, Sept 2015.

[10]

(11]

[12]

[13]

[14]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

