
Criticality-driven Token Dataflow Optimizations for
FPGA-based Sparse LU Factorization

Removed for blind review
Removed for blind review

Abstract—
Performance of FPGA-based token dataflow architectures is

often limited by the long tail distribution of parallelism in the
compute paths of dataflow graphs. This is known to limit speedup
of dataflow processing of Sparse LU factorization to only 3–
10× over CPUs. In this paper, we show how to overcome these
limitations by exploiting criticality information along compute
paths; both statically during graph pre-processing and dynami-
cally at runtime. We statically restructure the high-fanin dataflow
chains using a technique inspired by Huffman encoding where we
provide faster routes for late arriving inputs as predicted through
our timing models. We also perform a fanout decomposition
and selective node replication in order to distribute serialization
costs across multiple PEs. This static restructuring overhead is
small; roughly the cost of a single iteration, and is amortized
across 1000s of LU iterations at runtime. Additionally, we modify
the dataflow firing rule in hardware to prefer critical nodes
when multiple nodes are ready for dataflow evaluation. We
compute this criticality offline through a one-time slack analysis
and implement this in hardware at virtually no cost through
a trivial address encoding ordered by criticality. For dataflow
graphs extracted for sparse LU factorization, we demonstrate up
to 2.5× (mean 1.21×) improvement when using the static pre-
processing alone, a 2.4× (mean 1.17×) improvement when using
only runtime optimizations alone while an overall 2.9× (mean
1.39×) improvement when both static and runtime optimizations
are enabled across a range of benchmark problems.

I. INTRODUCTION

FPGA-based token dataflow architectures are an increas-
ingly important design choice for accelerating many hard
computational problems where parallelism is sparse, and ir-
regular. In these circumstances, a raw unrolled dataflow graph
exposes all possible parallelism in the computation in its
purest form. The dataflow architectures allow asynchronous,
decoupled evaluation of parallelism in irregular graphs without
the need for clumsy parallelization hacks. The dataflow graph
execution proceeds using a simple dataflow firing rule where
a node is fired when all its inputs are received. Sparse LU
factorization is one such representative engineering application
that is notoriously hard to parallelize and is considered a
challenging problem for conventional processors. It is a well-
known compute bottleneck in fields such as circuit simula-
tion [5], computational fluid dynamics [3], machine learning,
bioinformatics, among many others. When the sparse matrices
are fixed, we can extract its unique dataflow graph for LU
factorization. Hardware-assisted token dataflow acceleration of
Sparse LU implementations (e.g. [6], [10]) can deliver non-
trivial speedups of 3–10× over CPU-based solvers. However,

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100 120 140 160 180

F
re

q
u

e
n

c
y

Arrival-Time Difference

(a) Arrival-time variation (tlast - tfirst)

 1

 10

 100

 1000

 10000

 2 10 100 200

F
re

q
u

e
n

c
y

Number of fanin/fanouts

Fanout
Multiply Fanin

Add Fanin

(b) Fanin/Fanout Distribution

this is achieved with barely 10% of dataflow operator utiliza-
tion due to the long tail distribution of parallelism in the graph.

Dataflow graphs can often have a few nodes with large fanin
or fanout counts. As we scale system sizes, high fanin/fanout
nodes quickly become the performance bottleneck. Further-
more a dataflow graph can have multiple concurrent parallel
paths from inputs to outputs but certain paths will be more
timing critical than others. If we schedule evaluation without
regard to timing criticality of compute paths, we will delay
completion thereby lowering performance. By careful ordering
of operations, we can deliver additional speedups for FPGA-
based token dataflow processing. Based on these insights, we
propose three optimizations in this paper:
• Fanin reassociation: We could trivially decompose the

high fanin nodes using associative property into balanced
reduction trees that assume uniform input arrival time.
However, that is a generous assumption as observed for
addition operator nodes shown in Figure 1(a) (for the
bomhof2 benchmark). This shows a high 180-cycle gap
between the fastest and slowest inputs. We need to build

associative fanin trees that account for this arrival time.
• Fanout decomposition/replication: Typically fanout nodes

are processed in sequence in the dataflow PE, resulting in
serialization bottlenecks for large fanouts (see Figure 1(b)).
We need to reduce this overhead by (1) distributing fanout
serialization across multiple PEs, as well as (2) prioritizing
evaluation of edges that must travel further in the system.
• Criticality-driven dataflow firing: At a given evaluation

cycle, there may be several nodes active in a processing
element (PE). If we simply use the first-in-first-out (FIFO)
order, we may unintentionally ignore evaluation of more
timing critical compute paths. Hence we need to perform
criticality-based selection of node evaluation in each PE at
runtime.
The key contributions in this paper are:
• Design of a dataflow compiler that performs arrival-time

aware reassociation of high fanin nodes as well as fanout
decomposition/replication in the dataflow graphs.

• Redesign of dataflow PE hardware to support criticality-
driven dynamic scheduling during runtime.

• Quantification of performance of the dataflow compiler
and hardware modification on sparse matrix benchmarks
selected from the circuit simulation domain.

II. BACKGROUND

A. Token Dataflow Architecture

Token Dataflow architectures were the subject of academic
studies in the early 1990s e.g. [7], [2], [4], [?]. However,
due to the emergence of the killer microprocessors, these
designs and ideas were largely relegated to academic projects.
At an abstract level, the dataflow architecture is composed
of PEs connected by switched network fabric. Computation
on this architecture is organized as a sequence of “token”
communication along graph dependency edges and subse-
quent “dataflow firing” at the graph nodes. Each PE has
local memory blocks that are used to store portions of the
dataflow graph for localized processing. Each PE is capable
of performing logic and/or arithmetic operations on each node
of the graph based on a dataflow firing rule. Under this rule,
each node is allowed to independently and asynchronously
compute when it has all inputs ready. Dependencies between
nodes are routed through the packet-switched token communi-
cation network. For FPGA-based systems, dataflow processing
offers an unique opportunity to deliver a reprogrammable
and scalable computing substrate that can be tailored to
different applications. In this paper, we consider a customized
heterogeneous token dataflow architecture optimized for sparse
LU factorization as the vehicle for our experiments and
optimizations.

B. Sparse LU Factorization

In many numerical problems, we are required to solve
a set of linear equations expressed as A~x = ~b in matrix-
vector notation. Matrix A is often a highly sparse matrix that
stays structurally unchanged when working with real-world
applications. For example, in circuit simulation, each circuit

Algorithm 1: Gilbert-Peierls
Data: sparse matrix A
Result: factors L & U

1 L = I;
2 for i=1:N do
3 b = A(: , i);
4 x = L\b;
5 U(1:i , i) = x(1:i);
6 L(i+1:N , i) = x(i+1:N) / U(i , i);
7 end

component is only connected to a few neighboring elements,
thereby resulting in very localized non-zero patterns when
we represent the circuit as a matrix. The hardware design
we consider in this paper is based on the KLU solver [1],
which is a software package for solving sparse matrix systems.
KLU does a one-time pre-ordering step that fixes non-zero
locations in the matrix, hence, allowing us to keep the dataflow
and memory structure static throughout an iterative process.
This step is especially suitable for parallel hardware-assisted
solvers [6], as there is no need to recompute the dataflow
graph and do dynamic memory allocation in each iterative
step. At the heart of the KLU solver is the Gilbert-Peierels
(GP) algorithm (Listing 1). The GP algorithm is responsible
for generating the L & U factors for the input matrix A. In [6],
the authors unroll the for-loop in the GP algorithm to generate
giant dataflow graphs that represent the GP compute flow.
However, a front-solve (line 4) must be carried out in each step
of the for-loop, which becomes a compute bottleneck as the
lower-triangular (L) matrix is iteratively built in each for-loop
iteration. In [8], the authors target this front-solve by doing a
one-time recursive depth-limited substitution and reassociation
to further expose any available parallelism. In this paper,
we test our dataflow optimizations on the substituted and
reassociated dataflow graphs and simulate performance on a
heterogeneous token dataflow hardware architecture.

C. Token Dataflow Architecture for Sparse LU Factorization

For our intended scenario, the front-solve in sparse LU
factorization operates in single-precision floating-point arith-
metic. The numerical calculations are mostly multiplies and
adds with a few divides. For our heterogeneous dataflow
design shown in Figure 1, we customize the ALU functions
handled by each PE to reflect this distribution. We also
customize the communication network by adding a faster
multi-hop channel between the add PEs to allow critical
dependencies to be routed faster.

III. CRITICALITY-DRIVEN DATAFLOW OPTIMIZATIONS

In this section, we explain the static and dynamic criticality-
aware optimizations performed in our dataflow framework.

A. Overview and Motivation

Performance of token dataflow architectures is often limited
by the long tail distribution of parallelism in the dataflow
graph. Within these constraints, performance is exacerbated

2

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

DIV
PE

Fig. 1: Heterogeneous Token Dataflow architecture
(add:mult = 1:1, two NoC channels)

by the oblivious processing of high-fanin and high-fanout
nodes without awareness of criticality. Wherever possible,
we can exploit arithmetic associativity to transform the high-
fanin nodes into a reduction tree to distribute the serialization
bottleneck across multiple PEs. Additionally, we can create
copy nodes to decompose high-fanout nodes to achieve a
similar performance improvement. However, if we approach
this problem without considering timing criticality, instead of
improving performance, we can actually make it worse.

Fanin: For high-fanin nodes, if the inputs arrive at the same
times, the fanin inputs can be reassociated into a reduction
tree naively, as shown in Figure 2(a). However, as shown
in Figure 1(a), arrival times of inputs can vary significantly,
which then suffer additional delays in the reduction tree stages
resulting in an overall increase in cycle count. This defeats the
purpose of reassociation. This effect is illustrated in a simple
example shown in Figure 2(b) where we now require 5 cycles
to finish evaluation with oblivious reassociation as opposed to
the 4 cycles in the raw fanin case. Hence, we propose a static
one-time pre-processing step that generates reduction trees in
a manner that exploits predicted arrival time information (How
do we do this? See Section III-B). Figure 2(c) shows the
desired tree construction for the same example with the same
varying input arrival times now finishing in 3 cycles thereby
beating both the oblivious reassociation as well as original
fanin chain.

Fanout: For high-fanout nodes, serialization of packet trans-
missions can limit performance as only one fanout can be
serviced every cycle. To tackle this issue, we propose a
fanout decomposition scheme as demonstrated in Figure 5 (See
Section III-C). We use a similar strategy for constant input

x2

0
x1

0
x4

0
x3

0

+ 4

x5

0

x2

0
x1

0
x4

0
x3

0

+1 x5

0

+2

+ 1

+ 3

(a) Uniform input arrival time: latency savings of 1 from simple reasso-
ciation

x2

2
x1

0
x4

0
x3

0

+ 4

x5

0

x2

2
x1

0
x4

0
x3

0

+3 x5

0

+4

+ 1

+ 5

(b) Non-uniform input arrival time: latency increase of 1 from blind
reassociation

x2

2
x1

0
x4

0
x3

0

+ 4

x5

0

x5

0
x1

0
x4

0
x3

0

+1

x2
2

+2

+ 1

+ 3

(c) Non-uniform input arrival time: latency savings of 1 from intelligent
reassociation

Fig. 2: Reassociation of high fanin nodes into a reduction
tree (latency of two-input add operation = 1 cycle)

nodes with large fanout, where instead of creating a fanout
tree, we perform locality-aware node replication, which is a
cheap memory tradeoff for improved performance.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2000 4000 6000 8000 10000 12000 14000 16000

R
e
a
d
y
 N

o
d
e
s

Cycle

Fig. 3: Number of nodes ready (max across all PEs) in any
given cycle (single iteration of large graph in bomhof2)

Node Selection: While static dataflow graph optimizations
can help to optimize compute order in the dataflow graph, mul-
tiple dataflow nodes may be ready for evaluation at runtime.
Figure 3 shows the number of nodes ready (max across all
PEs) in any given cycle for one of the large dataflow graphs
from bomhof2 benchmark. How do we pick between these

3

x2

0
x1

0
x4

0
x3

0
x6

3
x5

2
x8

4
x7

4

+

7

(a) High Fanin Node with varying input arrival time

+3Step 4:

+2Step 3:

+ 5Step 6:

+4Step 5:

+6Step 7:

x2

0
x1

0
x4

0
x3

0
x6

3
x5

2
x8

4
x7

4

+ 1Step 2:

+1Step 1:

(b) Huffman-styled reassociation

Fig. 4: Huffman-styled reassociation on a high fanin node
with varying input arrival times (Latency Savings = 1)

ready nodes? To optimize overall runtime, we should pick
nodes along the critical path that allow fastest progress towards
termination. A naive implementation would require the use of
expensive priority queues in hardware, but we develop a simple
solution that eliminates this need (See Section III-D for more
details).

B. Criticality-Aware Reassociation (Static)

To implement criticality-aware reassociation of computation
represented in a dataflow graph, we draw inspiration from the
Huffman-encoding algorithm [?]. In Huffman encoding, a tree
is constructed based on the probability of occurrence of each
input symbol being encoded. While constructing the tree, the
symbol probabilities are accumulated incrementally and each
stage has balanced probabilities. We adapt this algorithm to use
arrival times instead of symbol probability when constructing
the fanin tree for a high-fanin node. We compute the arrival
times based purely in the static structure of the dataflow
graph through a simple ASAP analysis. This is a lower-bound
estimate of the time when the node will be available for
downstream computations as we do not model network con-
gestion costs and queuing of ready nodes in the PEs. Despite
the approximation, there is a strong correlation between cycle
count and predicted ASAP latencies, such that a reduction in
ASAP critical path reflects as an improvement in performance
on hardware. For simplicity we consider a operation latency
of 1 for both add and multiply nodes. In Figure 4, we shows
an example of arity-2 fanin tree construction based on this

Algorithm 2: Huffman-styled fanin reassociation
Data: Priority Queue V , Input fanins f1, f2, ..., fn labeled with

ASAP timing ti
Result: Timing-optimized reduction tree

1 foreach fi in f1,f2,f3. . . ,fn do
2 ti = fi.getASAP();
3 fi.setHuffmanTime(ti);
4 V .push(fi);
5 end
6 while V .size() != 1 do
7 inp1 = V .pop();
8 inp2 = V .pop();
9 op node = createOperator();

10 op node.connectInputs(inp1,inp2);
11 t1 = inp1.getHuffmanTime();
12 t2 = inp2.getHuffmanTime();
13 t3 = MAX(t1, t2) + 1;
14 op node.setHuffmanTime(t3);
15 V .push(op node);
16 end

adapted Huffman scheme. Listing 2 shows the pseudo-code
for implementing this reassociation scheme. This code has an
asymptotic complexity of N × log(N) where N is typically
in the low 100s enabling rapid execution. We can assert that
this Huffman-styled reassociation scheme produces superior
results based on the following deductions:

Lemma 1: Doing a blind reassociation (without regard to
the input arrival times) on node n with m-fanins, each with a
statically-predicted ASAP arrival time of ti where i = 1 : m,
the worst node-ready time, tn1, is shown in Equation 1 where
log2(m) is the height of a balanced fanin tree.

tn1 = maxi=1:m(ti) + dlog2(m)e (1)

Lemma 2: For a node n with m-fanins, its worst-case node-
ready time, tn2, is shown in Equation 2. Here nmax is the
number of input nodes with the identical maximum arrival
time of max(tn).

tn2 = maxi=1:m(ti) + dlog2(2 ∗ nmax)/2e (2)

When comparing, Equation 1 with Equation 2, we can see
that if we ignore arrival time information, the worst-case fanin
path will always suffer a log2(m) internal tree delay. The
arrival time aware technique will only delay the last arriving
input by the shortest sized tree required to accommodate the
fanin subset (nmax ≤ m) arriving at that particular time. When
nmax = 1, we will only delay the last arriving input by a single
stage (accounts for the odd-looking dlog2(2∗nmax)/2e term).
When all fanin arrival times are the same, both techniques
generate the same balanced fanin trees.

C. Fanout Decomposition and Replication (Static)

To implement fanout decomposition, we first define two
control parameters: threshold (ft) and arity (fa). If the fanout
size of a node in our input dataflow graph is greater than ft,

4

∗

+

∗+

∗ ∗∗∗

+ +

∗∗

(a) Undecomposed

∗

+

∗ +

∗∗

∗∗

+ +∗∗

(b) Arity-2 Decomposition

Fig. 5: Fanout Decomposition Example

we perform fanout decomposition on that node. The decom-
position is carried out such that arity of decomposed fanout
tree is not greater than fa, i.e. each node in the decomposed
tree has no more than ft fanouts. Under these constraints,
we decompose the fanouts in the most balanced way possible,
such that the fanouts are distributed across the new copy nodes
(new red nodes in 5(b)) as evenly as possible. Selecting values
for ft and fa could be potentially complex – for example,
we could design a dynamic threshold/arity selection scheme
based on graph properties, PE configuration and/or placement
information. In this paper, we observed that a configuration
of ft = 16 and fa = 4 delivered consistently good speedups
over all tested dataflow graphs.

D. Criticality-Driven Packet Scheduling (Runtime)

0 0 1 0 1 1 0 0

LOD4 LOD4

LOD8

V1 2 V2 2

V 3

1 010

ReadyNodeBitV ector

Fig. 6: Leading-one detector in each PE to process nodes
based on criticality (left-to-right)

To implement a criticality-driven runtime optimization
scheme, we performance slack analysis on the dataflow graph
through a cheap, one-time ASAP and ALAP analyses. As a

result, each node is labeled with a statically-determined earliest
ready time tASAP , and a latest ready time tALAP . Based on
these values, we find the slack available at each node, which
can be computed using the expression in Equation 3.

Sn = tn,ALAP − tn,ASAP (3)
Cn = (wt − Sn)/wt (4)

Finally, in order to identify the critical path, we compute the
criticality value at each node using Equation 4, where wt is the
worst-case node-ready time determined from ASAP analysis
of the dataflow graph. The value of Cn lies between 0 and 1.
A Cn closer to 1 indicates that the node lies along the critical
path and should be given priority scheduling over nodes with
smaller Cn values. Note that thus far, we have only added a
one-time static dataflow graph labeling scheme which is cheap
to implement during the static compiler phase.

Once we have computed criticality for each node in the
dataflow graph, we compute node addresses in each PE based
on this criticality. This idea eliminates the need to allocate
expensive priority queues in hardware. We use node address
directly when choosing which node to fire. We use a leading-
one detector (LOD) to find the node to process in each step.
An LOD is a well-studied circuit (e.g. [?]) for detecting
the position of the largest non-zero MSB in an input n-bit
vector. For long vectors, the LOD is designed in a hierarchical
manner. Figure 6 shows a high-level example of how an
LOD is implemented for an input 8-bit vector. The detector is
designed with LOD4–LOD8 hierarchy, and hence, the speed
of this design example is proportional to log4(n) stages. The
final LOD8 returns a 3-bit address value for the detected
leading one, and a V alid output bit. This hierarchical design
can be optimized to meet different area/performance goals
(e.g. LOD2–LOD4–LOD8 hierarchy is possible). Furthermore,
to support a large number of nodes in a PE without increasing
node selection costs, we fix the size of the LOD and reuse the
detector multiple times. This is possible as most nodes have
large fanout and we only need to detect the next node after
those edges are processed.

IV. METHODOLOGY

In this section, we detail our compilation flow and comment
on our hardware design characteristics.

A. Dataflow Compilation Flow

For quantifying the performance limits of our dataflow
hardware and compiler, we extract dataflow graphs for sparse
LU matrices. Our matrix pre-processors converts input matri-
ces from circuit simulation domain represented in the Matrix
Market (.mtx) format into corresponding dataflow graphs. Our
dataflow compiler applies fanin and fanout transformations as
discussed earlier in Section III. We also modify the addressing
logic for nodes to automatically include criticality. We show
the sequence of applying these transformations in Figure 7.
We quantify any speedups observed with reference to the
baseline performance in [6], where neither static nor runtime

5

Dataflow
Graph

Fanin
Reassociation

Fanout
Decomposition

Node Address
Encoding

base

all

static

runtime

Fig. 7: Dataflow Compiler Flow-Chart

optimizations were used. Our flow is currently supporting
sparse LU factorization graphs, but it is general and applicable
to other domains beyond circuit simulation where applications
can be characterized by large, irregular dataflow graphs.

B. Dataflow Hardware Design

We target the Xilinx Virtex-6 SX475T FPGA device similar
to the one used in [6]. This limits the largest dataflow processor
we can accommodate on this system to 12x12 (144 PEs). The
switching latencies are calibrated to meet the target 250MHz
design frequency. Our design can optimally support dataflow
graphs that can fit the entire data structure into the on-chip
BRAM memory blocks. We approximate the largest dataflow
graph size, nmax, that can fit onto a total memory size of M
using the following expression:

nmax =
M

cid + pc ∗ cfp + (1− pc) ∗ cfl + pe ∗ ce
(5)

where pc is the percentage of nodes being constant nodes
(observed to be ≈0.3), pe is the ratio of edges:nodes (observed
to be ≈1.25), cid is the cost of storing each node ID (=2.125
bytes), cfp is the cost of storing a single-precision floating-
point number (=4 bytes), cfl is the cost of storing dataflow
flags for each node (=0.25 bytes), and ce is the cost for storing
single edge information for packet construction (=3.125 bytes).
Using Equation 5, the ≈ 37Mb of on-chip memory can fit
dataflow graphs with up to approximately 5 million nodes
(single-precision). While most benchmarks studied in this
paper meet this requirement, some of the larger benchmarks
may not be able to completely fit inside the on-chip memory.
Our performance models include the same external memory
loading costs as in [6].

V. RESULTS

In this section, we present our results and offer a brief
discussion and future outlook on the observed trends. We test
a total of 22 benchmarks, extracted from the circuit simulation

TABLE I: Benchmark Graph Properties

Benchm. Rows Sp. Graph Properties

Nodes Edges Const. Adds Mults Crit.
Path

bomhof1 2,624 0.5% 1.9m 2.6m 628k 575k 711k 24k

bomhof2 4,510 0.1% 6.1m 8.4m 1.6m 1.4m 2.4m 49k

bomhof3 12,127 0.03% 760k 959k 280k 203k 277k 48k

simucad 4,875 0.3% 6.6m 8.8m 2.2m 1.9m 2.5m 75k

s27 189 3.3% 5.4k 5.7k 2.6k 0.9k 1.9k 1k

s208 1,296 0.5% 116k 137k 47k 22k 46k 12k

s298 1,801 0.4% 220k 267k 87k 48k 85k 16k

s344 1,992 0.3% 126k 145k 54k 22k 50k 15k

s349 2,017 0.3% 129k 147k 55k 23k 51k 13k

s382 2,219 0.3% 287k 351k 111k 57k 119k 20k

s444 2,409 0.3% 354k 435k 136k 80k 137k 28k

s386 2,487 0.3% 286k 340k 116k 56k 113k 21k

s510 2,621 0.3% 609k 746k 207k 119k 226k 26k

s526n 3,154 0.2% 544k 669k 209k 124k 210k 27k

s526 3,159 0.2% 550k 674k 212k 124k 212k 27k

s641 3,740 0.2% 839k 1.1m 301k 177k 352k 50k

s713 4,040 0.2% 810k 1.0m 302k 178k 323k 56k

s820 4,625 0.2% 657k 796k 259k 143k 254k 42k

s832 4,715 0.2% 938k 1.2m 355k 218k 361k 47k

s953 4,872 0.2% 4.0m 5.3m 1.1m 841k 1.6m 76k

s1196 6,604 0.1% 5.9m 7.5m 1.8m 1.4m 2.0m 142k

s1238 6,899 0.1% 12.8m 16.8m 3.7m 3.2m 4.6m 200k

Sp. = Sparsity

domain. The benchmarks range in size/sparsity from hundreds
to tens of thousands of non-zeros. The graph properties of
dataflow graphs extracted from the input matrices are tabulated
in Table I.

A. Understanding Performance Improvement

We tabulate the performance observed when evaluating
our benchmark dataflow graphs with different static/runtime
optimizations in Table II. We note speedups between 0.9–2.9×
when considering both optimizations. For small benchmarks
s27, s349 and s382, we observe a slowdown of 0.8–0.9× as
the graphs are too small to benefit from restructuring. In some
cases, individually applying static and dynamic optimizations
actually causes a slowdown of 0.7–0.9× but when considered
together, we observe a nominal speedup of 1.1×. For large
dataflow graphs, speedups are proportionally larger as noted
in Figure 8. We only start observing speedups for benchmarks
larger than ≈100K nodes.

In Figure 9, we show the effect of scaling PEs on perfor-
mance of a select 6 benchmarks. We note a linear improvement
in performance at small PE counts with a saturation effect at
PE counts above 64 for most of the cases. Certain benchmarks
like s641 and s953 do not scale particularly well due to
limited parallelism in the input itself (long critical paths).

6

TABLE II: Benchmark Cycles and Speedups

Benchm. Cycles and Speedup

BASE STATIC RUNTIME ALL

bomhof1 2.1m 854k 2.5× 886k 2.4× 718k 2.9×
bomhof2 2.7m 1.4m 1.9× 1.5m 1.8× 1.2m 2.3×
bomhof3 1.2m 1.1m 1.1× 1.2m 1.0× 1.0m 1.2×
simucad 6.7m 2.8m 2.4× 2.9m 2.3× 2.3m 2.9×
s27 17k 23k 0.7× 24k 0.7× 22k 0.8×
s208 229k 270k 0.8× 276k 0.8× 245k 0.9×
s298 388k 400k 1.0× 404k 1.0× 356k 1.1×
s344 265k 328k 0.8× 338k 0.8× 302k 0.9×
s349 254k 303k 0.8× 308k 0.8× 279k 0.9×
s382 470k 513k 0.9× 506k 0.9× 462k 1.0×
s444 648k 688k 0.9× 708k 0.9× 612k 1.1×
s386 487k 516k 0.9× 514k 0.9× 458k 1.1×
s510 707k 652k 1.1× 625k 1.1× 581k 1.2×
s526 807k 740k 1.1× 749k 1.1× 667k 1.2×
s526n 809k 739k 1.1× 749k 1.1× 666k 1.2×
s641 1.2m 1.3m 0.9× 1.3m 0.9× 1.1m 1.1×
s713 1.3m 1.4m 0.9× 1.4m 1.0× 1.2m 1.1×
s820 1.1m 1.1m 0.9× 1.1m 0.9× 970k 1.1×
s832 1.4m 1.3m 1.0× 1.3m 1.1× 1.2m 1.2×
s953 2.8m 2.0m 1.4× 2.1m 1.3× 1.8m 1.6×
s1196 5.2m 3.5m 1.5× 3.7m 1.4× 3.2m 1.6×
s1238 10.2m 5.1m 2.0× 5.7m 1.8× 4.7m 2.2×
GEOMEAN 1.21× 1.17× 1.39×

 0.5

 1

 1.5

 2

 2.5

 3

 0.001 0.01 0.1 1 10 100

S
p
e
e
d
u
p

Graph size (Million nodes)

Both Static Dynamic

Fig. 8: Correlation between size of dataflow graph and
speedup

B. Static vs. Dynamic Optimizations

We note that both optimization styles have significant
impact on performance. In certain cases, for medium-sized
benchmarks shown in Figure 8, it is important to apply both
optimization to achieve speedup. The cumulative effect of both
these transformations is not always multiplicative as static
optimizations limit the damage caused by oblivious dynamic
scheduling. Nevertheless, there is notable improvement in
performance when both optimizations operate together.

We now attempt to understand the individual impact of these
optimizations. In Figure 10, we note that in a vast majority in

 0

 1

 2

 3

 4

 5

 6

 7

 2 4 8 16 32 64 144

C
y
lc

e
s
 (

M
ill

io
n
s
)

Number of PEs

bomhof2
bomhof1

bomhof3
simucad

s641
s953

Fig. 9: Cycles vs PEs scaling trends for several benchmarks
when all optimizations are enabled

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 3400 3600 3800 4000 4200 4400

S
p
e
e
d
u
p
 (

N
o
rm

a
liz

e
d
)

Iteration Number

Huffman-reassociation
Oblivious-reassociation

Fig. 10: Speedups observed with only Huffman-styled
STATIC optimization (bomhof2)

cases for the bomhof2 benchmark, the use of Huffman-style
reassociation improves performance by as much as 40% across
all internal iterations. A few outliers suggest noise effects
due to placement effects or dynamic ready node ordering. In
Figure 11, we show the speedups observed from only enabling
fanout decomposition. Only sufficiently large graphs with high
fanout nodes benefit from this optimization, and hence, only
graphs with >10k nodes are shown in the plot. The speedups
observed are about 1–10% with few outlier cases. These outlier
cases are due to placement effects (minor slowdowns) or unop-
timal choice of ft and fa parameters (significant slowdowns).
In this work, we have adopted generic, best-across-all values
of ft and fa for fanout decomposition, and there is certainly
room for improvement for dynamic parameter selection for
fanout decomposition. In Figure 12, we quantify the effect
of applying smarter dynamic node selection at runtime. In
this case, performance improved by as much as 30% across
all iterations. Generally speaking, we observe that the static
optimizations translate to slightly better speedup than dynamic
optimizations. Static optimizations have access to the full
dataflow graph structure when making decisions over graph
transformations whereas dynamic optimizations in hardware
only have access to instantaneous criticality information.

7

 0.8

 0.9

 1

 1.1

 1.2

 4440 4450 4460 4470 4480 4490 4500 4510

S
p
e
e
d
u
p
 (

N
o
rm

a
liz

e
d
)

Iteration Number

Fanout Decomposition
No optimization

Fig. 11: Speedups from only fanout decomposition
(ft = 16, fa = 4)

 0.9

 1

 1.1

 1.2

 1.3

 3400 3600 3800 4000 4200 4400

S
p
e
e
d
u
p
 (

N
o
rm

a
liz

e
d
)

Iteration Number

RUNTIME No Optimization

Fig. 12: Speedups observed with only RUNTIME
optimization (bomhof2)

C. Time spent by packets in communication network

 0

 0.5

 1

 1.5

 2

 3400 3600 3800 4000 4200 4400

A
v
e
ra

g
e
 T

im
e
 (

n
o
rm

a
liz

e
d
)

Iteration Number

All Optimizations Enabled
No Static/Runtime Optimizations

Fig. 13: Average time (normalized) spent by packets in
network for BOTH optimizations (bomhof2)

The time (number of cycles) spent in the communication
network by packets is a strong indicator of the congestion
effects in the communication network. Figure 13 shows the
drop in the average time spent in the communication channels
by packets for different front-solve iterations when we enable
both the dataflow optimizations proposed in this paper. Again,

the few outliers that slow down due to placement effects or
variations due to dynamic node selection.

VI. CONCLUSIONS

In this paper, we show how to improve performance of
FPGA-based token dataflow architectures through suitable
static and runtime dataflow optimization strategies. We show
how to achieve an additional speedup of up to 2.9× (mean
1.39×) on top of existing performance of parallel dataflow
hardware. Our static optimizations focus on reordering fanin
computations in a dataflow graph based on ASAP timing mod-
els and decomposing/replicating high fanout operator/constant
nodes to reduce serialization delays. Our runtime optimiza-
tion focuses on developing an intelligent dynamic packet-
scheduling scheme without introducing area overheads. All the
optimizations take advantage of statically-computed metrics
such as ASAP/ALAP times and criticality, which are negligible
one-time costs in highly iterative applications (e.g. SPICE).

VII. FUTURE WORK

We intend to extend our compiler to handle dataflow graphs
from other domains beyond circuit simulation. There is further
scope for improvement by exploiting locality information
when performing fanin reassociation. We can also modify the
placement pass to include two iterations; once at the start
to extract preliminary locality hints and a final iteration that
requires placement of the transformed fanin-fanout graph.

REFERENCES

[1] T. A. Davis and E. Palamadai Natarajan. Algorithm 907: KLU, A Direct
Sparse Solver for circuit simulation problems. ACM Trans. Math. Softw.,
37(3):36:1–36:17, Sept. 2010.

[2] J. B. Dennis and D. P. Misunas. A preliminary architecture for a basic
data-flow processor. SIGARCH Comput. Archit. News, 3(4):126–132,
Dec. 1974.

[3] J. H. Ferziger and M. Perić. Computational methods for fluid dynamics,
volume 3. Springer Berlin, 1996.

[4] J. R. Gurd, C. C. Kirkham, and I. Watson. The manchester prototype
dataflow computer. Commun. ACM, 28(1):34–52, Jan. 1985.

[5] N. Kapre. SPICE2–A Spatial Parallel Architecture for Accelerating the
SPICE Circuit Simulator. PhD thesis, California Institute of Technology,
Pasadena, 2010.

[6] N. Kapre and A. DeHon. Parallelizing sparse Matrix Solve for SPICE
circuit simulation using FPGAs. In Field-Programmable Tech., 2010.

[7] G. Papadopoulos. Monsoon: a dataflow computing architecture suitable
for intelligent control. Intelligent Control, 1990. Proceedings., 5th IEEE
International Symposium on, 1990.

[8] Siddhartha and N. Kapre. Breaking Sequential Dependencies in FPGA-
based Sparse LU Factorization. In The International Conference on Field
Programmable Logic and Applications 2014, pages 1–4, Sept. 2014.

[9] Siddhartha and N. Kapre. Heterogeneous Dataflow Architectures for
FPGA-based Sparse LU Factorization. In FPL ’14: Proceedings of the
2014 22nd IEEE Symposium on Field Programmable Custom Computing
Machines, pages 1–4, Mar. 2014.

[10] X. Wang and S. G. Ziavras. Parallel LU factorization of sparse matrices
on FPGA-based configurable computing engines. Concurrency and
Computation: Practice and Experience, 2004.

8

