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ABSTRACT
Bitwidth optimization of FPGA datapaths can save hard-
ware resources by choosing the fewest number of bits re-
quired for each datapath variable to achieve a desired qual-
ity of result. However, it is an NP-hard problem that re-
quires unacceptably long runtimes when using sequential
CPU-based heuristics. We show how to parallelize the key
steps of bitwidth optimization on the GPU by performing
a fast brute-force search over a carefully constrained search
space. We develop a high-level synthesis methodology suit-
able for rapid prototyping of bitwidth-annotated RTL code
generation using gcc’s GIMPLE backend. For range analysis,
we perform parallel evaluation of sub-intervals to provide
tighter bounds compared to ordinary interval arithmetic.
For bitwidth allocation, we enumerate the different bitwidth
combinations in parallel by assigning each combination to a
GPU thread. We demonstrate up to 10–1000× speedups for
range analysis and 50–200× speedups for bitwidth allocation
when comparing NVIDIA K20 GPU implementation to an
Intel Core i5-4570 CPU while maintaining identical solution
quality across various benchmarks. This allows us to gener-
ate tailor-made RTL with minimum bitwidths in hundreds
of milliseconds instead of hundreds of minutes when starting
from high-level C descriptions of dataflow computations.

1. INTRODUCTION
FPGAs have long empowered the circuit designer to build

hardware tailored completely to the particular performance,
cost and accuracy requirements of the application. A key
aspect of this flexibility is the ability to select the data repre-
sentation for signals in the circuit. As different applications
have varying accuracy requirements, the exact number of
bits necessary may change. This is in stark contrast to ISA-
based processors where a small set of types are supported
(char, short, int, long, float, double). While the low-level
tuning of bits may seem time-consuming and excessive, it
is a well-known approach [8, 15, 22, 23, 2, 1, 24] for sav-
ing resource costs by as much as 2–4× while improving cir-
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cuit performance by as much as 20–30% without compro-
mising quality of the output signals. In particular, with the
promise of approximate computing, we must ask how many
bits are actually needed to represent data (or signals) to de-
liver an acceptable computational outcome for our designs.
The objective of the bitwidth optimization problem is to
determine the cheapest data representation (fewest bits) for
all variables in the computation subject to a user-supplied
accuracy constraint. This can be achieved through static
compile-time analysis of variable bounds and error.

While the benefits are clear, unfortunately, bitwidth allo-
cation is an NP-hard problem [8]. Broadly speaking, we can
classify existing approaches for solving this problem based
on the focus of their optimization – (1) tighter analysis
of error [2, 1, 16, 17] that focuses on fast arithmetic tech-
niques for producing tight error bounds, and (2) intelli-
gent search algorithms [15, 22, 23, 12] that use specially-
formulated automated heuristics. To perform bitwidth allo-
cation on CPUs, all heuristics typically examine a limited set
of bitwidth combinations during the search process to keep
runtimes low. More importantly, these approaches solve the
problem in a sequential manner by refining the bitwidth
combination in each sequential iteration while learning from
the previous trials.

Commercial tools such as Matlab HDL Coder1 provide a
floating-point to fixed-point conversion toolflow but exposes
the accuracy analysis to a simulation-driven workflow that
requires developer involvement. LegUp [7] provides no pre-
cision analysis engine while Vivado HLS merely allows ex-
pression of templated types for fixed-point arithmetic with-
out providing the necessary automation to analyze error and
select bitwidths. A key limitation that prevents integration
of automated analysis engines in these tools is the large com-
putational cost of the automation which translates into min-
utes to hours of runtime for even simple dataflow blocks of
code. In fact, pure CPU-based fixed-point simulations to
determine bitwidths of a simple FIR filter with 105-element-
long input test vector can take 40 days [4] of runtime. In
this paper, we provide an automated precision analysis en-
gine for gcc based on GIMPLE backend. We also show how
to speedup the optimization problem using GPUs with a
carefully constrained brute-force approach backed by an in-
telligent pruning of the search space. The use of GPUs in the
FPGA CAD process needs to expand and grow to help tackle
the series of slow, NP-hard heuristics that have traditionally
constrained the design development process. The bitwidth
optimization problem is one such slow heuristic that needs

1http://www.mathworks.com/products/hdl-coder/

http://www.mathworks.com/products/hdl-coder/


Table 1: Different Phases of the Precision Analysis Flow for y = a ∗ x2 + b ∗ x + c.
Assume a, b, c are integer constants, Wi represents the number of bits required to represent variable i
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a ∗ x2 + b ∗ x + c [c, a + b + c] max((a + b/2) ∗ 2−Wx ,2−Wa2)) max(Wa ∗Wx
2,Wb ∗Wx,Wc)

faster evaluation for broader adoption and seamless inte-
gration with high-level synthesis (HLS). The key enabling
idea here is rapid evaluation of dynamic range, error and
resource costs estimates for multiple bitwidth combinations
in data-parallel fashion. By choosing where to explore and
by evaluating multiple candidate solutions in parallel, we
can accelerate the time to optimized solution. Unlike multi-
core CPUs, GPUs are well-suited for this kind of brute-force
exploration as they support hundreds of thousands of con-
current threads. We formulate our search space in a manner
that fits entirely within the GPU memory capacity while
maximizing the likelihood of finding the optimal solution
fast. We develop heuristics that prune the search space to
bound variable bit width ranges based on error propagation.
For large problem sizes, we use simulated annealing-based
heuristics running on the CPU to constrain the search space
before transferring the computation to the GPU for acceler-
ation. This proposal is in the same spirit as end-case optimal
layout algorithms for ASICs [5], where the final branch of the
design space is solved optimally while the parent heuristic
is still retained.

In this paper, we make the following key contributions:

• Development of a high-level synthesis flow suitable for
rapid prototyping of bitwidth optimization transforms
that compile C descriptions of dataflow computations
into RTL by exploiting gcc’s GIMPLE backend.

• Development of optimized GPU-based kernels for (1)
accelerated sub-interval analysis to derive higher dy-
namic range bounds, and (2) parallel error analysis
and FPGA resource model kernels for bitwidth opti-
mization.

• Engineering of CPU-based pruning heuristics that in-
telligently constrain the search to make it feasible to
perform brute-force exploration on the GPU.

• Quantification of speed and quality of bitwidth opti-
mization when comparing the NVIDIA K20 GPU to
state-of-the-art simulated annealing-based heuristics on
an Intel Core i5-4570 CPU across a variety of bench-
marks.

2. BACKGROUND
Precision analysis is typically performed before detailed

RTL design and pipelining. We must determine the exact
number of bits required for various datapath variables and
encode these into the RTL descriptions of our computation.
This static analysis procedure can be automated and poten-
tially integrated with high-level synthesis to generate tailor-
made RTL for a given accuracy constraint. We now describe
the basic concepts underlying precision analysis that are im-
portant to explain our parallelization approach. The preci-
sion analysis flow for bitwidth optimization can be broken
down into a sequence of three steps (1) range analysis, (2)
error propagation, and (3) resource modeling. We will use
the example expression a ·x2 + b ·x+ c to illustrate this flow
as shown in Table 1.

Range Analysis: We need to first identify the dynamic
range of all variables in our computation which requires cal-
culating the smallest and the largest values they may attain.
This is essential as the implemented circuit only needs to
be correct over this range which is typically much smaller
than the range of real numbers (or floating-point for canon-
ical implementations). The underlying algorithm to achieve
this simply propagates the interval of the input iteratively
through the feed-forward dataflow computation while eval-
uating the range at the output of each arithmetic operator.
For example, in the polynomial expression of Table 1 (col-
umn Range Analysis), if x ∈ [0, 1], then y ∈ [c, a + b + c]
can be computed through a top-down range propagation
using Interval Arithmetic (IA). However, purely relying on
IA often produces bounds that are over-estimated (loose),
because they ignore input correlations. Loose bounds af-
fect our final solution quality by requiring more bits than
strictly necessary to meet the error constraints. One op-
tion is to use Affine Arithmetic (AA) [9] which allows us to
produce accurate estimates of intervals by identifying corre-
lations in the inputs at the expense of tracking correlation
terms that are proportional to the number of inputs to the
expression (thereby trickier for parallelism). However, Affine
Arithmetic (AA) formulations are trickier to parallelize on
GPUs due to the growth in correlation terms. In this paper,
we choose to use the well-known sub-interval analysis ap-
proach to addresses this limitation of traditional IA. This is
achieved by splitting each input interval into multiple sub-



intervals, performing range analysis on all input sub-interval
combinations, and composing the final range by merging
the results of each sub-interval evaluation. This allows us
to trivially exploit parallel processing capacity on the GPU
across sub-intervals even while an individual sub-interval is
sequentially evaluated. Our formulation using sub-interval
arithmetic helps us generate tight bounds while exposing
GPU-friendly parallel behavior.

Error Propagation: Once we know the range of each
variable, we can estimate rounding and truncation errors due
to each arithmetic operation. These errors depend on the
number of fraction bits used in the variable representation.
We assume sufficient number of integer bits are allocated
for the largest fixed-point number to eliminate overflow er-
rors. While many error models are available such as mean
squared error (MSE) in signal processing systems, we use
the worst-case quantization error models [21] for fixed-point
implementations that are evaluated over operating intervals
of the variable. For our implementation, we exact and verify
the error model equations as expressed in the error analysis
tool Gappa [3]. The errors are propagated from the input
to output of the arithmetic expression based on the number
of bits for each arithmetic operation as shown in Table 1
(column Error Propagation). Here, we observe that each
arithmetic operation introduces an error term that is then
carried forward downstream in the expression tree. Struc-
turally this is similar to range propagation, but here we need
to repeat this analysis for each proposed bitwidth combina-
tion. For a given combination, this is a sequential oper-
ation that processes error values from the inputs and cal-
culates output error of that operation. CPU-based analysis
tools are typically driven by heuristics such as simulated an-
nealing that iteratively generate bitwidth combinations for
evaluation and terminate once a sufficiently low-cost solu-
tion is found. Our insight here is that we can generate and
evaluate multiple precision combination proposals for the
variables in the arithmetic expression and process them in
parallel. Again, this form of large-scale exploration is inap-
propriate on multi-core platforms due to the limited number
of threads that are possible and the large scope of the com-
binations that must be considered. However, GPU-based
systems with thousands of lightweight data-parallel threads
are ideally suited to exploit this parallel pattern.

Resource Modeling: In this paper, our optimization
problem is geared towards minimization of resource utiliza-
tion of the implemented circuit. The goal is flexible, and
we can substitute resource minimization for speed, latency
or power if required (or some combined figure of merit). To
support resource minimization, we develop highly-accurate
analytical resource models of arithmetic operators by per-
forming a complete FPGA implementation flow (synthesis,
place and route). This accounts for internal optimizations
and interactions between the various FPGA CAD stages.
Based on these compilations, we build analytical resource
models using regression-fit for LUT and DSP count usage
as a function of the number of bits in the arithmetic oper-
ation using Weka [10], a popular data mining toolkit. This
approach is in stark contrast to the simplistic models in [8,
15, 22, 23, 2, 1] and helps improve our optimization accu-
racy. For a given precision combination, this computation is
a simple accumulation of cost estimates for each operation
as shown in Table 1 (column Resource Modeling). For all
precision combinations processed in parallel, we filter those

final bitwidths for variables

__device__ void add_range(...)

{

double t1 = x1+y1;

double t2 = x0+y0;

*high=max(t1,t2);

*low=min(t1,t2);

}

__device__ void add_error(...)

{

double max = (e1>=e2)?e1:e2;

if (e3 > max)

*error = e3 + e1 + e2;

else

*error = e2 + e1;

}

__device__ void add_area(...)

{

*area = (x1>x2)?x1:x2;

}
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Figure 1: Compute Flow for GPU-Accelerated Precision
Analysis (with sample GPU code for add operator)

that satisfy a user-supplied error constraint, and calculate
the cheapest cost implementation using a GPU-optimized
reduce operation.

3. GPU ACCELERATION
Bitwidth optimization on sequential CPUs is typically per-

formed using heuristics such as simulated annealing (SA)
that help drive the optimization towards a final solution
while avoiding getting trapped in local minima through hill
climbing. The state-of-the-art precision analysis tools [15,
22, 24] use this approach for formulating and tuning the
optimization. They use the Adaptive Simulated Annealing
(ASA) [11] package which is an highly-tuned optimization
software that uses SA with intelligent selection of solution
candidates to approach the optimal solutions. We use this
state-of-the-art tool as reference for comparing time and so-
lution quality.

In this section, we discuss the design of the key kernels
used in our GPU approach that implements this search in a
different manner. Unlike sequential CPU implementations
of ASA, where a single combination of bitwidths is consid-
ered in a given iteration, on the GPU, we exploit the oppor-
tunity to consider multiple combinations in parallel.

3.1 GPU Kernel Design
The parallel bitwidth allocation problem on GPUs is im-

plemented across three kernels (1) sub-interval range analy-
sis, (2) error propagation, and (3) resource modeling calcu-
lations. We show a high-level view of the flow in Figure 1
for the add operator. Each of these three kernels is data-
parallel. In function add_range, x0 and y0 are the lower
bounds of the two input operands respectively, while x1 and
y1 are the upper bounds. In function add_error, e1 and e2



are the inherent errors of the two operands respectively, and
e3 is the propogation error. In function add_area, x1 and x2

are the area costs of the two operands respectively, derived
from regression-fitted analytical models. Sub-interval Anal-
ysis is parallelized by trivially distributing the sub-interval
combinations across the GPU threads while the Error propa-
gation and Resource Modeling phases are parallelized across
multiple bitwidth combinations that are considered. These
approaches are brute-force approaches and are ultimately
limited by the number of parallel threads that can run on
your GPU and the amount of DRAM space available to
store all intermediate results. With the availability of GPUs
that can process thousands of threads in parallel and store
GBs of data in the DRAM (e.g. NVIDIA K20 can handle
≈26K threads and 5–6 GB of RAM), we can start tackling
brute-force approaches to optimization problems with rela-
tive ease.

For range analysis, each GPU thread is programmed to
evaluate a small sub-interval slice of the complete input
range. For multiple inputs, this means we must consider
all possible combinations of input sub-intervals across all
threads. Each thread uses a unique thread index to automat-
ically identify the sub-interval it is supposed to explore. An
individual GPU thread propagates the sub-intervals through
the graph to calculate the sub-ranges of the intermediate
and output variables. Once this is done, we fuse the results
of the multiple sub-intervals to form complete tight bounds
on all variables in the program. While this procedure is
highly-parallel, we are ultimately limited by the memory
capacity required to hold all intermediate sub-ranges. For
error analysis, we allocate each GPU thread to evaluate one
combination of bitwidths. Each thread locally determines
the combination of bitwidths it must explore based on the
limit of precision choices possible for all variables and the
unique thread index. We discuss how the precision limits for
the variables are identified shortly in Section 3.2. Given a
bitwidth combination, a thread can process the error equa-
tions and resource model expressions to determine the cu-
mulative error of the output variable and resource costs.
Finally, across all threads, we filter out those threads that
do not satisfy the user-supplied error constraint. From this
set of threads (precision combinations), we pick the thread
with the cheapest implementation cost as the solution.

When developing our GPU code for arithmetic operators
we derive our error models from [21] and [3], except we con-
sider rounding to the nearest while they use truncation di-
rectly. Furthermore we adapt the models to better account
for constant integer inputs. When using fixed-point to rep-
resent integer constants, we can have no rounding or trun-
cation errors by choosing the bitwidth properly. As such,
the number of bits required for such integers can be pre-
determined. For area modeling of the arithmetic operators,
instead of using analytical models based on theoretical ex-
pectations as used in [15], and [23], we use regression-fitted
models derived from the real-world results of a complete
FPGA CAD flow to capture the effect of CAD tools on
implementation costs (LUTs and DSPs). In this regard,
our approach requires a first-pass evaluation and mapping
of all basic arithmetic building blocks through the FPGA
CAD flow to help expose the DSP-LUT partitioning and
allocation of resources that may differ from a simplistic the-
oretical models used in [15], and [23]. We quantify the im-
pact of this accurate assessment of resource costs in Fig-

ure 4 later to show the resulting benefits. In these experi-
ments, we observed a 30% improvement in prediction accu-
racy when considering the post-synthesis mapping results to
select bitwidths.

In Table 2, we show the preliminary performance results
for the range, error and area evaluation kernels on the GPU
across various arithmetic operations. We observe 100-400×
faster processing on the GPU when compared to OpenMP-
optimized, multi-threaded (8-thread) implementation on the
CPU. This initial experiment suggests high parallel potential
for GPU evaluation of the constituent kernels. As we scale to
larger GPUs, we expect this gap over multi-cores to grow as
multi-core CPU trends do not align with the sheer degree of
data-parallel thread capacity of modern GPU architectures
and their rising DRAM capacity and associated bandwidths.

Table 2: NVIDIA K20 GPU Speedups over Intel Core
i5-4570 CPU for Kernels used in Precision Analysis

Kernel
Speedup

add mult div exp log

Range analysis 312× 213× 119× 298× 254×
Error propagation 246× 80× 103× 261× 297×
Resource estimation 272× 266× 251× 414× 407×

3.2 Search Space Pruning
Instead of using sequential ASA-like heuristics directly on

the GPU, we develop a GPU-optimized solution that uses
a brute-force approach to explore multiple combinations in
parallel. However, a naive brute force approach will quickly
exhaust available GPU memory capacity, limiting the use-
fulness of this technique to toy problems. To allow the
search space to fit within the memory limits of the GPU, we
develop a pruning heuristic that restricts the combinations
considered during the search. The pruning is also necessary
for smooth execution of ASA running on the CPU. For our
benchmark set introduced later in Section 5.1, ASA without
pruning simply fails to converge and runs for hours before
aborting. On the GPU, what pruning allows us to do is to
optimally solve the subspace extracted from the pruning, un-
like the multi-core CPUs which still explore this space sub-
optimally based on heuristics. We show a high-level sketch
of our pruning heuristic in Algorithm 1. Bitwidth combi-
nations that result in error larger than the user-supplied
error constraint are invalid. Our pruning heuristic must
maximize the coverage of valid bitwidth combinations in
our search. At the start, we choose a uniform fixed point
bitwidth (target fb in line 1 in Algorithm 1) for all variables
in the code and keep increasing precision until we satisfy
the user-supplied error constraint (line 2–4 in Algorithm 1).
The uniform bitwidth is designed to satisfy the worst case
error and forces all variables to use the corresponding worst
case precision. Thus, the uniform bitwidth uniform bit
will be over-provisioned for some variables that could be
implemented with fewer bits. Hence, we now decrease the
bitwidth one variable at a time (line 6–12 in Algorithm 1)
while keeping the other bitwidths equal to uniform bit. By
doing this across all variables, we get the lowest possible
precision (lowest) for each variable independently. We now
replace each variable’s precision with their respective lowest
but in this configuration we will most likely violate the er-
ror constraint. As the last step, we increase the precisions of



all variables simultaneously one bit at a time (line 14–15 in
Algorithm 1) until it meets the required error criteria once
again. In some instances, this pruning is excessively aggres-
sive, and we relax the constraints by adding extra padding
bits (guard bit in line 17 in Algorithm 1) to help cover po-
tentially better solutions. Overall, our heuristic is able to
compress the number of potential precision choices of each
variable into ranges that make them feasible for brute-force
exploration within the GPU memory space.

Algorithm 1: Search Space Pruning Heuristic

Data: The number of variables N; Targeted
Fixed-point Precision

Result: Bounded search space
1 bit width(0:N-1) ← target fb;
2 while current error > error constraint do
3 bit width(0:N-1) ++;
4 end
5 uniform bit = bit width[0];
6 foreach n=0:N-1 do
7 while current error ≤ error constraint do
8 bit width(n)−−;
9 end

10 lowest(n)← bit width(n);
11 bit width(n)← uniform bit;
12 end
13 bit width(0:N-1) ← lowest(0:N-1);
14 while current error ≤ error constraint do
15 bit width(0:N-1)++;
16 end
17 highest(0:N-1) ← bit width(0:N-1) + guard bit;

For very large problems, this pruning is still insufficient to
make the design feasible for brute-force exploration on the
GPU. In these cases, we rely on preliminary cost-reducing
moves in sequential ASA to assist in the pruning process. In
this arrangement, we split the computation between CPU
and GPU by allowing the first 10–100 iterations to run se-
quentially on the CPU and then switch to the GPU once
the search space becomes feasible for GPU exploration. We
keep the lower bound of the possible bitwidth identical as
before and use the best observed precision combinations as
the new upper bound for search. We achieved identical solu-
tion quality as the CPU-only solution after ≈ 25 iterations.

3.3 Overcoming GPU Limits
While the GPU is a great platform for rapid parallel evalu-

ation of data-parallel problems, we consider several architec-
tural optimizations that enhance performance of the FPGA
CAD computations.

GPU Global Memory Capacity: A key constraint to
consider is the size of the search space. For instance, on
the NVIDIA K20 GPU with a 5GB DRAM, we are able to
explore search spaces with precision combinations as large
as 224 with a single GPU call. Similarly we were only able to
scale from 1K–8K sub-intervals before we run out of memory
resources to store intermediate sub-ranges.

Kernel Fusion: The GPU kernels for error propagation
and resource modeling are logically separate and can be in-
voked independently. However, we achieve significant re-
ductions in kernel invocation and synchronization time if we
fuse them together into a single call.

CPU-GPU Offload: While it is tempting (and easy) to
offload all data-parallel computations to the GPU, in our

case, we saw significant degradation in performance of the
error kernel when evaluating truncation error of the form
2−t using the pow CUDA function. Since the possible val-
ues of precision we consider are limited (t < 128 bits), we
precompute these values offline on the CPU only once and
simply pass them to the kernels as a lookup table.

Memory Bandwidth: To avoid needless data transfers
between the CPU and GPU, we allocate sub-intervals, er-
ror and resource arrays directly in the GPU main mem-
ory. We only need to access summarized data, such as the
unified final interval and the minimum cost implementa-
tion result from these large arrays. Furthermore, we iden-
tify thread-local state for storing per-variable structures into
fast memory (registers and shared memory) instead of allo-
cating them on the GPU global memory space. When we
stored intermediate results in GPU shared memory space
we were able to minimize needless memory traffic to the off-
chip DRAM and obtain additional ≈2× speedup across our
kernels.

4. HIGH-LEVEL SYNTHESIS TOOLFLOW
Contemporary attention in FPGA high-level synthesis is

focussed on the robust and popular LLVM framework [14]
(e.g. LegUp, VAST HLS). While LegUp [7] is a popular
choice for development of HLS compiler transformations in
the academic community, we choose an alternative method-
ology using gcc. We are able to rapidly prototype our op-
timization algorithms based on the GIMPLE backend in the
gcc compiler, while retaining all the existing optimization
benefits of the compiler flow. Transformations described
on the three-register GIMPLE syntax can be developed in-
dependently of the compiler and need not be constrained to
the language or development quirks of the compiler frame-
work itself. Ultimately, once the technology is demonstrated
and interest generated, the toolflow can and should be inte-
grated with more robust tools such as LegUp, Vivado HLS
or OpenCL compilers for broader distribution.

Core Kernels

Input
Intervals

C
benchmarks

gcc GIMPLE 
backend

GIMPLE parser

Range
Analysis

Error
Propagation

GPU Bitwidth

Gappa Error
Analysis Brute-Force 

GPU

Simulated
Annealing CPU

Resource
Estimation

Reference
Error

GPU
Runtime

CPU
Runtime

CPU Bitwidth

CPU-assisted
pruning

Figure 2: Compilation Flow for Precision Analysis

In Figure 2, we show a high-level block diagram of our
compiler flow. We support simple feed-forward computa-
tions written in C through the gcc’s GIMPLE [6] backend.
It is an Intermediate Representation (IR) provided to sup-
port development of plugins and optimization passes. For
precision analysis, we process the C input files along with
user-annotated range information to generate intermediate
GIMPLE IR for post-processing. We then translate the GIMPLE
IR into a suitable assembly-like, dataflow format for GPU



processing that captures the dependencies and range infor-
mation in a compact data structure. We develop a generic
interpreter on the GPU that iterates over this suitably en-
coded dataflow graph. This not only allows us to avoid
needless recompilations on the GPU for each benchmark in-
put, but enables optimized GPU kernel design that works
across all benchmarks.

We verify the correctness of our GPU-calculated error
bounds by generating Gappa scripts for the given bench-
mark. Once again, the simplicity of the GIMPLE IR makes
it feasible to rapidly assemble a translator for Gappa syn-
tax. Gappa [16] is a static analysis tool that proves numer-
ical properties of programs through formal techniques. Our
CPU-based ASA annealer also operates on the exact same
GIMPLE IR and the exact same error and resource models as
the GPU implementation for a fair comparison.

Table 3: Auto-generated Assembly and Gappa Code

(a) ASM Code (b) Gappa Script

LD, 0, 0, 1 x fx = fx1 (x); a fx = fx2 (a);
LD, 1, 1, 1; b fx = fx3 (b); c fx = fx4 (c);
LD, 2, 1, 1; d fx = fx5 (a fx * x fx);
LD, 3, 1, 1; e fx = fx6 (b fx * x fx);
MUL, 4, 0, 1; f fx = fx7 (d fx * x fx);
MUL, 5, 0, 2; g fx = fx8 (e fx + f fx);
MUL, 6, 0, 4; y fx = fx9 (g fx + c fx);
ADD, 7, 5, 6; y = a*x*x + b*x + c;
ADD, 8, 3, 7; { a in [1, 1] /\ b in [1, 1] /\
ST, 9, 8, -1; c in [1, 1] /\ x in [0, 1]

-> y fx in ? /\ (y fx - y) in ? }

In Table 3, we show the auto-generated GPU dataflow
code and Gappa code for an example circuit y = a ∗x2 + b ∗
x+ c. Here, we assume a, b, c are constants all with numer-
ical value 1, x is an input variable with range [0, 1]. Each
entry in the GPU dataflow code contains 4 fields for – in-
struction code, destination register, first source register, and
second source register. The opcodes cover common arith-
metic operations that we wish to analyze such as addition,
multiplication, division, square-root, exponential, logarithm
and conditionals. In addition, we support load and store
instructions (shown as LD and ST respectively, in Table 3)
that serve as a convenient place to pass in the various input
intervals to the GPU threads. For CPU-based Gappa analy-
sis, we generate a script that follows Gappa’s custom syntax.
Gappa analysis requires custom type specifications for each
variable precision as indicated by the fx type-casts for each
operation. We also generate VHDL (not shown) from the
same input C to synthesize pipelined hardware. The full
FPGA CAD flow is only invoked once after the optimized
bitwidth combination is determined.

4.1 Compatibility with ASICs and need for
FPGA-specific Flow

Like many tools developed for FPGAs, such as LegUp [7],
our GPU-accelerated tool can also be made to work with
ASICs while remaining a valuable and useful tool within
the FPGA community. FPGA-based designs are likely to
benefit to a greater extent from a complete per-variable cus-
tomization of computation unlike ASIC-based designs that
must factor in safety margins to handle changes to accu-
racy requirements after fabrication. Rapid prototyping in
a high-level synthesis environment may be of stronger ap-

Table 4: Benchmark Problem Characteristics

Benchmark #Vars Arithmetic Inputs Search

Operations Space

Level1linear[24] 10 8 3 1K

Poly[15] 12 8 1 2K

Diode[24] 8 4 2 2K

Bellido[19] 13 9 3 24K

Approx1[24] 12 9 3 35K

Poly6[15] 19 12 1 52K

Level1satur[24] 14 10 3 2M

Caprasse[19] 16 10 4 8M

Poly8[15] 22 21 1 160M

Approx2[24] 19 17 4 15G

peal to a time-conscious FPGA developer than an ASIC
developer who may also be slightly more tolerant of longer
development cycles. An unconstrained bitwidth optimiza-
tion problem already takes minutes to hours for modest-
sized problems which is comparable to FPGA CAD times.
Our approach reduces this to seconds or minutes to help
make this particularly attractive as an optimization for an
FPGA developer hunting for resource wins. To adapt our
flow for ASICs, we would need to engineer an appropriate
ASIC backend toolchain and construct resource and cost
models for the particular technology.

5. EXPERIMENT SETUP

5.1 Benchmarks
We evaluate our framework using a variety of typical bench-

marks that have been used frequently in previous range and
precision analysis work [15], [24], [23]. These are taken from
the Alias-COPRIN benchmark set, the Minibit circuits, Mix
FX-SCORE examples and others. Our benchmark set con-
tains a mixture of problems with multiple inputs and out-
puts, complex non-linear operations (e.g. exponential and
logarithm) and varying search space sizes. We tabulate their
characteristics in Table 4. While the variable count may
seem small, these generate enormously large search spaces
(≈15G data points) that are tricky to cover effectively. The
key to enabling precision analysis as a routine optimiza-
tion on larger problems (multiple basic blocks) in high-level
synthesis flow is to make this exploration tractable – using
GPUs as shown in this paper.

5.2 Tools and Hardware
We compare the sequential annealing (ASA) implementa-

tion on an Intel Core i5-4570 CPU @ 3.2 GHz against our
approach mapped to an NVIDIA K20 GPU. We use CUDA
6.5 along with Thrust library (version 1.7.0) for simplified
transfer of data between CPU and GPU and also for effi-
cient GPU reduction routines. For precision analysis on the
CPU, we use two tools that we have mentioned previously
(1) simulated annealing package ASA v30.15, and (2) nu-
merical analysis package Gappa v1.1.1. ASA uses the same
CPU versions of our GPU thread code for range analysis, er-
ror propagation and resource estimation. We modify Gappa
to add support for exp and log operations. For FPGA com-
pilations, we use Vivado Design Suite v2013.4 targeting the
Kintex-7 XC7KLX160 FPGA to generate regression models
for the various fundamental arithmetic operators. We use



off-the-shelf gcc-4.8 compiler that ships with Ubuntu 14.04
but expect our toolflow to be compatible with even older
versions of gcc (2007 onwards) but we have not tested this.

6. EVALUATION
In this section, we evaluate the experimental results of our

GPU-assisted range analysis and bitwidth allocation. We
show the results of FPGA resource utilization as a function
of desired accuracy as well as the sensitivity of the FPGA
mapping to fidelity of the resource models. For speedup
calculations we compared optimized CPU and GPU imple-
mentations and include the pruning time on the CPU when
calculating total GPU time for speedup calculations. Fur-
thermore, our GPU timing calculations also include CPU-
GPU memory transfer times.

6.1 Resource Utilization
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Figure 3: Impact of Error Threshold on FPGA Resource
Utilization (LUTs). As we relax the error threshold, we

observe that smaller designs are possible

When the resulting computation accuracy is flexible, we
can achieve significant reductions in FPGA resource utiliza-
tion. In our compilation framework, we are able to provide
a desired level of accuracy when driving the search for dat-
apath variable precision. We show the sensitivity of the so-
lution quality as a function of the reference error threshold
for valid solutions in Figure 3. As is evident, we can gener-
ate 2–10× reduction in LUT count when considering various
desired error thresholds. We observe that most benchmarks
show reduced implementation cost at varying error thresh-
olds indicating significant resource savings are possible for
real-world accuracy requirements. Certain benchmarks with
exp and log operators do not show as impressive reduc-
tions in cost as seen from the approx2 and the diode bench-
mark. In these instances, the larger resource utilization of
the exp and log operator dominates the system. Thus, for
applications where approximate computations are allowed,
our compiler can deliver a suitably optimized solution that
aims to deliver exactly the accuracy that is desired and no
more. Overall, our bitwidth optimization saves FPGA re-
source costs by as much as 4× (mean 2.5×) when compared
to a baseline double-precision implementation. These qual-
itative results are better than the ones reported in [15, 22,

24], as we use a superior pruning heuristic and cover every
single combination within the pruned search space.

6.2 Resource Model Accuracy

Analytical Model

Post−Synthesis Report

0 200 400 600 800
LUTs

Analytical Model

Post−Synthesis Report

0 10 20
DSPs

Figure 4: Comparing Quality of Results

As mentioned earlier in Section 3, due to the multi-stage
nature of the FPGA CAD compilation flow, we need to
build our resource model with particular care. We inves-
tigate the efficacy of using different area models on the
final observed cost of the mixed precision results for the
level1-saturation model. We compare: (1) approximate
analytical area model, and (2) accurate post logic synthe-
sis report. In each case, we run the full GPU-accelerated
optimization to evaluate bitwidths and use the calculated
resource numbers to filter out and select the best bitwidth.
However, we generate final resource utilization after a com-
plete place-and-route at the optimized bitwidths to compare
the predicted model with actual real results. The optimiza-
tions considered at the different stages of the FPGA CAD
process affect the accuracy of the predictive capabilities of
the resource models in each of the CAD process Ideally, we
should use post-place-and-route result as the optmization
goal of ASA, which requires invoking place-and-route calls
inside ASA for every annealing iteration. This would lead
to astronomically large runtimes. Therefore, we restrict our
experiments until the post-logic synthesis stage. In Figure 4,
we observe the reductions in LUTs and DSPs as we improve
the fidelity of our resource model for level1-saturation by
using downstream CAD tool results. If we perform bitwidth
optimization solely relying on approximate analytical mod-
els, we need to spend 800 LUTs (post place-and-route). We
can reduce this to 550 LUTs along with a DSP count reduc-
tion by 8 when we re-run the bitwidth optimization using
the post-synthesis models. Logic synthesis tools are better
at exploiting freedom of choice between LUTs vs. DSPs.
Our post-synthesis models are better capable of exploiting
this knowledge when driving the optimization.

6.3 Range Analysis
We first perform GPU-accelerated sub-interval analysis

to improve the quality of the variable bounds. We obtain
tighter interval bounds between 1–4× that of vanilla inter-
val arithmetic across our benchmarks. In Figure 5, we show
the performance impact of GPU acceleration on subinter-
val analysis as we vary the number of sub-intervals. Here,
we compare optimized GPU runtime with sequential GPU
Gappa runtimes when using Gappa’s dichotomy search fea-
ture when keeping the number of sub-intervals identical in
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Figure 5: GPU Speedup for Sub-Interval Analysis
(16-thread CPU runtimes can be minutes to hours)

both cases. While we observe peak speedups of 3000×, we
achieved best pruning results below 128 sub-intervals with
associated speedups of 10–1000×. Fewer sub-intervals gen-
erate limited parallelism for GPU acceleration while larger
sub-intervals exceed the GPU storage limits and become in-
feasible. The maximum number of permissible sub-intervals
for GPU-compatible acceleration varies with the number of
inputs to the benchmark (listed in the Inputs column of
Table 4). Benchmarks with few inputs 1–2 such as poly8,
poly6, and poly deliver continued speedups upto 8192 sub-
intervals while the rest saturate between 8–64 sub-intervals.

6.4 Bitwidth Allocation
We now show results for the bitwidth exploration phase

of the problem. The CPU-based method typically ran for
dozens of minutes on average and was reduced to dozens of
seconds when using GPU acceleration. Certain instances of
ASA did not terminate even after running for hours, and we
inserted an early exit condition to restrict runtimes. These
runtimes are for the small dataflow kernels listed in Table 4
which roughly correspond to the size of basic blocks in mod-
ern compilers. Larger programs in HLS must handle hun-
dreds of such basic blocks resulting in a large overall runtime
for the complete program when using CPUs alone. In Fig-
ure 6, we show the overall speedups for GPU accelerated
brute-force exploration compared to sequential CPU imple-
mentation of ASA. We make the following key observations
on analyzing the nature of speedups:

• For smallest benchmarks with very small search space
sizes such as the poly, diode, and level1_linear, we
observe that the single-shot GPU evaluation delivers
a performance improvement greater than 10× without
needing pruning assistance from ASA running on the
CPU. This is to be expected and is unsurprising.

• For medium-sized benchmarks such as the poly6, ap-
prox1, level1_satur, and bellido, the GPU-only ap-
proach delivers larger but still modest speedups. We
record substantial speedup improvements when using
the first 10–25 ASA iterations as pruning assistance.
Switching to the GPU after ≈25 iterations generally
delivers the best balance between spending sequential
pruning time on the CPU and fast evaluation of smaller
search space on GPU.
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Figure 6: Bitwidth Allocation Speedups. Here cpuX means
X iterations of ASA on CPU run before GPU invoked),

CPU runtimes again run into dozens of minutes and
sometimes ASA must be terminated early as it runs for

hours without termination.

• For the largest benchmarks such as the approx2, poly8
and caprasse, if we purely rely on the pruning heuris-
tic in Algorithm 1, the search space is too large to fit in
the GPU memory capacity. In this setting, the GPU-
only approach is simply infeasible (shown as 0 speedup
in Figure 6). For these cases, we use the ASA-assisted
pruning to move the search space into a feasible region.
We observe significant speedups due the sheer size of
the search space to be explored on the CPU.

6.5 Quality-Time Tradeoffs
Finally, we show the quality-time tradeoff trends in Fig-

ure 7. Here, we report the best-observed resource cost (cost
= 1/quality) of the sequential ASA search after each trial
as a function of CPU runtime across various benchmarks.
It is useful to see the convergence towards the final results
(normalized costs converge close to 0) often shows signif-
icant gains in the first 10% of the overall runtime. This
enables us to utilize the fast convergence property of ASA
to perform search space pruning, as shown in Section 6.4.
While the runtime of ASA runing on the CPU is tunable,
the thousands of threads running on the GPU allow highly
data-parallel search. For the GPU-accelerated evaluation,
our one-shot GPU approach gives us the best answer as a
single co-ordinate in this space at the same solution quality.

0.00

0.25

0.50

0.75

1.00

0.01 1.00
Normalized Time

N
or

m
al

iz
e 

C
os

t

approx1

approx2

bellido

caprasse

diode

level1_linear

level1_saturation

poly

poly6

poly8

Figure 7: Quality-Time Tradeoffs for ASA (CPU-only)



7. DISCUSSION AND CONTEXT

7.1 Review of Previous Work
Research on range and precision analysis has evolved from

simulation-based methods [13] to analytical approaches [15],
[23], due to their speed in error modeling and range calcu-
lation. Interval Arithmetic (IA) [20] is the most well-known
analytical method to calculate true bounds for general nu-
merical algorithms. Some previous studies develop improved
arithmetic techniques for producing more accurate error es-
timations. Lopez et al. [17] present quantized affine arith-
metic (AA) [9] which only considers inputs’ uncertainty into
affine expansions, thereby reducing the complexity of AA
representation. Kinsman et al. [12] use SAT-Modulo Theory
(SMT) to break input ranges into sub-ranges for allocating
optimal bit-width targeting a given precision specification,
but is limited to range analysis only. Boland et al. [1] in-
vent a polynomial algebra-based analytical approach to find
provable and tight error bounds. This line of work mainly
handles the accuracy issue of bit-width error modeling, but
does not help with the optimization speed directly. Another
set of work focuses on how to speed up the process of bit-
width optimization using custom heuristics. In [15] and [24],
the authors utilize simulated annealing for picking global
optimized bits that minimize area cost. In [22], Osborne
et al. perform partitioning followed by simulated annealing
to improve runtime of [15]. [18] uses greedy algorithm for
a coarse-grained search to find initial solutions, in tandem
with Tabu search for refining the results’ quality. Vakili et
al. [23] propose two semi-analytical heuristics: progressive
selection algorithm and tree-based search algorithm, dealing
with fastness and optimality of precision analysis respec-
tively. A GPU-based approach in the context of fixed-point
analysis of VLSI circuits is presented in [4]. However, the
speedups are compared against single-core CPUs on a single
toy FIR-filter benchmark and the speedup is lower than the
ones reported in this paper. They are only ≈58× which is
at the low end of our speedups and our speedups are over a
faster baseline 16-threaded implementation.

7.2 Case for GPU-based Brute-Force
Acceleration

More broadly, the use of GPU-based acceleration provides
a model for limited brute-force exploration in FPGA CAD.
At multiple heuristics stages of the CAD flow (i.e. place-
ment, routing, synthesis), we are often forced to make sub-
optimal decisions due to our inability to fully explore po-
tential solutions. A GPU-accelerated approach can open
the door to using single-shot brute-force techniques at leaf
stages of the search tree inherent in the CAD algorithms.
In the context of ASIC cell layout, the idea of fast, opti-
mal end-case placement exploration has been explored ear-
lier in [5]. This approach still uses branch-and-bound at the
leaf but optimally solves the small end-case solution when
the problem size becomes small enough. In our approach,
we explore all-possible combinations in the end-case using
parallel GPU-based threads. In the long run, exploring the
entire search space will stay intractable even with advances
in GPU technology (as FPGA problem sizes will keep grow-
ing), we expect this technique to be used at stages of the
search trees when the search spaces are sufficiently small for
brute-force exploration and optimal solutions to the sub-
problem are desirable.

8. CONCLUSIONS
In this paper, we show how to accelerate precision analy-

sis for bitwidth optimization by 10–1000× for range analysis
and 50–200× for bitwidth allocation and when comparing
an NVIDIA K20 GPU to an Intel i5-4570 CPU. We demon-
strate the design and engineering a high-level synthesis ap-
proach suitable for rapid prototyping of bitwidth optimiza-
tion algorithms. Using our HLS framework with tuneable
accuracy targets, we are able to reduce FPGA resource uti-
lization by as much as 10× if suitable approximate results
are acceptable to the computation. To exploit GPU poten-
tial, we parallelize sub-interval analysis to improve interval
analysis bounds and carefully prune the search space to en-
able single-shot exhaustive exploration of the search space.
For range analysis, speedups correlated with the number of
inputs and bitwidth allocation speedups tracked the size of
the search space. As part of future work, we intend to extend
this work to support Monte-Carlo sampling-based methods
and integrate Affine Arithmetic models.

Our framework is available for download from http://

yedeheng.github.io/bitgpu. The LLVM-based [14] LegUp
license specifically restricts the use of the open-source com-
piler to non-commercial, not-for-profit development2. In
contrast, our own tool is released under the GPLv3 copy-
left license3 and includes customized ASA code as part of
the distribution. The ASA package is originally available
under a permissive BSD 3-Clause license.

The Tesla K20 used for this research was donated by the
NVIDIA Corporation.

9. REFERENCES
[1] D. Boland and G. A. Constantinides. Automated

precision analysis: A polynomial algebraic approach.
In FCCM, pages 157–164, 2010.

[2] D. Boland and G. A. Constantinides. A scalable
approach for automated precision analysis. In FPGA,
pages 185–194, 2012.
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