Custom FPGA-based Soft-Processors
for Sparse Graph Acceleration

Nachiket Kapre
School of Computer Engineering
Nanyang Technological University, Singapore 639798
Email: nachiket@ieee.org

Abstract—

FPGA-based soft processors customized for operations on
sparse graphs can deliver significant performance improvements
over conventional organizations (ARMv7 CPUs) for bulk syn-
chronous sparse graph algorithms. We develop a stripped-down
soft processor ISA to implement specific repetitive operations
on graph nodes and edges that are commonly observed in sparse
graph computations. In the processing core, we provide hardware
support for rapidly fetching and processing state of local graph
nodes and edges through spatial address generators and zero-
overhead loop iterators. We interconnect a 2D array of these
lightweight processors with a packet-switched network-on-chip to
enable fine-grained operand routing along the graph edges and
provide custom send/receive instructions in the soft processor. We
develop the processor RTL using Vivado High-Level Synthesis
and also provide an assembler and compilation flow to configure
the processor instruction and data memories. We outperform a
Microblaze (100 MHz on Zedboard) and an NIOS-II/f (100 MHz
on DE2-115) by ~6x (single processor design) as well as the
ARMYV7 dual-core CPU on the Zynq SoCs by as much as 10x on
the Xilinx ZC706 board (100 processor design) across a range of
matrix datasets.

I. INTRODUCTION

Computations on sparse graphs are a challenge for modern
multi-core processors due to the irregular nature of memory
access involving sparse graphs. Graph problems arise regularly
across a wide variety of application domains such as scientific
computing (sparse matrix), circuit CAD (netlist), artificial in-
telligence (semantic knowledge-base), social networking (user
connections graphs) among many others. At the heart of these
algorithms, we have a common recurring computing pattern
involving access to irregularly spaced data items. In these
cases, we typically need to repeatedly iterate over nodes
and edges of the graph while performing lightweight local
computation at each node and/or edge. The core computation
can simply be described as loop-oriented operations nested

over nodes and edges (see Function later).

A naive parallel implementation of graph computations
would require distributing subsets of the graph across ISA-
style multi-core processors with shared/distributed caches.
While this seems straightforward, performance will suffer due
to a variety of factors. Memory traversal over adjacency lists
requires pointer arithmetic and multiple levels of indirection
to fetch the required data. When attempting to access data on
other cores, the shared memory structure imposes a perfor-
mance penalty that can be severe for scattered graphs.

In contrast, customized application-specific graph proces-
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Fig. 1: GraphSoC Accelerator Architecture

sors with parallel scratchpads and fully-customizable FPGA
logic offer an interesting alternative. In these custom organi-
zations, we can arrange for the sparse graph data to reside in
distributed fast, high bandwidth FPGA on-chip memories that
easily exceed the on-chip cache bandwidth of conventional
processors by as much as 10-100x. For processing large
graphs, we envision scaling the design across a multi-FPGA
setup as discussed in [7]] and demonstrated in [14], [15]. In
this paper, we focus on the design and engineering of the
application-specific soft processor that can be tiled across such
a multi-FPGA setup. The sharing of data along graph edges
can be implemented directly using wires in the FPGA logic
with a custom network-on-chip for orchestrating sharing of the
routing resources. When designing custom graph processors
on FPGAs, we may choose to implement a fully customized
spatial processing datapath from the bottom-up for every graph
algorithm like those in [7], [17]. While this may deliver the
best performance, the design process will be tedious and suffer
the usual long development and compilation cycles of a typical
FPGA design flow. Alternatively, we can use off-the-shelf soft
processors such as the Altera NIOS-II or the Xilinx Microblaze
and tile them instead. However, these soft processors will
deliver poor performance due to their slow implementations,
excess hardware and lack of deep customization hooks for per-
formance tuning. Hence, we propose GraphSoC, a lightweight
soft processor that allows faster design composition of graph
algorithms, quicker implementation flow on the FPGA, while
delivering high performance.

The key contributions of this paper include:



Function graphalg(node_state, edge_state)

Function parallel_gstepalg(node_state, edge_state)

/* process all nodes ¥/

1 foreach n = nodes in graph do

/* evalute all input edges */
2 foreach ie = input edges of n do

\ node_state(n) = f(node_state(n), edge_state(ie));

/* evaluate all output edges *
4 foreach oe = output edge of n do
5 \ edge_state(oe) = g(node_state(n));

e Development of the GraphSoC custom soft processor for
accelerating graph algorithms in hardware.

e Design of a compilation framework based on Vivado High-
Level synthesis for generating specialized graph processors
for the Zedboard (25 PE), and ZC706 (100 PE) platforms.

e Quantitative comparison of the performance across a range
of datasets when comparing ARMv7 CPU, Xilinx Microb-
laze and Altera NIOS-II/f with GraphSoC.

II. BACKGROUND
A. Bulk-Synchronous Parallel Model

In this paper, we explore parallel graph algorithms that
fit the Bulk Synchronous Parallel (BSP) paradigm. The BSP
compute model [21]], [22] is well-suited for describing parallel
graph algorithms for FPGA system architectures [[12], [8]], [L7],
[7], [6l, [2]]. The execution of the graph algorithm is organized
as a sequence of steps where the steps are logically separated
by a global barrier. In each step, the PEs perform parallel,
concurrent operations on nodes of a graph data structure where
all nodes send and receive messages from their corresponding
neighbors. Once the messages reach their destinations, each
node performs a local summarization operation on all input
edges. This compute model is applicable to graphs that do
not change their topological structure in the midst of the
execution flow. While this model might seem specific, it admits
parallel descriptions of a wide variety of parallel computations
such as sparse matrix-vector multiply, contextual reasoning,
belief propagation, all-pairs shortest path search, betweenness
centrality among many others. The basic computation can be
understood as the nested loops shown in Function [g
where function f and g operate on the incoming and outgomg
edges of a node respectively. In the parallel BSP imple-
mentation, we can rewrite these loops to expose node-level
concurrency as shown in Function Here, we
split the function f into three specialized graph operations
receive, accum and update while we represent function g
using the send operation. This parameterization allows the
processor to be customized for different graph algorithms
while simplifying hardware assembly. Additionally, it helps us
isolate the local computations on the nodes (f) from memory
or communication operations (g) for scheduling freedom. The
general description that explains this four-function program-
ming model for graphs has been covered in depth in [7]], [6].

B. Sparse Matrix-Vector Multiply Example

Iterative Sparse Matrix-Vector Multiply (SpMV) is the
dominant computational kernel in several numerical routines
(including integer-oriented cryptanalysis computations). In
each iteration a set of dot products between the vector and

/* chunked parallel for */
1 foreach n = nodes in graph do
/* pipelined evaluation/summarization */

foreach ie = input edges of n do
recv = receive(edge_state(ie), message(ie));
acc = accum(acc, recv);
node_state(n) = update(node_state(n), accum);
/* dependencies over packet-switched network *
foreach oe = output edge of n do
7 \ message(oe) = send(node_state(n));
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Fig. 2: Sparse Matrix as a Sparse Graph

matrix rows is performed to calculate new values for the
vector to be used in the next iteration. We can represent this
computation as a graph where nodes represent matrix rows
and edges represent the communication of the new vector
values. In Figure [2] we show how to translate a sparse matrix
to a graph. We shade the non-zero entries in the matrix
example. Each row (and vector element) corresponds to a
node in the graph and each non-zero location corresponds to
an edge from the respective vector element node. The graph
captures the sparse communication structure inherent in the
dot-product expression. In each iteration, messages must be
sent along all edges; these edges are multicast as each vector
entry must be sent to each row graph node with a non-zero
coefficient associated with the vector position. We can re-
express the function in the BSP model by defining the four
functions as shown in Table |, We use SpMV (streaming
multiply-accumulate datapath) to quantify performance on our
architecture.

Function  Semantics Equation

receive multiply with A[i,j] temp = Ali, j] X z[j]
accum sum the products A[i,j]*x[j] acc = acc + temp
update write b[i] result of accum b[i] = acc

send simply copy x[j] into packet  z[j] = b[i]

TABLE I: Sparse Matrix-Vector Multiply example

III. GRAPHSOC SOFT-PROCESSOR DESIGN

As shown earlier in Figure we organize our parallel
FPGA hardware as a bidirectional 2D-mesh of graph proces-
sors supported by a host CPU (ARMv7 CPU) that manages to
runtime and device driver support. We choose the Zedboard,
and ZC706 boards for prototyping the soft processor core
in our current design and evaluate performance against the
host ARMv7 CPUs. While we choose the Zynq boards for



prototyping the soft processor core in our current design, we
expect to build higher-performance systems in the near future
by (1) either scaling up the 2D mesh to larger system sizes
possible on denser FPGA platforms, or (2) tiling multiple Zynq
SoCs together [[14]], [13].
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Fig. 3: GraphSoC Processor Pipeline

A. Design Principles

Ultimately, our soft processor implements the pseudocode
shown in Function The core functions f and
g in the pseudocode can be implemented as spatial datapaths
with the control-flow for the loops implemented as state
machines, we prefer a more general and re-programmable
approach using a processor-inspired organization. We show
a high-level block diagram of our proposed GraphSoC soft
processor in Figure [3] It is a 3-stage processor pipeline
with customization of instructions to support graph node and
edge operations, streamlining of memory operations and other
enhancements to support NoC communication. A single FPGA
can fit multiple instances of the processor tile interconnected
with a custom flit-level NoC. All graph data is stored in on-
chip Block RAMs for fast local access. Larger graphs can
be partitioned into sub-graphs and loaded one-by-one or split
across multiple chips. By avoiding access to large graphs
stored in off-chip DRAM, we are able to fully exploit the
higher on-chip Block RAM bandwidth available on modern
FPGAs (see Section [VIZA).

When choosing the soft processor microarchitecture, we
considered the use of generalized embedded ISA-based soft
processors (e.g. Microblaze, NIOS) but found them severely
underpowered. Our experiments show a performance gap of
as much as 6x (see results later in Section [V) when using
graph-specific customizations instead of using off-the-shelf
soft processors. Soft processors such as iDEA [3] (DSP
friendly design) and Octavo [11] (BRAM-friendly design) are
equally unsuitable for significant custom instruction augmen-
tation without a complete overhaul.

We now discuss specific characteristics of our design:

e Graph Algorithm Specialization: The basic source of
specialization in the architecture is the ability to customize
the Execute stage for various sparse graph algorithms.
Thus, our ISA directly supports four types of custom instruc-
tions for the send, receive, accum and update oper-
ations that can be modified for each graph algorithm. These
are implemented as high-throughput pcoded datapaths for
easy reprogrammability as shown in Figure @] Thus, to run
a new graph algorithm on GraphSoC, we only need to swap
in different implementations for these four instructions.
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Fig. 4: Block Diagram of the Datapath

e Graph Memory Optimization: Since the bulk of the
memory operations in the computation are to irregular
graph structures, we use a CSR-inspired (compressed sparse
row [18]]) storage format to support fast access when looping
over the graph structure in hardware. We show the mem-
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Fig. 5: Memory and Communication Format

ory layout and the communication format for the NoC in
Figure [5] We restrict all memory accesses to be in terms
of virtual node and edge indices and convert them into
physical addresses directly in hardware with dedicated ad-
dress generators as shown in Figure [f] Thus direct physical
address access to the data memory is prohibited. This saves
us dozens of instructions per access that a general-purpose
ISA would have required.

e Special Registers We do not need a general-purpose reg-
ister file and dedicate special purpose registers for holding
node and edges information instead. We add associated
instructions for directly manipulating those registers sim-
plifying the implementation of loads and stores. We also
add loop count registers to support zero-overhead looping.

e Communication Support: The design of the NoCs on
FPGAs is a well-studied topic [9],[1]. We implement the
Dimension-Ordered Routing (DOR) algorithm [16] that is
simplest to realize in hardware and widely used in NoC
designs. In the soft processor, we add hardware support



for (1) non-blocking message receipts where messages are
written directly to a dedicated message memory, and (2)
blocking message sends that react to network state when
incrementing the program counter (stall in Figure [3).

e Looping and Branching: Analysis of Function
reveals repetitive multi-instruction operations
like updates to loop variables and dereferencing the graph
pointers to nodes and edges. Consequently, we provide hard-
ware support for loop count registers connected to spatial,
pipelined address generators (See Figure [6) to operate in
a single cycle. They are similar to zero-overhead loops in
DSPs [20], MXP [19], and Octavo [L1] soft processors.
This optimization saves multiple cycles of instructions on
a general-purpose ISA. We also add special branch instruc-
tions that access only those loop variables for low-overhead
looping. We pack the branch delay slots with useful work
and propagate a kill signal across the pipeline stages of the
processor when the branch goes the other way just like a
normal pipeline stall.
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Fig. 6: Design of Address Generator

e Instruction Fusion: When we profiled our graph com-
putation during system design phase, we identified cer-
tain independent instruction pairs that occur repeatedly in
the node and edge loops. This is particularly true for
overlapped memory loads from the graph memory blocks
and scheduling instructions during variable-latency block-
ing NoC operations. For example, decrementing the loop
counters, NoC send/receive and graph memory loads were
the most commonly occurring instruction sequences without
dependencies. We show our instruction set (including these
fused instructions) in Table [

B. Assembling and Executing Code on the Soft-Processor

We assemble the RTL for the soft processor by composing
(1) logic design of the processor pipelines, (2) instruction
memory contents, (3) pcode for the graph algorithm func-
tions, and (3) data memory contents (graph memory) along
with a template for the 2D NoC. The underlying processor
pipeline structure is fixed and only needs to be compiled
through the time-consuming FPGA CAD flow once. Even the
instruction memory contents are fixed as the loop-oriented
code in Function remains unchanged across
graph algorithms, and only needs to be parameterized to handle
the subgraph size (i.e. number of nodes allocated to the soft-
processor). However, our assembler generates picode on a per-
graph application basis which is loaded during the runtime
bootstrapping phase once. The structural fields in the graph
structure, shown in dark orange in Figure [3] are unique to

TABLE II: GraphSoC Instruction Set

Instruction Description

Graph Algorithm Node and Edge Operations

SND process node_state to generate packet
RCV receive edge data from message_memory
ACCU perform accumulation on input edges of node
UPD update node state with accumulation result
SAR #imm initialize accumulation register to imm
Looping and Branching Support

DC decrement count by 1

B #lbl Branch to 1bl if count=0

BNZ #1bl Branch to 1bl if count!=0

NOP No operation

HALT Halt processor

Graph Memory Operations

LC load count to register

LS load state to register

LMSG load message into register

Fused Instructions

DC + SND decrement count by 1 and launch packet

DC + LS + LMSG  decrement count by 1 and load state, and message

each graph instance and must be generated separately for each
execution even for the same graph algorithm. However, like
the pcode memory, it also needs to be loaded into the data
memory during runtime bootstrapping at the start. This is
because for iterative BSP computations, the structure remains
fixed. The only values that change in each BSP iteration are
the ones marked in lighter yellow in Figure [5} the state at
the nodes and edges. Processor execution can start once logic
and memory structures are in place. The loop counter loads
the total node count in this processor, proceeds to fetch the
entry for the first node from the Node Memory. This allows
us to load the edge counts, offset and state registers all in a
single pipeline cycle. The inner loops over input edges is then
processed by decrementing the input counter until it turns O.
The specific entry corresponding to that edge is dereferenced
through the hardware address calculator by using the input
offset to compute the address to the Input Edge Memory.
The corresponding message received on that edge is then read
and processed. At this stage, the RCV, ACC operations can
proceed as their inputs are available; namely the node state,
input edges constant and the input message on that edge. Once
all input edges of the node have been processed, the UPD
performs a state writeback to the Node Memory. A similar
procedure applies to the output edges with the exception that
the execution is trickier due to the blocking nature of the NoC
SND operation. Once the loop is processed, the computation
terminates or the next BSP iteration is launched.

IV. METHODOLOGY

In this section, we describe our programming methodology
and experimental framework for characterizing the resource
utilization of the processor and quantifying its performance.

A. Hardware Engineering

We run our experiments on 32b ARMv7 Ubuntu with
suitable Xillybus drivers. For our software baseline (hard
processors), we compile the graph algorithm on the ARMv7
32b 667 MHz CPU with g++ 4.6.3, with the —03 flag (in-
cludes NEON optimization for ARMv7). For our soft processor



Name LUTs FFs BRAMs DSP48 Clock
(18KB) (ns)

Fetch 35 24 0 0 2.6

Imem 24 9 0 0 29

Decode 2 43 0 0 2.2

Execute 437 305 9 1 43

Processor 974 551 9 1 43

(%) 1% 1% 3% 0.5%

Switch 1882 1076 0 0 4

(%) 2% 2% 0% 0%

TABLE III: Resource Utilization of the GraphSoC
(Zedboard)

baseline comparison, we compile code for the NIOS-II/f (DE2-
115) using nios2-gcc with the —03 switch and also target
the Microblaze (Zedboard) using the mb—gcc compiler with
—-03 switch. We express the synthesizable GraphSoC proces-
sor functionality in high-level C++ for the individual stages
and quantify their implementation metrics (area, frequency,
latency, initiation interval). We use the Vivado HLS compiler
v2013. 4 for generating RTL. We supply synthesis constraints
and directives along with memory resource hints to pack data
into sparse but abundant LUT RAMs (for switches) or dense
but precious Block RAM resources (for graph memory in PE).
We target and achieve an initiation interval of 1 and a system
frequency of 200 MHz (Zedboard) and 250MHz (ZC706)
allowing fully-pipelined operation. We support a per-PE node
count of 1K and edge count of 2K to fit the Zynq BRAM
capacity. Instruction fusion increases overall LUT utilization
slightly by <1% with no impact on delay. In Table we
tabulate the resource utilization of the different pipeline stages
and the sizes of the 2D systems in Table |V]| We illustrate our
processor generation and programming flow in Figure [7| and
describe the building blocks below:

e PE RTL: The processor pipelines are described in C++
and translated into RTL using High-Level Synthesis. Using
Boost pre-processor parameterization [10], we are able to
generate multiple instances of the processor to build 2D
meshes of required dimensions.

o Instruction Memory and Execute Stage: We specify the
individual algorithms using C++ API calls which are then
compiled to target our processor. The graph developer must
supply descriptions of the four graph functions send,
receive, update and accum. We develop a simple com-
pilation flow based on GIMPLE [13] and our own custom
assembler that generates the pcode from these specifications.

o Graph Memory: We use a Boost graph library based
flexible representation in our runtime to manage the parsing
and partitioning of the graph structures. We use the Pa-
ToH [4] partitioner to distribute the graph across the PEs
to minimize bisection bandwidth. This is an optional one-
time task that can be performed once for each graph and is
easily amortized (<1s) by iterative evaluation.

Benchmark Nodes  Edges

add20 2395 17319
bombhof_circuit_2 4510 21199
bombhof_circuit_1 2624 35823
bombhof_circuit_3 12127 48137
simucad_ram2k 4875 71940
hamm_memplus 17758 126150

TABLE IV: Sparse Matrix Vector Multiply Dataset

Offline Compile-Time Online Runtime

Processor C++ Algo. Graph
C++ Templates Input
gcc GIMPLE Boost
Pass Parser
| |
Vivado HLS pcode PaToH
Compiler Compiler Partitioner
| | |
Processor uCode Graph
VHDL Memory Memory

3 i

Xilinx Vivado RTL Compiler |—

! |

Area, Frequency, Power Cycles

Runtime

Fig. 7: The GraphSoC Compilation Flow

B. Sparse Matrix Vector Multiply Benchmark

We characterize performance scaling trends on a set of
graph benchmark for the sparse matrix-vector multiply graph
kernel. We use matrices from Matrix Market [3] library.
The graph dataset capture varying structural characteristics
that exhibit unique performance trends tabulated in Table
We verify functional correctness of our execution results by
comparing the node state in the graph at program termination
with the sequential reference baseline.

V. EVALUATION

In this section, we present the performance results and
scaling capabilities of GraphSoC and analyze performance
trends and bottlenecks.

How does the GraphSoC compare against other off-the-
shelf soft processors? One way to parallelize a sparse graph
problem on FPGAs is across existing off-the-shelf soft core
processors. In Figure [8] we show a representative result of
time taken for the add20 dataset across a variety of embedded
SoC platforms (one processor only). As we would expect, the
NIOS-II and the Microblaze run 5-6x slower than GraphSoC.
The 667 MHz ARMV7+NEON is about 3x faster than the
1 PE GraphSoc implementation as expected due to faster
clock frequency. These results highlight the clear benefits of
customization for the algorithm in hardware, but still justify the
need for an array of such lightweight customized processors to
make the parallel design competitive with conventional CPUs.

How does the Graph SoC compare against an equivalent
optimized software implementation on conventional proces-

Board FPGA LUTs FFs BRAMs DSP48  System
Zedboard ~ XC77Z020 53K 106K 140 220 5x5
ZC706 XC72045 218K 437K 545 900 10x10

TABLE V: FPGA Capacities and GraphSoC system sizes on
Zyng-based boards
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sors? In Figure[9] we compare the performance of the ARMv7
CPU + NEON implementation against the runtime of the
25 PE (Zedboard) and 100 PE (ZC706) Graph SoC. We observe
speedups in all problem instances (including small datasets)
with peak speedups of 5.5x (Zedboard) and 10.5x (ZC706).
The variation in speedup is due to imbalances in the distributed
workload across the different processors and communication
locality and sequentialization bottlenecks due to high-fanout
nets. In [14], we show how to cluster multiple low-cost
Zedboards and exceed the performance and energy-efficiency
of a server-class Intel E5-1650 x86 processor with 16-32
Zedboards.
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Fig. 9: Comparing GraphSoC (Zedboard and ZC706) with
Conventional Processor (ARMv7)

How do we account for the speedups of the GraphSoC
compared to other soft and hard processors? To quantify
the benefits of the different optimizations to the ISA and
associated supporting hardware in our design, we profile the
different datasets at 1 PE by successively disabling various
optimizations and recording resulting cycle counts. We report
our observations in Figure [T0] Parallelizing across multi-
ple GraphSoC PEs gives us 10-20x speedup over a single
GraphSoC PE (see Figure [T1] later), so we focus on the 1
PE scenario. Coalesced graph memory accesses to load/store
specialized node and edge state registers save 3—4 loads/stores

100

754

Ifull opt.

50 no fused

no addrgen
no graphmem

Normalized Runtime

25+

add20.mtx

Fig. 10: Impact of Customization of Instructions (at 1 PE)

per access thereby accounting for a substantial 20% saving in
cycles. Custom address generators save 1-2 cycles of loads
and addition calculations per node and edge operation which
adds up to roughly 10% savings in cycle count. Careful fusion
of overlapping instructions further saves 10% more. Taken
together, these optimizations add up to roughly 45% savings
(almost halving runtime of the computation). The simpler
hardware design of the GraphSoC eschews the hardware
complexity of supporting a NIOS-II/f and Microblaze ISAs,
complete register files, caches and other peripherals. This helps
keep our design lean and fast at >200 MHz compared to the
NIOS-II/f (100 MHz) and Microblaze (110 MHz) respectively.
This accounts for another 2x in performance. However, when
compared to the ARMv7 NEON accelerator, a single PE
GraphSoC designs runs about 2x slower. The 667 MHz 2-
lane 32b NEON engines have a much higher 32b peak parallel
processing potential compared to the 1 PE 200 MHz 32b datap-
aths of our soft processor. Neither of these are able to achieve
their peak potential due to irregularity of memory accesses,
but the GraphSoc actually performs better than expected due
to simpler memory accesses.

What are the performance scaling trends for the GraphSoC
as we increase PE count? In Figure [TI] we quantify the
impact of varying PE counts on overall graph algorithm perfor-
mance. We observe close to linear scaling for virtually all our
datasets. The bomhof_circuit_3 and hamm_memplus
datasets show early onset of performance saturation among our
datasets. For the add20 dataset, we see a slowdown bump at
16 PEs due to these imbalances in workload distribution at that
PE count. :w

What are the fundamental architectural bottlenecks in the
soft processor? How can we overcome them? While our system
delivers speedups, scalability is somewhat constrained as we
observe the mere 2x improvement in performance on ZC706
board that is 4x larger and 25% faster than the Zedboard.
Analysis of the bottlenecks, reveals that it should be possible
to push performance further. In Figure [T2] we show the result
of profiling. As we increase PE count, the unaccounted fraction
of total cycles (less than 100%) indicate misaligned processor
halts due to workload imbalance (note the dip at 16 PEs cor-
responds to the bump previously noted in Figure [TT). Beyond
hardware modifications, we expect significant improvements to
be possible through graph pre-processing in software such as
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fanout decomposition, fanin reassociation and better locality-
aware placement.

We also observe that the bulk of the dynamic instruction
cycles are spent in branch. However only a small portion of
these are wasted cycles due to branch delay slot usage. These
wasted cycles are the nop counts and can be further optimized
through careful instruction fusion.

We quantify memory and network efficiency by counting
the number of useful transaction on the network and memory
ports during execution. As the network interactions are rela-
tively infrequent (approximately injecting a packet every 15—
20 cycles), network stalls have virtually no impact on perfor-
mance. At larger system sizes on denser FPGAs we do expect
network effects to matter. In Figure [[3(a)l we observe up to 6—
12% network port utilization across our datasets. The processor
uses on-chip graph memory bandwidth at an efficiency of 15—
20% as seen in Figure [I3(b)) which matches the number of
memory operations issued by the GraphSoC pipelines. We
currently process the computation and communication phases
of BSP algorithm in sequential manner due to a single fetch-
decode-execute pipeline. We could potentially remedy this by
creating two separate pipelines with separate sets of Program
Counters, Fetch, Decode and Execute stages that share the
same graph memory. In this hypothetical implementation,

both the compute and communication phases can proceed in
overlapped fashion and approach the performance of the spatial
graph datapaths.

VI. RELATED WORK

Our framework is inspired from a variety of graph pro-
cessing frameworks [7]], [12], [8l], [L7], [2]. GraphLab [12]
is a C++-based graph abstraction for machine learning ap-
plications developed for multi-core and cloud platforms with
no FPGA support yet. Green-Marl [§] is another domain-
specific language with a high-performance C++ backend for
graph analysis algorithms also missing FPGA support. The
GraphStep [7] is one of the earliest system architectures
for sparse, irregular graph processing algorithms specifically
aimed at FPGAs. GraphStep hardware was composed from
hand-written low-level VHDL implementations of customized
hardware datapaths without any automated compiler/code-
generator support. GraphGen [17] is a modern FPGA frame-
work that supports automated composition of sparse graph
accelerators on FPGA hardware (ML605/DE4 boards). Like
Graphstep, there is no compiler for generating graph datapaths
but they can be supplied as templated VHDL or Verilog.
There is an automated plumbing system that directly interfaces
with the DRAM. The top frequency of their spatial designs
were limited to 100 MHz (ML605 board) and 150 MHz (DE4
board). Importantly, the graph data is streamed over the DRAM
interface without exploiting locality through an NoC limiting
performance to DRAM speeds. In [2], the authors investigate
the parallelization of shortest-path routing on the Maxeler
platform, but are similarly restricted to 2x speedup over multi-
core CPUs due to the reliance on DRAM interface bandwidth.

A. Handling large graphs

In contrast to these designs, GraphSoC handles large graph
structures by scaling to multiple SoC boards such as the
one demonstrated in [14], [L5] while keeping the graph data
entirely onchip. Our approach allows us to scale out to multiple
SoC boards while keeping data resident on-chip to exploit
the 10-100x faster on-chip memory and NoC bandwidths
for supporting sparse graph communication. Our compute
organization exploits high-throughput on-chip memory band-
width spread across dozens of cheap, low-power Zynq SoCs
instead of suffering the limits of the off-chip DRAM interface
bandwidths. We prototype a (1) 32-node Zedboard cluster [14]
that doubles the performance of a server-class Intel x86 CPU
at identical energy efficiency, and (2) 16-Microzedboard clus-
ter [15] delivers identical performance at 30% more energy
efficiency for sparse graph processing workloads. The key
contribution in [14], [[15] is the design and development of an
optimized message-passing MPI library layer for sparse graph
communication between FPGA accelerators over Ethernet.

VII. CONCLUSIONS

Our FPGA-based GraphSoC soft processor is able to
outperform the Microblaze (100 MHz Zedboard) and NIOS-
II/f (100MHz DE2-115) by ~6x when considering a single
processor design. We beat the ARMv7 CPU by up to an order
of magnitude when using the ZC706 FPGA (100-processor
design) across a range of matrix datasets. We demonstrate
scalability up to 100 PEs and are able to deliver these
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Fig. 13: Understanding Graph SoC Efficiency

speedups due to customized graph memory access operations,
specialized address generators, zero-overhead loop iterators
and select instruction fusion optimizations. Our HLS-based
graph programming API will allow developers to write new
graph algorithms for our GraphSoC, beyond the sparse matrix-
vector multiply benchmark. As shown in [14], [15], we can
exceed the performance and energy efficiency of a server-
class, multi-core x86 processor when using a cluster of 16-32
Zedboards or 16 Microzedboards.

[1]

[2]

[3]

[4]

[7]

[8]

[9]

REFERENCES

M. S. Abdelfattah and V. Betz. The power of communication: Energy-
efficient NOCS for FPGAS. In Field Programmable Logic and
Applications (FPL), 2013 23rd International Conference on, pages 1-8,
2013.

B. Betkaoui, Y. Wang, D. Thomas, and W. Luk. A reconfigurable
computing approach for efficient and scalable parallel graph exploration.
In Application-Specific Systems, Architectures and Processors (ASAP),
2012 IEEE 23rd International Conference on, pages 8-15, July 2012.

R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and JJ. The
Matrix Market: A web resource for test matrix collections. Quality
of Numerical Software: Assessment and Enhancement, pages 125-137,
1997.

U. V. Catalyurek and C. Aykanat. Hypergraph-partitioning-based
decomposition for parallel sparse-matrix vector multiplication. Parallel
and Distributed Systems, IEEE Transactions on, 10(7):673-693, 1999.
H. Y. Cheah, S. A. Fahmy, and D. L. Maskell. iDEA: A DSP block
based FPGA soft processor. FPT, 2012.

M. deLorimier, N. Kapre, N. Mehta, and A. DeHon. Spatial hardware
implementation for sparse graph algorithms in GraphStep. ACM
Transactions on Autonomous and Adaptive Systems, 6(3):1-20, Sept.
2011.

M. deLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin, T. E.
Uribe, T. F. J. Knight, and A. DeHon. GraphStep: A system architecture
for sparse-graph algorithms. In Field-Programmable Custom Computing
Machines, 2006. FCCM’06. 14th Annual IEEE Symposium on. 1IEEE,
IEEE Computer Society, 2006.

S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl: a DSL
for easy and efficient graph analysis. In ASPLOS ’I12: Proceedings
of the seventeenth international conference on Architectural Support

for Programming Languages and Operating Systems. ACM Request

Permissions, Mar. 2012.

N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson,
M. Wrighton, and A. DeHon. Packet switched vs. time multiplexed
FPGA overlay networks. In Proc. 14th IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 205-216. IEEE,
2006.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

V. Karvonen and P. Mensonides.
Technical report, 2001.

C. E. LaForest and J. G. Steffan. Octavo: An FPGA-Centric Processor
Family . In the ACM/SIGDA international symposium, pages 219-228,
New York, New York, USA, 2012. ACM Press.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein.  GraphLab: A New Parallel Framework for Machine
Learning. In Conference on Uncertainty in Artificial Intelligence. VLDB
Endowment, 2010.

J. Merrill. Generic and gimple: A new tree representation for entire
functions. In Proceedings of the 2003 GCC Developers’ Summit, pages
171-179, 2003.

P. Moorthy and N. Kapre. Zedwulf: Power-Performance Tradeoffs of a
32-node Zynq SoC cluster. In Field-Programmable Custom Computing
Machines, 2015. FCCM’15. 23rd Annual IEEE Symposium on. 1EEE,
IEEE Computer Society, 2015.

P. Moorthy, Siddhartha, and N. Kapre. A Case for Embedded FPGA-
based SoCs in Energy-Efficient Acceleration of Graph Problems. In
Supercomputing Frontiers 2015. A*Star Singapore, 2015.

The Boost Preprocessor library.

L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques
in direct networks. Computer, 26(2):62-76, 1993.

E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe,
J. F. Martinez, and C. Guestrin. GraphGen: An FPGA Framework for
Vertex-Centric Graph Computation. In Field-Programmable Custom
Computing Machines (FCCM), 2014 IEEE 22nd Annual International
Symposium on, 2014.

Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations.
Technical Report RIACS-90-20, Research Institute for Advanced Com-
puter Science, NASA Ames Research Center, Moffett Field, CA, 1990.

A. Severance and G. Lemieux. VENICE: A compact vector processor
for FPGA applications. In Field-Programmable Custom Computing
Machines (FCCM), 2012 IEEE 20th Annual International Symposium
on, pages 245-245. 1IEEE, 2012.

G.-R. Uh, Y. Wang, D. Whalley, S. Jinturkar, C. Burns, and V. Cao.
Effective Exploitation of a Zero Overhead Loop Buffer. In Proceedings
of the ACM SIGPLAN 1999 Workshop on Languages, Compilers, and
Tools for Embedded Systems, pages 10-19, New York, NY, USA, Jan.
2015. ACM.

L. G. Valiant. A bridging model for parallel computation. Communi-
cations of the ACM, 33(8), Aug. 1990.
L. G. Valiant. Why BSP computers? [bulk-synchronous parallel
computers]. In Parallel Processing Symposium, 1993., Proceedings of
Seventh International, pages 2-5, 1993.



