
17

Spatial Hardware Implementation for Sparse
Graph Algorithms in GraphStep

MICHAEL DELORIMIER, NACHIKET KAPRE, NIKIL MEHTA, and ANDRÉ DEHON,
University of Pennsylvania

How do we develop programs that are easy to express, easy to reason about, and able to achieve high
performance on massively parallel machines? To address this problem, we introduce GraphStep, a domain-
specific compute model that captures algorithms that act on static, irregular, sparse graphs. In GraphStep,
algorithms are expressed directly without requiring the programmer to explicitly manage parallel synchro-
nization, operation ordering, placement, or scheduling details. Problems in the sparse graph domain are
usually highly concurrent and communicate along graph edges. Exposing concurrency and communication
structure allows scheduling of parallel operations and management of communication that is necessary
for performance on a spatial computer. We study the performance of a semantic network application, a
shortest-path application, and a max-flow/min-cut application. We introduce a language syntax for Graph-
Step applications. The total speedup over sequential versions of the applications studied ranges from a factor
of 19 to a factor of 15,000. Spatially-aware graph optimizations (e.g., node decomposition, placement and
route scheduling) delivered speedups from 3 to 30 times over a spatially-oblivious mapping.

Categories and Subject Descriptors: D.2.11 [Software Architecture]: Domain-specific architectures; D.1.3
[Concurrent Programming]: Parallel programming; B.7.1 [Types and Design Styles]: VLSI (very large
scale integration)

General Terms: Languages, Algorithms, Performance

Additional Key Words and Phrases: Spatial computing, compute model, parallel programming, graph algo-
rithm, graphStep

ACM Reference Format:
Delorimier, M., Kapre, N., Mehta, N., and Dehon, A. 2011. Spatial hardware implementation for sparse graph
algorithms in GraphStep. ACM Trans. Autonom. Adapt. Syst. 6, 3, Article 17 (September 2011), 20 pages.
DOI = 10.1145/2019583.2019584 http://doi.acm.org/10.1145/2019583.2019584

1. INTRODUCTION

Managing spatial locality is essential to extracting high performance from modern
and future integrated circuits. Technology scaling is giving us more transistors, higher
cross-chip communication latency relative to operation latency, and fewer cross-chip
wires relative to transistors. The first effect means we have more parallelism to exploit.
The second two mean that communication optimizations are primary and are essential
concerns that must be addressed to exploit the potential parallelism. Communication
latency can dominate the critical path of the computation and interconnect throughput
can be the performance bottleneck. By carefully selecting the location of operators and

Authors’ addresses: M. Delorimier (corresponding author), N. Kapre, N. Mehta, and A. Dehon, Department
of Electrical and System Engineering, University of Pennsylvania, Room 203 Moore Building, 200 South
33rd St., Philadelphia, PA 19104; email: Michael@delorimier.org.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1556-4665/2011/09-ART17 $10.00

DOI 10.1145/2019583.2019584 http://doi.acm.org/10.1145/2019583.2019584

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

17:2 M. Delorimier et al.

data in space, we can exploit parallelism effectively by minimizing signal latency and
message traffic volume.

We introduce the GraphStep compute model [deLorimier et al. 2006]. The set of ap-
plications that GraphStep captures are those that are centered on large, static, sparse
graphs. Typically the application iterates over steps where operations are performed
on graph nodes and data is sent along edges. Often it is convenient and efficient to
perform graph-wide reductions and broadcasts. We draw applications from domains
such as semantic networks, CAD optimization, numerical computations, and physical
simulations. The applications we test are queries on ConceptNet, a semantic network,
circuit retiming, which uses a shortest-path algorithm, and the max-flow/min-cut ker-
nel for vision tasks.

By using the domain-specific GraphStep model we can map high-level, machine-
independent programs to spatially optimized implementations. In this domain, the
graph structure captures the communication and computation structure that allows us
to optimize for spatial locality. The domain-specific model abstracts out race conditions,
synchronization details, operation and data placement, and operation scheduling.

We model the performance of GraphStep applications mapped to FPGA logic. FPGA
hardware provides a highly parallel, spatial computing platform with the flexibility
to support high communication bandwidth, high memory bandwidth, and low syn-
chronization overhead. The logic architecture placed on the FPGAs is a collection of
Processing Elements (PEs) interconnected with a Fat-Tree Network [Leiserson 1985]
(Figure 4). Each PE has its own memory and compute logic.

The contributions of this work include the following.

(1) We define a concrete programming language for GraphStep (Section 2.3), illustrate
it (Figure 2), and give its formal semantics (Electronic Appendix accessible in the
ACM Digital Library).

(2) We quantify the benefit of spatially aware optimizations enabled by the Graph-
Step model, which are graph node decomposition, placement for locality, and static
computation and communication scheduling (Section 5).

(3) We quantify the benefit of a spatial implementation compared to a sequential
implementation (Section 6).

In Section 2 we explain the GraphStep model and compare it to other parallel com-
pute models. Section 3 gives example GraphStep applications. Section 4 describes the
hardware implementation. Section 5 describes and evaluates the optimizations per-
formed on our example applications. Section 6 compares our applications’ performances
in the GraphStep model to equivalent algorithms implemented sequentially. Section 7
discusses future work. Section 8 concludes. The Electronic Appendix, accessible in the
ACM Digital Library, summarizes the formal semantics for GraphStep.

2. GRAPHSTEP MODEL

GraphStep is designed to express algorithms that work on sparse graphs. The compu-
tation structure follows the graph structure, so changes made to node state propagate
changes along edges to neighboring nodes. This parallel activity is sequenced into steps,
with one set of synchronous node updates and propagations per step. In general, a sub-
set of nodes are updated in each step. A subset of the updated nodes then propagate
changes to their neighbors. A sequential process initiates and controls parallel activity
on the graph. It broadcasts to nodes and receives global reductions from nodes.

An operation on a node or edge generates messages that trigger operations on neigh-
boring nodes and edges. The static graph structure is a directed multigraph, so nodes
send messages to their outgoing edges, and edges send messages to their destination
nodes. The atomic action of an operation is to: (1) input incoming message state along

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

Spatial Hardware Implementation for Sparse Graph Algorithms in GraphStep 17:3

with the object state, (2) update object state, and (3) output new messages. The invo-
cation of an operation is called an operation firing.

To match the common iterative structure of graph algorithms, this message passing
activity is divided into graph steps. A graph step consists of three phases.

(1) Reduce. Each node performs a reduction on the incoming messages received along
its input edges. The reduction should be associative and commutative.

(2) Update and send. Each node with a reduction result updates its state and outputs
messages to its output edges. The update operation may also output a message to
a global reduction.

(3) Edge. Each edge with an input message processes it, possibly updates its state, and
outputs a message to its destination node to be processed in the next graph step.

At most one operation occurs on each edge and at most one update operation occurs
on each node. A global barrier before each node update guarantees that each update
sees a consistent set of messages regardless of the number of PEs in the machine
or implementation delays. When multiple messages are pending to a node, they are
processed as a single reduction operation that is managed by a single locus of control
at the graph node. The programmer is responsible for making the reduction operator
associative and commutative so their order of reduction is unimportant. Together, this
means there is no dependence on the order of messages, race conditions cannot occur,
and the result of each graph step is fully deterministic. As a result, the programmer
need not reason about relative timing of operations.

A sequential controller broadcasts messages to nodes to initiate the iteration. The
broadcast value is fed to a node update operator at each receiving node. Graph steps
may continue until the computation has quiesced and no messages are generated. For
example, a graph relaxation usually only generates messages upon changes, so upon
convergence there are no more messages (e.g., Bellman-Ford [Cormen et al. 1990]).
Alternatively, the sequential component of the algorithm may decide when to end the
iteration. For example, Conjugate Gradients [Hestenes and Stiefel 1952] uses a global
reduce to decide when the error is small enough to stop.

2.1. Enabled Optimizations

In order to take advantage of GraphStep on a spatial implementation (e.g., FPGA or
multicore processors) we must minimize communication work and latency and load
balance memory, computation, and communication to fit into small, distributed pro-
cessing elements. To do this we use the exposed graph communication structure and
exploit the associativity and commutativity properties of reduce operations.

2.1.1. Node Decomposition. Load-balancing nodes into PEs must be performed to mini-
mize the memory area per PE and minimize the computational work per PE. Decreas-
ing PE memory area decreases cross-chip communication latency by decreasing the
latency of communication across each PE. Often nodes with large numbers of neigh-
bors prevent the computational load from being spread evenly across large numbers of
PEs. Associativity and commutativity of reduction operations allows us to decompose
a large node and distribute it across multiple processing elements (Figure 1). Node
decomposition transforms a node with a large input-arity to a fanin tree of reduce op-
erators followed by the state-holding root node. A node with a large number of outputs
is decomposed into a root with a fanout tree to fanout messages. Note that knowledge
of the structure of the graph is required to make connections from fanout tree leaves
to fanin tree leaves.

2.1.2. Placement for Locality. The static graph structure is used to maximize the locality
of neighboring nodes. The number of neighboring nodes placed into the same PE is

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

17:4 M. Delorimier et al.

node

e1

e2

e3

e4

e5

e6

e7

e8

node

e1

e2

e5

e6fanoutfanin

node

fanoutfanine3

e4

e7

e8

Fig. 1. Node decomposition.

maximized, and the distance between neighboring nodes in different PEs is minimized.
This minimizes the volume of message traffic between processing elements. Since local
communication is fast compared to cross-chip communication, it also minimizes each
graph step’s critical path latency due to message passing.

2.1.3. Static Scheduling. The static graph structure is used to preschedule operation
firings and message routes. When the graph is loaded, a static schedule is computed
for a single graph step where each node and edge is active. Each PE and network switch
inputs the predetermined firing and routing choices from a dedicated memory. These
time-multiplexed memories store a data-independent, VLIW instruction sequence that
is evaluated once per graph step.

Without knowledge of the static graph, a dynamic schedule must be computed online
by: (1) a packet-switched network to route messages and (2) extra PE control logic to
fire operations. We find that static scheduling is typically more efficient than dynamic
scheduling in terms of hardware area and time (Section 5). The dynamically scheduled
case uses more hardware area than the statically scheduled case due to the high cost
of packet-switched interconnect switches. Further, the static router performs offline,
global routing to minimize network congestion. The static scheduler also combines the
compute and communicate phases of each GraphStep.

2.1.4. Hardware. We can also specialize hardware to the GraphStep model. Node and
edge operators and node and edge memories can be pipelined so each operator fires at
the rate of one edge per cycle. To feed the operator pipeline, messages must be input
and output at the rate of one per cycle. Lightweight message handling is enabled by
the GraphStep model since logic need not perform message ordering or buffer resizing.

Global broadcasts and reduces could be a significant source of latency since they
must cross the entire machine. We map them to dedicated binary tree interconnect
to eliminate potential congestion with other messages and eliminate latency due to
interconnect switches.

2.2. Compute Model Comparison

This section explains how GraphStep differs from related concurrency models. Graph-
Step is high level in its domain, which reduces the detail the programmer must specify
and manage. The compiler and runtime use the exposed communication structure to
optimize for a spatial implementation.

Actors. In actors languages (e.g., Act1 [Lieberman 1987] and ACTORS [Agha 1998]),
computation is performed with concurrently active objects that communicate via mes-
sage passing. All computation is reduced to atomic operations that mutate local object
state and are triggered by and produce messages. Similar to actors, GraphStep has
the aforesaid restrictions. The primary difference is that actors programs are low-level
descriptions of any concurrent computation pattern on objects, rather than a high-
level description of a particular domain. The communication structure is, in general,
dynamic and hence not visible to the compiler.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

Spatial Hardware Implementation for Sparse Graph Algorithms in GraphStep 17:5

Streaming. Streaming, persistent data flow languages have a static or mostly static
graph of operators that are connected by streams (e.g., Kahn Networks [Kahn 1974],
SCORE [Caspi et al. 2000], Ptolemy [Lee 2005], Synchronous Data Flow [Lee and
Messerschmitt 1987], Brook [Brook Project 2004], Click [Shah et al. 2004]). These are
used for high-performance applications such as packet switching and filtering, signal
processing, and real-time control. Like GraphStep, streaming data flow languages are
often high level, domain specific, and the spatial structure of a program can be used
by a compiler. The primary difference is that in streaming computations the persistent
nodes are operators given by the program, whereas in GraphStep the persistent nodes
are data objects given by input to the program. For GraphStep the global graph steps
free the implementation from the need to track an unbounded length sequence of tokens
on each channel.

Data Parallel. Data parallelism [Blelloch et al. 1993; Koelbel et al. 1994; Hillis 1985;
Dean and Ghemawat 2004] is a simple way to orchestrate parallel activity. A thread
applies an operation in parallel to the elements of a collection. The operation may be
applied to each element independently (map). It may also be a reduction or parallel-
prefix operation (reduce) [Hillis and Steele 1986; Dean and Ghemawat 2004].

Machines that are entirely SIMD or have SIMD leaves [Hillis 1985; Habata et al.
2003; Lindholm et al. 2008] are an important target for data-parallel languages. Like
GraphStep, data-parallel programs can be very efficient since they map well to SIMD
hardware. However, they do not typically describe operations on irregular data struc-
tures efficiently and do not expose the communication structure of the application to
the compiler.

Bulk Synchronous Parallel. BSP is an abstract model of parallel computers [Valiant
1990]. Programs written with a BSP library or language use barriers to synchronize
between processors. Processors input messages from the last barrier-synchronized step
and output messages to the next barrier-synchronized step. Unlike GraphStep, BSP
programs do not expose the communication structure to the compiler.

2.3. GraphStep Syntax

We have developed a high-level language for expressing GraphStep computations. This
high-level language does not automatically compile to hardware yet. Our algorithms
are currently expressed in a slightly lower-level language that we expect will be an
easy mapping target from this high-level language. Figure 2 shows Bellman-Ford in
our syntax. The syntax was chosen to be similar to Java [Microsystems 1995] when
possible.

GraphStep distinguishes three kinds of classes for the graph processing domain.

—A node class describes the data and operations located at a graph node.
—An edge class describes the same for graph edges.
—The glob class describes the global controller’s data and procedures. There is only

one global controller object at runtime so there is only one glob class.

In the example, there is one node class named N and one edge class named E.
Atomic data types include {boolean, int, unsigned, float, double}. Additionally, a

tuple type may be made of previously defined data types. Tuples allow finitely nested
types. Method arguments, return values, variables, and data fields all have data types.

Since objects are not first class, a class’s fields are separated into pointer fields and
data fields. A pointer field (e.g., edges in class N) will point to a fixed object, if labeled
with the attribute single, and to a static set of objects if labeled with set. Pointer fields
declare the class of the object pointed to. Data fields (e.g., distance in class N) are read
and written by methods and declare the data type.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

17:6 M. Delorimier et al.

glob Graph {

set N nodes; // nodes is a set of objects of type N
single N source; // source is a pointer to one object of type N

boolean bellman_ford() {
unsigned nnodes = nodes.size();
source.min_edge(0);
// iterate until convergence (no nodes updated distance

)noitaretitsalehtni//
// or iter==nodes.size() in which case there

elcycevitagenasi//
unsigned iter;
boolean active = true;
for (iter = 0 ; active && iter < nnodes ; iter++) {

// step is a primitive function which initiates one graph step and
// returns true iff there are pending operation fires
active = step();

}
// return true iff there is no negative cycle
return iter < nnodes;

}
}

node N {
set E edges;
float distance;

// operate on two messages, bound to distance1 and distance2 respectively
reduce tree min_edge (float distance1) (float distance2) {

if (distance1 < distance2) return distance1;
else return distance2;

}
update min_edge (float newdist) {

if (newdist < distance) {
distance = newdist;
edges.propagate(distance);

}
}

}

edge E {
single N to;
float length;
fwd propagate (float distance) {
to.min_edge(distance + length);

}
}

Fig. 2. Bellman-Ford code.

Designated method kinds in the node and edge classes support the send-receive-
update phases described earlier.

—A fwd method in an edge class is invoked during the send phase. Each fwd method
(e.g., propagate in E) receives a message from an update method in its source node,
performs local read and write operations, then sends a message to a reduce or

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

Spatial Hardware Implementation for Sparse Graph Algorithms in GraphStep 17:7

update method in its sink node. The message send is a dispatch on a pointer field
and method name.

—A reduce tree method in a node class (e.g., reduce tree min edge) is used to reduce
all the incoming messages to a node into a single message following the barrier
at the end of the send phase. A reduce tree method literally describes a binary
reduction which is composed in a binary tree to reduce all incoming messages to one
message. A reduce tree method may not mutate any of the node state.

—An update method in a node class (e.g., update min edge) either inputs the result
of the reduction of the same name or inputs a singular message from the global
controller or an edge. An update that does not have a corresponding reduce declared
receives singular messages. The update method may mutate local data fields and
send messages.

Nodes are constrained to send to edges or the glob object, and each edge is constrained
to send to one node. These constraints on the pointer structure are enforced by the
compiler.

Control is performed by sequential procedures defined in the glob class, for example
bellman ford in Graph. glob procedures may contain branch and loop statements. They
may call other glob procedures, possibly recursively, or issue commands to orchestrate
parallel activity. To initiate parallel activity, a glob procedure broadcasts a message to
a pointer field’s nodes via a message dispatch (e.g., source.min edge(0)). The built-in
step command instructs the parallel computation to advance on a graph step. step
returns true if-and-only-if there are currently messages pending. reduce tree meth-
ods in the glob class are used for global reductions. The built-in step reduce control
operator is used to advance a graph step and return the result of the global reduce.

3. APPLICATIONS

GraphStep is designed to conveniently support a large variety of graph algorithms. In
this section, we review several broad classes of graph algorithms and highlight how
GraphStep supports their structure. We also call out prior work spatial implementa-
tions of these graph algorithms and the three algorithms used in this article.

3.1. Iterative Numerical Methods

These are frequently used for solving linear equations, finding eigenvalues, and numer-
ical optimization. In the examples Conjugate Gradients, Lanczos, and Gauss-Jacobi, a
common compressed sparse row representation for the matrix uses one node to rep-
resent a row of the matrix and one edge to represent a nonzero of the matrix. Each
matrix-vector multiply is performed by one graph step, and each global dot-product is
performed by a global reduce. The spatial implementation of sparse matrix-vector mul-
tiply from deLorimier and DeHon [2005] achieved a speedup of an order of magnitude
over highly tuned sequential implementations. Similarly, a spatial implementation of a
direct matrix solver for SPICE achieved an order of magnitude speedup over sequential
implementations [Kapre and DeHon 2009].

3.2. Graph Relaxation Algorithms

Algorithms in this subdomain are composed of relaxation operations on directed edges.
A relaxation operation on an edge updates its destination node’s state based on its
source node’s state. If the destination node’s state computed by the relaxation is differ-
ent than its current state then its state changes. Every time the state of a node changes
its out edges must relax. When there are no remaining relaxations, node states have
reached a fixed point and the algorithm is finished.

If relaxations are ordered improperly then there could be an exponential number of
relaxation operations compared to the optimal timing. Synchronizing relaxations into

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

17:8 M. Delorimier et al.

graph steps results in the same number of graph steps as the maximum length of the
chain of edge relaxation dependencies in the optimal ordering. Problems which may use
relaxation algorithms include shortest-path searches, depth-first search tree construc-
tion, strongly connected component identification [Chandy and Misra 1982], global
optimizations on program graphs [Kildall 1973], max-flow/min-cut calculations, and
constraint propagation in combinatorial problems like CNF SAT [Logemann et al.
1962].

3.2.1. Bellman-Ford. Bellman-Ford (Figure 2) is a shortest-paths algorithm [Cormen
et al. 1990]. Each edge in the graph has a length, possibly negative. It finds the shortest
path from a designated source node to all nodes, or detects the presence of a negative
cycle. Each iteration takes a set of nodes whose distance from the source was updated
on the previous iteration. Each out edge from the updated nodes is relaxed, which
means that the shortest path so-far through the updated node is checked against the
shortest previously computed path to its destination node. If the new path is shorter,
then the node updates its distance. The iteration continues until it quiesces, or until it
detects a negative cycle.

We test Bellman-Ford as the kernel of register retiming of a circuit to find the
minimum cycle time [Leiserson et al. 1983].

3.2.2. Preflow-Push. Preflow-Push (sometimes called Push-Relabel) uses interactions
between neighboring nodes to find the maximum flow and minimum cut on a graph
from a single source to a single sink [Cormen et al. 1990]. Preflow-Push is a relatively
more complex relaxation algorithm that propagates updates through a graph. Unlike
Bellman-Ford it always converges to a solution. It uses two basic operation types on
nodes and whether an operation can be applied to a node depends on its neighbors’
states. The GraphStep algorithm cycles through eight types of graph steps with differ-
ent operations on nodes and edges in each. We optimized our implementation by using
fractional flows. This optimization increases the fraction of useful work performed in
each graph step which results in fewer total graph steps.

We test Preflow-Push as the kernel of stereo vision problems [Boykov et al. 1998;
Kolmogorov and Zabih 2001].

3.3. CAD Algorithms

CAD algorithms typically perform NP-hard optimizations on a circuit graph. Multi-
level partitioning algorithms cluster nodes and iteratively reassociate them with parti-
tions [Karypis and Kumar 1999]. Iterative placement algorithms move nodes to reduce
cost functions with a random element to avoid local minima [Wrighton and DeHon
2003]. Parallel routing may perform shortest-path reachability searches on the circuit
graph [DeHon et al. 2006]. The just mentioned placer and router are spatial implemen-
tations that act directly on the circuit graph and show orders of magnitude speedup over
state-of-the-art sequential processor implementations. These were designed and imple-
mented by hand, whereas GraphStep versions would automate much of the implemen-
tation work. Furthermore, the router can use Bellman-Ford as its shortest-path kernel.

3.4. Semantic Networks, Knowledge Bases and Databases

When these are represented as graphs, knowledge-base queries and inferences take
the form of parallel graph algorithms, including marker passing [Fahlman 1979; Kim
and Moldovan 1993], subgraph isomorphism, subgraph replacement, and spreading
activation (e.g., ConceptNet [Liu and Singh 2004]).

3.4.1. ConceptNet. ConceptNet is a knowledge base for common-sense reasoning com-
piled from a Web-based, collaborative effort to collect common-sense knowledge [Liu
and Singh 2004]. Nodes are concepts and edges are relations between concepts, each

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

Spatial Hardware Implementation for Sparse Graph Algorithms in GraphStep 17:9

labeled with a relation-type. Spreading activation is a key operation for ConceptNet.
Edges are given weights depending on their relation type. An initial set of nodes is
chosen and each is given an activity of 1.0. Activities are propagated through the net-
work, stimulating related concepts. After a fixed number of iterations, nodes with high
activities are identified as the most relevant to the query.

4. IMPLEMENTATION

On a modern FPGA, the Virtex 6, we can perform a memory operation in less than
3ns, a 16-bit add in less than 3ns, and send a signal across the distance of 2 processing
elements (PEs) in the same 3ns cycle. However, we can place 512 PEs on today’s largest
Virtex 6, meaning it takes over an order of magnitude longer (24 times) to communicate
across the chip than to perform a local operation. Further Moore’s Law scaling will allow
us to place more PEs on a chip while maintaining fairly comparable relative delays
such that cross-chip communication will easily be two or more orders of magnitude
greater delay than a local operation. These ratios of compute and communicate latency
mean the location of computations matter.

We use specific area and timing costs from the Virtex 6, but this general trend
where cross-chip communication latencies exceed local computation costs by orders
of magnitude will be true of all high-performance silicon computations. To generate
logic for the Virtex 6 we use Synplify Pro 9.6.1 for synthesis and Xilinx ISE 10.1 for
placement and routing.

4.1. Processing Element

PEs are designed to achieve high throughput data transfer between operator logic and
application memory and between the PE and the interconnect. In a spatial implemen-
tation, memory is local to logic to enable high memory bandwidth and low latency.
The communication-centric approach requires a high message input and output rate.
Typically a graph has many more edges than nodes so we provide dedicated node, edge,
and message memories that allow the PE pipeline to read and write one edge per cycle
(Figure 3(a)). The PE pipeline steps required for each edge are:

(1) output a message from the source PE;
(2) input the message at the destination PE;
(3) perform the edge operation; and
(4) perform one binary reduce operation.

Operators are pipelined to perform one operation per 3ns cycle. Memories are dual
ported to remove structural hazards between operations. On the output side, the node
memory has one read per output edge. On the input side, the message memory has one
read and one write per input edge and the edge memory has one read and one write per
input edge. The node update operator fires only once per node so we allow it to share a
memory port with edge sends.

The specialized datapath can be contrasted to a PE using an instruction set processor
and a single local memory. Figure 3(b) shows the program for such a PE. We assume
the sequential PE can also perform the edge, reduce, and node operator operations in
a single cycle. Each edge requires 11 sequential cycles as indicated in the figure.

For an efficient implementation, the number of PEs must be large enough so that
memory area is comparable to logic area. We report area measured in terms of Virtex 6
slices. Each Virtex 6 slice contains four 6-input Lookup Tables (6-LUTs). Application
memories are implemented with BlockRAMs. In the Virtex 6, each BlockRAM provides
18Kb of memory. There is one BlockRAM for every 83 slices. Table II shows the area
used due to network components, PE logic, and memory for the ConceptNet-default
application (Table I). PE area includes operators and controller logic, memory for the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

17:10 M. Delorimier et al.

input
port

message
memory

edge
op

reduce
op

update
op

output
port

node
memory

edge
memory

output
port

(a) Spatial Processing Ele-
ment Datapath

(b) A sequential PE program that processes all input
messages on one graph step and produces all output
messages for the next graph step. The 11 instructions
required per edge are numbered.

// body executed per node
for i = 0 to nnodes
..emin = edgeoff[i]
..emax = edgeoff[i+1]
..r = reduce id[i]
..j = emin
..// loop performs edge op, reduce op
1 while j < emax
2 m = input_message[j]
3 e = edge[j]
4 (f, n) = edge_op(e, m)
5 edge[j] = f
6 r = reduce_op(r, n)
7 j++
..// node update op
..a = node[i]
..(b, z) = update_op(a, r)
..node[i] = b
..j = emin
..// fanout output to out edges
8 while j < emax
9 sa = send_addr[j]
10 output_message[sa] = z
11 j++

Fig. 3. PE logic operation.

Table I. Characteristics for Benchmark Graphs Used with Sample Applications

Application Input Nodes Edges Max In Arity Max Out Arity
ConceptNet small 14556 27275 226 2538

default 224876 553836 16175 36562
Bellman-Ford tseng 1048 3760 122 445

ex5p 1065 4002 63 721
pdc 4576 17193 40 1499
s38584.1 6448 20840 304 2989
s38417 6407 21344 106 661
clma 8384 30462 82 5453

Preflow-Push BVZ-tsukuba10 8 45273 143592 5408 5408
BVZ-tsukuba10 4 90055 285220 9961 9961
BVZ-tsukuba10 2 185388 591552 24425 24425

application, and memory for the static schedule. Since BlockRAMs and slices are sep-
arate hardware, the total PE area in slices is

PEarea = max(83 × NBlockRAMs, Nslices). (1)

Including interconnect, the area is 611 slices per PE. At this size, a signal can cross
2 PEs per 3ns cycle.

4.2. Interconnect

The interconnect topology is designed to fit a two-dimensional spatial layout. PEs
are laid out in a grid, and connected with a Butterfly Fat-Tree (BFT) interconnect
topology [Leiserson 1985]. Although a mesh topology would also correspond to two

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

Spatial Hardware Implementation for Sparse Graph Algorithms in GraphStep 17:11

Table II. Area Model for ConceptNet with the Default Graph Using
Static Hardware with 2048 PEs

Component Slices Each Number Slices
Total 1250K
Network total 411K
switch logic 28 992 28K
switch context memory 342 992 339K
channels 44K

PE total 410 2048 840K
logic 183 2048 375K
application memory 410 2048 840K
context memory 208 2048 426K

Area is measured in terms of Virtex 6 slices (see text).

PE

PE

PE

PE

PE PE

PEPE PE

PE

PE

PE

PE PE

PE PE

Fig. 4. Two stages of the BFT with 16 PEs and 4 channels up to the next stage.

dimensions, the BFT is simpler to route. The BFT is constructed recursively, where the
top-level switches of a tree with n PEs connect the top-level switches of four n/4 PE
subtrees (Figure 4). The number of switches connecting two subtrees increases with the
level of the tree in order to accommodate a larger number of cut graph edges between
the two subtrees. The Rent parameter of the BFT, p, relates the number of PEs, n, in
a subtree to the number of channels out of the subtree: io channels = np [Landman
and Russo 1971]. To fit the two-dimensional hardware, we set p = 0.5, so the number
of channels out of an area scales with its perimeter. When p = 0.5, switches take
a constant fraction of total area, with one switch for every two PEs [DeHon 2000].
Furthermore, the maximum number of PEs a signal crosses in a subtree with n PEs is
8
√

n PEs, which is proportional to the diameter of the subtree. The number of switches
in the path is log2 n. Table II shows the area due to interconnect along with the area due
to switch logic, memory for the static schedule, and the channels connecting switches.

5. IMPACT OF SPATIALLY AWARE OPTIMIZATIONS

This section uses our spatial hardware model to evaluate the benefit of the optimiza-
tions highlighted in Section 2.1. We evaluate the benefit of node decomposition and
placement for locality and compare the static scheduling option to dynamic scheduling.

5.1. Optimization Types

The baseline implementation places nodes of the original graph into PEs with the
objective of maximizing the load balance between PEs. The load balancer takes the
weight of a node to be the maximum of its input-arity and output-arity; since the PE

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

17:12 M. Delorimier et al.

processes one edge per cycle (Section 4.1), this is the approximate number of cycles
required to evaluate the node for each graph step.

The first optimization (Section 2.1.1) decomposes graph nodes with large input-arity
or output-arity (Figure 1). Decomposition reduces the size of the largest nodes to allow
scaling to a large number of small PEs. Fanin-tree and fanout-tree topology is chosen
to minimize depth while bounding the arity to 64.

The second optimization (Section 2.1.2) uses the static graph structure to place
neighboring nodes in the same PE or in nearby PEs in order to minimize total mes-
sage volume and minimize the critical path of a graph step. At the top level of the
BFT, graph nodes are partitioned into the two subtrees. The bipartition is chosen
to minimize the number of cut edges between the two partitions while satisfying a
load-balance constraint. Bipartitioning is applied recursively until nodes are placed
into the leaf PEs. We use the UMpack’s multilevel partitioner available from UCLA’s
MLPart5.2.14 [Caldwell et al. 2000].

The third optimization (Section 2.1.3) preschedules operation firings and message
routes. Prescheduling removes the need for complex hardware and improves the quality
of the schedule. At graph load time the static scheduler first computes the schedule then
loads the schedule into switch and PE context memories. The unoptimized, dynamically
scheduled implementation uses a packet-switched network to route messages as they
are generated.

5.2. Optimization Results

Figure 5 shows the cycles used relative to the baseline implementation for the ex-
ample applications with just decomposition applied (decomposed), decomposition and
placement for locality applied (local), and decomposition, placement for locality, and
static scheduling applied (static). The number of PEs used for each application and
each optimization is chosen to minimize the total number of cycles with a maximum of
2048 PEs. Figure 6 shows an example of this selection for Bellman-Ford-clma. Table III
reports the number of PEs chosen for each application.

Figure 5 shows that the best combination of all three optimizations achieves speedups
between 3 times (BVZ-tsukuba10 8) and 30 times (ConceptNet-default). Decomposition
alone achieves a speedup of 15 times for ConceptNet-default. Placement for locality
provides an additional speedup of 2 for BVZ-tsukuba10 2. Static scheduling provides
an additional speedup of 2.7 times for Bellman-Ford-clma.

5.2.1. Node Decomposition. Large nodes can prevent us from balancing the computa-
tional load on the PEs due to fragmentation. The computation time for each node is
proportional to its input-arity plus output-arity. The largest node imposes a lower bound
on the cycles required for a graph step. Figure 7 shows the result of decomposition on
the distribution of node arities for the ConceptNet-default graph (Table I). Before de-
composition, the largest node has an arity of 52,737, where the sum over all node arities
is twice the number of edges: 1,107,672. Since the largest node in this case is about
1/20th the weight of all nodes, speedup is limited when we scale above 20 PEs (see
Figure 6). After decomposition the largest node has an input- and output-arity of 64.

The benefit of decomposition increases as graph size increases because large de-
composed graphs can efficiently utilize more PEs than small decomposed graphs. The
benchmark graphs in Figure 5 are ordered by edge count from left to right for each
application. For example, the speedup from decomposition for Bellman-Ford increases
from 1.6 times for the tseng to 10 times for clma.

Decomposition is often required to keep PEs small. The memory required for each
PE must be large enough to satisfy the memory requirement for the largest node.
This, in turn, sets the lower bound on the area per PE (see Eq. (1)). A larger area per

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

Spatial Hardware Implementation for Sparse Graph Algorithms in GraphStep 17:13

 0

 0.2

 0.4

 0.6

 0.8

 1

small
default

ru
nt

im
e

no
rm

al
iz

ed
 to

 b
as

el
in

e

ConceptNet

baseline
decomposed

local
static

 0

 0.2

 0.4

 0.6

 0.8

 1

tseng
ex5p pdc s38584.1

s38417
clma

ru
nt

im
e

no
rm

al
iz

ed
 to

 b
as

el
in

e

Bellman-Ford

 0

 0.2

 0.4

 0.6

 0.8

 1

BVZ-tsukuba10_8

BVZ-tsukuba10_4

BVZ-tsukuba10_2

ru
nt

im
e

no
rm

al
iz

ed
 to

 b
as

el
in

e

Preflow-Push

Fig. 5. Time of optimized implementations relative to the baseline for each application, benchmark graph,
and optimization.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

17:14 M. Delorimier et al.

 100

 1000

 10000

 100000

 1 10 100 1000 10000

cy
cl

es

PEs

baseline
decomposed

local
static

minimum cycles

Fig. 6. Number of PEs and cycles for Bellman-Ford-clma.

Table III. Number of PEs Used by Each Application, Graph and Optimization

Application Graph Baseline Decomposed Local Static
ConceptNet small 128 256 256 512

default 256 2048 2048 2048
Bellman-Ford tseng 256 128 128 128

ex5p 256 256 128 256
pdc 1024 1024 1024 512
s38584.1 1024 1024 512 256
s38417 1024 1024 512 2048
clma 512 1024 1024 1024

Preflow-Push BVZ-tsukuba10 8 2048 1024 2048 2048
BVZ-tsukuba10 4 2048 1024 2048 2048
BVZ-tsukuba10 2 1024 2048 2048 2048

PE increases computation time due to a higher chip-crossing latency. For ConceptNet-
default decomposition reduces slices per PE by a factor of 4.5. Since chip-crossing
latency scales with the square root of the area per PE this decreases message latency
by about a factor of two for ConceptNet-default.

5.2.2. Placement for Locality. The primary effect of placement for locality is to decrease
the message traffic. This can be seen in Figure 8 which compares for ConceptNet-
default the lower bound imposed by message traffic, the lower bound imposed by chip-
crossing latency, and the total cycles required for a graph step. The load balanced
case which ignores locality is labeled not local and placement for locality is labeled
local. Decomposition and static scheduling are performed for both placement types.
Whereas Figure 5 compares the benefit of locality for the dynamically scheduled case,
static scheduling is used here so we can calculate reasonable lower bounds. Here we
see that the locality-placed design significantly reduces the minimum cycles required

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

Spatial Hardware Implementation for Sparse Graph Algorithms in GraphStep 17:15

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

no
de

 c
ou

nt

arity

baseline
decomposed

Fig. 7. Distribution of node arities (input-arity plus output-arity) for the baseline case and the decomposed
case for ConceptNet-default.

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

cy
cl

es

PEs

total cycles (not local)
message traffic (not local)

message latency (not local)
total cycles (local)

message traffic (local)
message latency (local)

Fig. 8. Comparison between placement for locality and load balancing ignoring locality for ConceptNet-
default. Both cases use the static and decomposition optimizations.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

17:16 M. Delorimier et al.

Table IV. Area Model for ConceptNet with the Default Graph with
Dynamic Hardware with 2048 PEs

Component Slices Each Number Slices
Total 2199K
Network total 1109K
logic-switch 974 992 966K
channels 143K

PE total 532 2048 1090K
logic 183 2048 375K
app mem 532 2048 1090K

Area is measured in terms of Virtex 6 slices (see Section 4).

Table V. Activity Factors for Each Application and Graph

Application Graph Activity
ConceptNet small 0.11

default 0.25
Bellman-Ford tseng 0.77

ex5p 0.83
pdc 0.81
s38584.1 0.82
s38417 0.71
clma 0.83

Preflow-Push BVZ-tsukuba10 8 0.16
BVZ-tsukuba10 4 0.16
BVZ-tsukuba10 2 0.18

for communications by avoiding the message traffic bottleneck to get a speedup of
over 2 times at 2048 PEs. Figure 8 further shows that performance at high PE counts
is limited by communication latency, and this latency is improved by 1.5 times by
placement for locality. As noted in Section 7, we believe this latency can be reduced
further, allowing an additional locality speedup of 2 times.

5.2.3. Static Scheduling. Figure 5 shows that static scheduling improves performance
for ConceptNet and Bellman-Ford [Kapre et al. 2006]. This benefit comes from: (1)
the static scheduler can compute a higher-quality route than the dynamic scheduler
given the same set of messages, (2) the static scheduler can combine the compute and
communicate phases of each graph step eliminating the latency of one global barrier,
and (3) static hardware typically has lower area which decreases the chip-crossing
latency.

Table IV reports areas for the dynamically scheduled hardware components for the
ConceptNet-default application. It shows that the primary difference between dynamic
and static hardware areas (Table II) is due to interconnect switch size. Figure 9 shows
the Virtex 6 slices per PE for each application and optimization. The statically sched-
uled hardware area is about half the dynamic area. This area savings is particularly
important when cross-chip latency is limiting performance as illustrated in Figure 8.
As before, the number of PEs was chosen to minimize the total number of cycles.

However, static scheduling decreases performance for the Preflow-Push graphs
tested. Table V shows the average fraction of edges activated over graph steps. For
Preflow-Push the low activation allows the dynamically scheduled implementation to
perform 16% to 18% of the operations the statically scheduled implementation per-
forms. For the Virtex 6 target, we can select between the statically scheduled and
packet-switched implementations on a per-application basis.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

Spatial Hardware Implementation for Sparse Graph Algorithms in GraphStep 17:17

 0

 1000

 2000

 3000

 4000

 5000

small
default

sl
ic

es
 p

er
 P

E

ConceptNet

baseline
decomposed

local
static

 0

 100

 200

 300

 400

 500

 600

 700

 800

tseng
ex5p pdc s38584.1

s38417
clma

sl
ic

es
 p

er
 P

E

Bellman-Ford

 0

 1000

 2000

 3000

 4000

 5000

BVZ-tsukuba10_8

BVZ-tsukuba10_4

BVZ-tsukuba10_2

sl
ic

es
 p

er
 P

E

Preflow-Push

Fig. 9. Area in Virtex 6 slices of a PE for each application, benchmark graph, and optimization.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

17:18 M. Delorimier et al.

Table VI. Sequential and GraphStep Runtimes for Each Application and Graph

Application Graph Sequential Time GraphStep Time Speedup
ConceptNet small 10ms 7.2μs 1389

default 490ms 31μs 15806
Bellman-Ford tseng 72ms 3.8ms 19

ex5p 68ms 3.3ms 21
pdc 1.6s 13ms 123
s38584.1 2.8s 29ms 97
s38417 3.2s 21ms 152
clma 6.9s 44ms 157

Preflow-Push BVZ-tsukuba10 8 20s 0.19s 105
BVZ-tsukuba10 4 100s 0.45s 222
BVZ-tsukuba10 2 623s 1.9s 328

6. COMPARISON TO SEQUENTIAL PERFORMANCE

To evaluate the benefit of using GraphStep on spatial hardware, we compare its run-
time to sequential implementations of the GraphStep algorithms. Table VI shows the
results of the total runtime for the best GraphStep implementation and a sequential
implementation of each application studied. The Preflow-Push GraphStep implemen-
tation used here is dynamically scheduled. ConceptNet-default performs the most fa-
vorably with a speedup over 15,000. The larger Bellman-Ford graphs reach a two orders
of magnitude speedup. The largest Preflow-Push graph also reaches a two orders of
magnitude speedup.

The sequential programs were run on a 3GHz Xeon. ConceptNet is implemented
in C and compiled with gcc 4.3.2 using the -O3 option. It uses an active node queue
to perform only the necessary updates on each iteration. Register retiming and its
Bellman-Ford kernel are implemented in Ocaml and compiled with ocamlopt 3.10.2
using the -unsafe and -inline 2 options. Since activity for our Bellman-Ford graphs
is close to 1 (Table V), the implementation iterates over all nodes in the graph on each
step. Preflow-Push is implemented in Ocaml and compiled with ocamlopt 3.10.2 using
the -unsafe and -inline 4 options. Each step of the outer iteration is analogous to
a graph step and uses two queues to keep track of the active nodes. It uses efficient
array-based queues with O(1) time per push or pop operation.

7. FUTURE WORK

For many of our applications, scaling is limited by critical path latency. That is, the
latency of a chain of messages from a source root node, through a fanout tree, through
a fanin tree, to a sink root node may impose a lower bound on cycles per graph step
(see Figure 8). Our BFT and partitioning-based placer are not fully exploiting spatial
locality. A placer that directly attempts to minimize the critical-path may help reduce
critical path latency. Using a mesh or BFT with shortcuts may also help reduce latency.
On a mesh, the distance a signal must travel from one PE to another is the Manhattan
distance between the PEs. Our BFT often requires an integer factor more latency than
the Manhattan distance between PEs. Further, our placement of fanin and fanout
nodes results in a critical path with 2 to 4 routes through the top level of the BFT.
Avoiding the need for multiple crossover routes should reduce the latency by, at least,
a factor of two.

In the dynamically scheduled case, concurrently activated computational work may
be unbalanced across the PEs. Neighboring nodes may be simultaneously activated
while more distant nodes are idle. Consequently, a locality-enhancing placement could
produce a poor dynamic load balance. For example, a wavefront of activity can impact
a small subset of PEs at any one point in time. In future work, it would be good to
quantify the impact of dynamic computation load imbalance and, if it is significant,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

Spatial Hardware Implementation for Sparse Graph Algorithms in GraphStep 17:19

develop placement algorithms that can minimize this imbalance. This may demand
dynamic reoptimization and placement.

One direction to extend the applicability of GraphStep is to support graph algorithms
that add and remove nodes and edges dynamically but otherwise fit the GraphStep
model. Example dynamic applications include finite element methods with mesh re-
finement [Castanos and Savage 2000] and SAT with clause learning [Marques-Silva
and Sakallah 1999]. These evolving graphs will also demand more dynamic support
for node placement.

8. CONCLUSION

To continue to turn the additional transistors provided by technology scaling into
performance, we must exploit parallelism. Effective exploitation of this parallelism
demands careful management of the location of computations so that fragmentation,
communication latency, and bandwidth requirements do not undermine the benefits of
parallelism. Knowing the communication structure of a computation, we can automat-
ically select the location of computations to minimize these costs and achieve efficient
spatial implementations. We demonstrate automated, spatially aware optimizations
that improve performance up to 30 times. These spatial implementations can be
orders of magnitude faster than sequential implementations. Our GraphStep model
captures this domain and exposes the communication structure to enable spatial
optimizations without placing the burden of locality management on the programmer.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES

AGHA, G. 1998. ACTORS: A model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge,
MA.

BLELLOCH, G. E., CHATTERJEE, S., HARDWICK, J. C., SIPELSTEIN, J., AND ZAGHA, M. 1993. Implementation of a
portable nested data-parallel language. In Proceedings 4th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 102–111.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 1998. Markov random fields with efficient approximations. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 648–655.

BROOK PROJECT. 2004. Brook project web page. http://brook.sourceforge.net.
CALDWELL, A., KAHNG, A., AND MARKOV, I. 2000. Improved algorithms for hypergraph bipartitioning. In Pro-

ceedings of the Asia and South Pacific Design Automation Conference. 661–666.
CASPI, E., CHU, M., HUANG, R., WEAVER, N., YEH, J., WAWRZYNEK, J., AND DEHON, A. 2000. Stream computations

organized for reconfigurable execution (SCORE): Extended abstract. In Proceedings of the Interna-
tional Conference on Field-Programmable Logic and Applications. Lecture Notes in Computer Science.
Springer, 605–614.

CASTANOS, J. AND SAVAGE, J. 2000. Repartitioning unstructured adaptive meshes. In Proceedings of the Parallel
and Distributed Processing Symposium. IEEE, 823–832.

CHANDY, K. M. AND MISRA, J. 1982. Distributed computation on graphs: Shortest path algorithms. Comm.
ACM 25, 11, 833–837.

CORMEN, T., LEISERSON, C., AND RIVEST, R. 1990. Introduction to Algorithms. MIT Press, Cambridge, MA.
DEAN, J. AND GHEMAWAT, S. 2004. MapReduce: Simplified data processing on large clusters. In Proceedings of

the Symposium on Operating System Design and Implementation. 137–150.
DEHON, A. 2000. Compact, multilayer layout for butterfly fat-tree. In Proceedings of the 12th ACM Symposium

on Parallel Algorithms and Architectures (SPAA’00). ACM, 206–215.
DEHON, A., HUANG, R., AND WAWRZYNEK, J. 2006. Stochastic spatial routing for reconfigurable networks. J.

Microprocess. Microsyst. 30, 6, 301–318.
DELORIMIER, M. AND DEHON, A. 2005. Floating-point sparse matrix-vector multiply for FPGAs. In Proceedings

of the International Symposium on Field-Programmable Gate Arrays. 75–85.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

17:20 M. Delorimier et al.

DELORIMIER, M., KAPRE, N., MEHTA, N., RIZZO, D., ESLICK, I., RUBIN, R., URIBE, T. E., KNIGHT, JR., T. F., AND

DEHON, A. 2006. GraphStep: A system architecture for sparse-graph algorithms. In Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines. IEEE, 143–151.

FAHLMAN, S. E. 1979. NETL: A System for Representing and Using Real-World Knowledge. MIT Press, Cam-
bridge, MA.

HABATA, S., YOKOKAWA, M., AND KITAWAKI, S. 2003. The earth simulator system. NEC Res. & Develop. 44, 1,
21–26.

HESTENES, M. R. AND STIEFEL, E. 1952. Methods of conjugate gradients for solving linear systems. J. Res. Nat.
Bur. Stand. 49, 6, 409–436.

HILLIS, W. D. 1985. The Connection Machine. MIT Press, Cambridge, MA.
HILLIS, W. D. AND STEELE, G. L. 1986. Data parallel algorithms. Comm. ACM 29, 12, 1170–1183.
KAHN, G. 1974. The semantics of a simple language for parallel programming. In Proceedings of the IFIP

CONGRESS 74. North-Holland Publishing Company, 471–475.
KAPRE, N. AND DEHON, A. 2009. Parallelizing sparse matrix solve for SPICE circuit simulation using FPGAs.

In Proceedings of the International Conference on Field-Programmable Technology. IEEE, 190–198.
KAPRE, N., MEHTA, N., DELORIMIER, M., RUBIN, R., BARNOR, H., WILSON, M. J., WRIGHTON, M., AND DEHON, A. 2006.

Packet-Switched vs. time-multiplexed FPGA overlay networks. In Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines. IEEE, 205–213.

KARYPIS, G. AND KUMAR, V. 1999. A fast and highly quality multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput. 20, 1.

KILDALL, G. A. 1973. A unified approach to global program optimization. In Proceedings of the 1st Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL’73). ACM Press,
New York, 194–206.

KIM, J.-T. AND MOLDOVAN, D. I. 1993. Classification and retrieval of knowledge on a parallel marker-passing
architecture. IEEE Trans. Knowl. Data Engin. 5, 5, 753–761.

KOELBEL, C. H., LOVEMAN, D. B., SCHREIBER, R. S., GUY L. STEELE, J., AND ZOSEL, M. E. 1994. The High Performance
Fortran Handbook. MIT Press, Cambridge, MA.

KOLMOGOROV, V. AND ZABIH, R. 2001. Computing visual correspondence with occlusions using graph cuts. In
Proceedings of the IEEE International Conference on Computer Vision. Vol. 2. 508–515.

LANDMAN, B. S. AND RUSSO, R. L. 1971. On pin versus block relationship for partitions of logic circuits. IEEE
Trans. Comput. 20, 1469–1479.

LEE, E. 2005. UC Berkley ptolemy project. http://www.ptolemy.eecs.berkeley.edu/.
LEE, E. A. AND MESSERSCHMITT, D. G. 1987. Synchronous data flow. Proc. IEEE 75, 9, 1235–1245.
LEISERSON, C., ROSE, F., AND SAXE, J. 1983. Optimizing synchronous circuitry by retiming. In Proceedings of

the 3rd Caltech Conference On VLSI.
LEISERSON, C. E. 1985. Fat-Trees: Universal networks for hardware efficient supercomputing. IEEE Trans.

Comput. C-34, 10, 892–901.
LIEBERMAN, H. 1987. Concurrent Object-Oriented Programming in Act 1. MIT Press, Cambridge, MA.
LINDHOLM, E., NICKOLLS, J., OBERMAN, S., AND MONTRYM, J. 2008. Nvidia tesla: A unified graphics and computing

architecture. IEEE Micro 28, 2, 39–55.
LIU, H. AND SINGH, P. 2004. Conceptnet – A practical commonsense reasoning tool-kit. BT Tech. J. 22, 4, 211.
LOGEMANN, G., LOVELAND, D., AND DAVIS, M. 1962. A machine program for theorem proving. Comm. ACM 5, 7,

394–397.
MARQUES-SILVA, J. P. AND SAKALLAH, K. A. 1999. GRASP: A search algorithm for propositional satisfiability.

IEEE Trans. Comput. 48, 5, 506–521.
MICROSYSTEMS, S. 1995. The java language environment. White paper. http://java.sun.com/docs/white/

langenv/.
PIERCE, B. C. 2002. Types and Programming Languages. MIT Press, Cambridge, MA.
SHAH, N., PLISHKER, W., RAVINDRAN, K., AND KEUTZER, K. 2004. NP-Click: A productive software development

approach for network processors. IEEE Micro 24, 5, 45–54.
VALIANT, L. G. 1990. A bridging model for parallel computation. Comm. ACM 33, 8, 103–111.
WRIGHTON, M. AND DEHON, A. 2003. Hardware-assisted simulated annealing with application for fast FPGA

placement. In Proceedings of the International Symposium on Field-Programmable Gate Arrays. 33–42.

Received August 2009; revised April 2010; accepted June 2010

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 3, Article 17, Publication date: September 2011.

