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Abstract—

We can build lightweight bit-serial FPGA NoC routers that
cost 20LUT, 17FF per router and operate at 800-900 MHz
speeds. Each bit-serial router implements deflection-routing on a
unidirectional torus topology requiring 1b-wide connection per
port. The key ideas that enable this implementation are (1)
reformulation of the dimension-ordered routing (DOR) function
using compact 1LUT, 1FF streaming pattern matchers, (2)
compact retiming of the datapath signals into SRL16 blocks, and
(3) careful FPGA layout to efficiently pack the router logic into
small rectangular regions 2x4 SLICEs on the chip. We anticipate
these bit-serial NoCs can be used in a variety of scenarios
including overlay support for triggered debug, lightweight control
signal dissemination, massively-parallel bit-serial processing.

I. INTRODUCTION

Bit-serial representation has long been a cornerstone of
both low-cost (embedded) and high-speed (high-performance)
communication at the system level. However, inside the chip,
communication subsystems tend to operate on wide words
(e.g. 32b/64b AXI interfaces). FPGA overlay NoCs for shared
routing of communication inside the chip also operate on
wider words; for instance, the chip-spanning Hoplite [7]
overlay NoC is 32b wide@300 MHz (Virtex-6 ML605 board)
while the GRVI Phalanx NoC [5] is 290b wide @400 MHz
(Kintex UltraScale KU040 board). This preference for wider
link widths is natural, as on-chip wiring on modern FPGAs
is abundantly available. This is in contrast to system-level
constraints on the printed circuit board or enclosures where
bit-serial links are preferred to wide bit-parallel cables. In
this paper, we investigate whether bit-serial communication
can be cheaply and effectively supported inside the modern
FPGA chip. High-end commodity FPGAs are large devices
and some even span multiple dies thereby placing a premium
on global routing resources for supporting wide NoC links
all over the chip. We envision this bit-serial NoC to be part
of a communication system for an FPGA for debug support,
distribution of lightweight global control signals, and other
monitoring needs. The savings in global interconnect resources
are then returned back to the spatial application instead of
getting locked up in the NoC infrastructure. For instance,
Figure 1 shows placed and routed layouts of 4 x4 and 88 bit-
serial NoCs occupying negligible LUT/FF resources (~20.5%)
as well as very little of the interconnect fabric while running as
fast as 800-900 MHz which is 2-3x faster than equivalent bit-
parallel NoCs [7], [5], [10], [6]. The per-bit area-delay product
of the sub-word NoCs that employ a serial transmission style
advocated in this paper matches that of wide-word NoCs.
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Fig. 1: FPGA layout of bit-serial NoCs on the Xilinx
VC707 board (XC7V485T) as seen in Vivado “Device
View” after Place and Route. (804 MHz, and 909 MHz)

We anticipate bit-serial infrastructure to be useful in routing-
constrained scenarios.

Specifically, we envision a bit-serial NoC implementation

can support a variety of use cases enumerated below:

e Debug Overlay: Triggered FPGA debug logic [4] relies
on the ability to tap various internal signals from a user
design and routing it to monitoring ports or RAMs. A bit-
serial NoC can effectively gather intermittent signal events
without requiring persistent high cost connections to the
FPGA debug buffers.

o Bit-Serial Arithmetic: Bit-serial arithmetic processors can
provide a competitive resource-efficient, high-performance,
and even energy-efficient design for many scenarios [8]. A
bit-serial NoC can permit assembling a massively parallel
array of such bit-serial processors in the flavor of a Con-
nection Machine CM2/200 system from the past.

The key contributions of this paper include:

e RTL design and verification of a bit-serial deflection
router for unidirectional torus overlay NoCs.

« Architecture-specific enhancements to support (1) LUT-
level resource sharing optimizations to minimize route
decoding cost, (2) retiming of delay balancing registers
for tight SRL16 mapping, and (3) sub-word parallel
extensions with bit-serial decoding for efficiency.

o Parametric pipelining and FPGA layout considerations for
high-speed implementations for various NoC sizes on the
Xilinx VC707 board (XC7V485T FPGA).

II. BIT-PARALLEL HOPLITE ROUTER

In this section we discuss the bit-parallel designs for an
FPGA overlay router that is used in this work as well as
highlight the key limitations of the design.
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Fig. 2: Bit-Parallel Hoplite and packet format.

A. Base Hoplite

We use the Hoplite bufferless, deflection-routed design [7]
as a starting point for our work. Among existing published
FPGA routers, the Hoplite design is simple, lean and most
amenable to bit serialization. Other routers uses complex
virtual-channel based designs [10] or use expensive FIFO
buffers [6] throughout the design resulting in high FPGA
costs. A high-level picture of Hoplite router is shown in
Figure 2a and the packet format is shown in Figure 2b. The
underlying unidirectional torus topology helps simplify the
switching crossbar to a small three input, two output solution.
Cascading of the switching multiplexers allows them to be
mapped to a two 5-LUTs packed into a single 6-LUT on a
Xilinx FPGA. This is the most efficient solution possible for
implementing the switching multiplexer on a Xilinx FPGA.
As this is a deflection routed NoC, the router has no FIFOs at
the I/O ports and all incoming flits are routed to output ports.
However, the PE injection port is allowed to be blocked if
the network is busy. The address portion of the packet is used
as input to the Dimension Ordered Routing (DOR) function
block to determine which packet travels in which outgoing
direction. A key restriction of the design is that packets have
a fixed length of one as this is a deflection routed design that
cannot support wormhole routing on longer packets without
complicating the design [9].

B. Dataflow inside Hoplite

Once a packet arrives inside a Hoplite switch, the different
portions of the packet are processed as shown in Figure 3.
At a high level, there are two planes of operation: (1) control
(address) plane, and (2) payload (data) plane. In the control
plane, the routing decision logic inspects the address bits of the
valid packet and detects permissible routing directions for the
packet. As Hoplite uses DOR routing, packets traveling in Y
dimension arriving on the North input can only continue South
or exit the router. Packets traveling along the X dimension
arriving from the West input can exit on any port as long
its not already occupied. In all cases, if the desired output
port is already assigned based on DOR priority, the packet is
deflected. All these decision are made relatively cheaply with
a few LUTs of logic depth to decide the outgoing valid signal
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Fig. 3: Path of a packet through the bit-parallel Hoplite
switch. (only showing one input to one output path)

indicators for the various directions. In the data plane, the
result of the control plane are used to steer the multiplexers
to the output ports. These multiplexer select signals are also
controlled by the arbiter. All of this happens in a single cycle
from input to output. A 32b implementation of this datapath
on a Xilinx VC707 (XC7V485T) takes up 88 LUTs and 80 FFs
while running at 1.5ns (400 MHz). We tabulate the resource
breakdown of the 32b Hoplite router in Table I. This result is
slightly different from the 60 LUT, 100 FF design in [7] due
to variation in the underlying FPGA architecture, CAD tool
version, and mapping options.

TABLE I: Resource Breakdown of a single 32b (8b
address) Hoplite Bit-Parallel Design. Vivado 2015.4,
XC7V485T -2 FPGA, Settings:
Flow_AreaOptimized_high +
post_route_phys_opt_design

Component LUTs FFs
Logic  SRL16s

Switch Multiplexer 72 0 0

DOR logic 16 0 0

Output Registers 0 0 80

Total 88 0 80

C. Key Limitations

While Hoplite is an excellent router for wide FPGA over-
lays, there are limitations that may affect its broader appeal:

« Interconnect Cost: The Hoplite design is engineered
to reduce the number of LUTs and FFs consumed by
the architecture but restricts how the payload is routed.
It is not possible to route packets with multiple flits
due to the deflection-oriented nature of the NoC. Wider
payloads are necessary if the addressing overheads are to
be avoided during each flit transmission. Wider payloads
consume more LUTs/FFs and also displace valuable gen-
eral FPGA interconnect resource away from the spatial
application. This may also result in underutilization of
the provisioned wiring for bursty or streaming traffic
patterns. For instance, Vivado 2015.4 reports horizontal
and vertical interconnect congestion of 60-70% for a
32b-wide 16x 16 Hoplite NoC. If wider payloads are not



possible, we are then forced to send multiple flits with
redundant address bits in each flit.

« Fabric Frequency: While individual Hoplite routers are
simple and have few logic levels (LUT depth), when
composed together in a system, the achieved frequency
drops significantly even with floorplanning hints. Most
of the mappings resulted in 300-450 MHz layouts for 32b
designs which seem fast for contemporary FPGA designs;
however, the underlying wires can run much faster!. As
an example, without connections to other Hoplites, and
compact floorplan, a 32b Hoplite router can run at 600—
700 MHz. This depends on the number of payload bits as
quantified later in Section V (Figure 12a and Figure 12b).

« Register Use: High-speed designs for chip-spanning Ho-
plite NoCs are only possible at the expense of extensive
pipelining of the NoC links. While this does let the design
achieve the 300-450 MHz speeds, it further steals vital
FF resources away from the user designs. The 32b-wide
16x16 Hoplite NoC occupies 36K FFs which are about
6% of the chip.

To summarize: (1) Bit-parallel Hoplite design is economical
in terms of LUT and FF usage per bit, (2) When consid-
ering wiring requirements, addressing overheads and circuit
frequencies, they are expensive and inefficient. We seek to
address these limitations as part of this work. With a high-
speed bit-serial design we want (1) to lower the amount of
global FPGA interconnect devoted to the NoC, (2) to allow the
NoC to run as close-to-GHz speeds as possible, and (3) leave
valuable registers available for user design. This also allows
us to close the frequency gap with the hard NoC routers [1]
which are capable of running at 900-1000 MHz, admittedly
for a much narrowed bitwidth.

III. BIT-SERIAL HOPLITE FPGA ROUTER

In this section we describe our bit-serial Hoplite router
design and associated FPGA architecture-aware optimizations
that enable a cheap implementation. We first introduce a
baseline bit-serial design to highlight the key principles re-
quired for composing the design. We then describe the specific
optimization to each component to help deliver the LUT-
optimized final solution.

A. Signal Format

Classic bit-serial signal representations include start/stop
bits to enclose a fixed-length packet to support point-to-
point asynchronous transmission behavior along with any
error correction overheads. However, as deflection routing is
switched (not point-to-point) and it cannot support multi-flit
wormhole routing, we make some simplifying assumptions.
All packets are of fixed-length and are injected at specific
periodic intervals (instead of asynchronous any-time injection)
determined by the packet length. For instance, we can assume
that a packet is of 32b length (inclusive of valid, address,

'Vaughn Betz FPT 2016 keynote, 730 MHz short wires. Hard wires can go
as fast as 900 MHz [1]

data) and that the PEs can inject packets once every 32 cycles
starting from the designated cycle slot. This discipline ensures
that packets arrive aligned at each switch at exactly the same
cycle from all inputs. This prevents a deflection routed switch
from receiving a packet in the middle of routing an earlier
packet. As the processors are injecting bit-serial packets, this
restriction is in fact in agreement with the internal timing of
the PEs anyway. This can be implemented with 5-bit counter
per PE mapped cheaply to a single SRL16 and a FF wired
in loopback fashion. Our bit-serialized signal representation is
shown in Figure 4.
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Fig. 4: Bit-serial Packet. (in-band valid and addr/data)
B. Routing and Arbitration

We show a high-level view of bit-flow through the core of
the bit-serial Hoplite router in Figure 5. A key challenge in
designing a bit-serial router is to keep pipelining costs low. As
routing decision will be made at a clock cycle that’s different
from arrival of data, we may have to store the bits while the
decision is pending.
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Fig. 5: Dataflow through a Simple Bit-Serial organization.
(only showing one input to one output path)

As the address bits present themselves in sequence, we need
to implement a simple streaming pattern matcher that detects
the X and Y addresses of the packet. Once the XY matching all
three input bit-streams (North, West and PE input) have been
computed, the arbiter can make routing decisions and generate
the multiplexer control and valid signals for the router output
ports. The valid input (v) is sent in-band with the rest of the
address/payload bits, so we separate it out and latch it into a
persistent version for the duration of the packet (v ‘).

We illustrate the internal design of the bit-serial DOR
(dimension-ordered routing) decoder and pattern matching
logic in Figure 6. For DOR routing, we need to route packets
along X dimension first, before they turn to Y. No turns are
possible from Y to X. Here, we separately process the X and
Y addresses of the incoming packet on all three input ports;
North, West and PE. The resulting match indicators must be
delayed through SRL16 shift registers® to ensure they arrive
at the arbiter at the same cycle for correct decisions. The
decoder itself costs a 5-LUT (SRL16) to delay the valids and

2An SRL16 Xilinx primitive allows us to pack a 16-deep shift register into
a fracturable Virtex-7 5-LUT. An SRL32 uses up a 6-LUT.
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Fig. 6: DOR (Dimension-Ordered) decoder for bit-serial
Hoplite.
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X match signals per input. The matching logic is a simple
streaming XOR that fits a 5-LUT easily. The XY address
(pattern) is stored in a pattern ROM SRL16. Overall, this
design requires 13-14 LUTs for the matching logic and 4
LUTs for the arbitration (one for each output valid, and one for
acknowledge). Depending on Vivado synthesis and mapping
optimization options, we observed 18-20 LUTs and FFs for
the decoder component of the design.

C. Delay Balancing

The end-to-end delay in decision making requires the router
inputs be suitably delayed to align them properly at the
multiplexer inputs (shown by the Arbiter balancing SRL in
Figure 5). Furthermore, once multiplexed, the outputs must
also be delayed to ensure the downstream switches observe
arriving inputs at packet length boundaries (labeled Delay
Balancing in Figure 5) . This requirement is essential as all
inputs arriving at each switch must be aligned with each other
for correct operation. This is not a problem with the bit-
parallel design as the complete packet arrives in one shot in the
same cycle. As deflection routing cannot support wormhole
routed packets (i.e. packets with multiple flits) arriving at
arbitrary cycles, we must align all inputs to arrive at the same
cycle in all router. Thus, this results in a substantial cost for
implementing shift registers along all inputs and outputs. This
results in a usage of 4 LUTs and 4 FFs per input yielding an
overall cost of 12 LUTs and 12 FFs just for delay balancing
component of the router. The SRL cost here is a function of
packet length L and will be [1%1 SRL16s per port.

We tabulate the LUT and FF resources of this baseline
design in Table II. As expected the switch multiplexing costs
have dropped linearly with number of bits being switched
down to 1 LUT from 72 LUTSs in Table I. However, the DOR
matching costs have grown to require 10 LUTs, 8 SRL16s
and 13 FFs over the simple 16 LUT design of Table I. It
may be tempting to perform a series-to-parallel conversion
of the XY bits and reuse the bit-parallel DOR design but
that would also require a bank of FFs (12 FFs for 4x4
NoC). When considering the area-delay product (per bit) of
the two designs, the bit-serial design is significantly worse
(88LUTx1.5ns/32b vs. 30LUTx1.4ns/1b = 6.7x worse).
While we do not expect to completely overcome the area-
delay product metric based on current FPGA limits, we can
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Fig. 7: Dataflow through an Optimized Bit-Serial
organization.

attempt to close this gap with sub-word design explained later
in Section III-E. On the Xilinx FPGA, we can map all the
shift registers efficiently into SRL16 primitives.

TABLE II: Resource Breakdown of Baseline Design.

Component LUTs FFs
Logic  SRL16s

Switch Multiplexer 1 0 0

DOR Logic 12 8 14

tPattem Matching 6 8 11

Arbitration 6 0 3

Arbiter+Delay Balancing 0 8 12

Total 13 16 26
(30 LUTSs) 26

D. LUT-crafting (Optimizing) the Design

While the baseline bit-serial design is compact it still
occupies 30LUTs and 26 FFs while running at 1.4ns clock.
This design routes 3—12 the number of bits while reducing logic
utilization by a mere 3.3-3.6x. We now show how to bring
this down to the advertised 20 LUT, 17 FF solution that runs at
Ins. While this may seem like a modest saving, this reduction
is crucial for two reasons: (1) to enable high-speed operation,
and (2) to deliver per-bit, per-ns efficiency of LUT use when
scaling up to larger NoC sizes.

o Logic-free multiplexer selection: The cascaded muxes
we highlighted in Figure 2a as suitable for fracturable 5-
LUT implementations have another useful property. The
multiplexer select signals can directly be driven by the
valid indicators as shown in Figure 7. This simplifies the
arbitration logic and saves a handful of LUTs and latches.
This is trivially possible as the first multiplexer chooses
between the West and PE inputs and can directly be selected
based on whether there is a valid packet along the West
input. In this case, the PE acknowledge signal is relayed to
the PE indicating the unavailability of the first multiplexer
for any data exiting the PE. The PE then has to reattempt
packet injection at a later cycle. The next stage of the
multiplexer selects between the North input and the (West
or PE) input. Here, we prioritize the North input in all cases.
There is a sub-optimal choice being made here in the case
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the PE input wants to route to South output in a conflict
free manner with the West input wanting to travel East. This
scenario will result in the PE getting blocked but this has a
low impact of overall routing performance across different
traffic patterns. Furthermore, the same effect is also present
in the base Hoplite design using this fracturing strategy. We
have to AND-mask the East-bound and South-bound outputs
to validate the presence of NoC traffic on that link.

e Retiming: As the multiplexer selection happens instantly,
the only delay in the output packet generation is the
computation of valid signals. Thus we can now provide a
single level of SRL16 delay bank for all outgoing wires.
This further eliminates the arbiter balancing SRL16 from
Figure 5. Additionally, when the inter-router links are reg-
istered for performance, we can simply borrow delay from
this SRL16 bank to improve clock speed without losing end-
to-end packet traversal latency. This is particularly valuable
as inter-router links quickly become the performance bot-
tleneck when mapped to span the complete chip real-estate.

e Resource Shared DOR decoder: As shown earlier, we
can implement dimension ordered routing using bit-serial
pattern matching on each of the three input channels.
However, we observe that with the cascaded multiplexer
design we can only allow two connections in the switch
in a decision cycle. More specifically, the PE input will
be ignored (not acknowledged) if there are valid packets
on both the North and West inputs. This means, we can
resource share the bit-serial pattern matchers with the PE
input. This is possible using a 2:1 mux inserted at the
input of the pattern matching logic. Luckily, this still fits
the fracturable 5-LUT input constraints resulting in a net
saving in LUT cost (3 LUTs and 1 FFs saved). We show this
in Figure 8. Furthermore, the arbitration is also simplified
down to 4 LUTs as the multiplexer selection signals no
longer need to be explicitly generated (can directly use zero-
LUT arbitration, and use valids as mux-control themselves).

e Pattern Matcher: We compactly implement the pattern
matching logic for X or Y detection using a single LUT for
streaming detection and an SRL16 to store the bit pattern
of the address. In Figure 9, we show the logic equation that
is mapped to the LUT for implementing this computation.

tart
input0 sta
~ set
L B
pattem/
SRL16 5-LUT
(5-LUT)

Fig. 9: Bit-serial Pattern Matching Circuit.

The input multiplexer chooses between the PE input or a

NoC link based on the validity of the data (valid is latched).

The XNOR gate compares the arriving bit-stream against a

pattern generator signal that is aligned with data arrival. The

feedback signal logs the match state across the relevant bit
subset of the input data.

We tabulate the LUT and FF resources of this optimized
design in Table III. Compared to the baseline bit-serial design
summarized in Table II, the lurcrafted design takes up 50%
fewer LUTs and FFs. These reductions are primarily due
to the lack of requirement for Arbiter Balancing SRLs and
resource-sharing of the DOR decoder logic. As hinted at
earlier, we expect the HyperFlex registers on the Altera Stratix
10 to absorb most of the Xilinx SRL16 shift register usage
further shrinking the design cost when mapped to the Altera
device. As the core switch multiplexer is 1/20=5% of the logic
utilization of the router, this design trades off excess LUTs for
keeping wiring costs low.

TABLE III: Resource Breakdown of Optimized Design.

Component LUTs FFs
Logic  SRL16s

Switch Multiplexer | 0 0

DOR Logic 8 6 9

tPattem Matching 3 6 9

-Arbitration 5 0 0

Delay Balancing 0 5 8

Total 9 11 17
(20 LUTs) 17

E. Sub-word parallel design

For sub-word-wide NoC routers with payload widths such
as 2b—8b, the use of a full-blown bit-parallel design is wasteful
as the XY address bits would add significant overhead to
each packet transmission. For instance, a 4x4 NoC for 4b-
wide payload will consume roughly 50% of the wires for
routing addressing information (2b X+2b Y address). In these
scenarios, using a bit-serial design may be a more efficient
starting point due to better use of wiring resources. In this case,
we simply add a LUTs for each extra bit to be routed to the
“Switch Multiplexer” row of Table III while retaining rest of
the logic without modification. Thus, the address bits are still
routed serially, with additional wires used purely for routing
the payload bits. If the total data that must be transferred per
packet is large and split across multiple cycles of the bit-serial
design, this also allows us to keep address overhead per packet
to be low.
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IV. FPGA MAPPING AND LAYOUT

In the previous section we showed how to design the bit-
serial router to minimize the number of LUTs and FFs used
by the implementation. In this section, we investigate the
floorplanning potential for helping boost frequency of our
design.

A. Speed Calibration

The base Hoplite router can run at 450-500 MHz on
the VC707 for various system sizes from 2x2 to 16x16
routers. This requires pipelining the inter-router links. To
clearly understand the extent of pipelining requirements of
the bit-serial NoC, we placed and routed a 2x2 NoC with
various inter-router distances first without pipelining and then
with a configurable number of registers. In Figure 10, we
visually represent the results of these frequency calibration
experiments. We tabulate the impact of spatial distance and
pipelining on circuit frequency for the 2x2 NoC in Table IV.

Impact of Distance: When the distance between the bit-
serial routers is below 8 slices, we can easily meet even a
1 GHz timing constraint. Obviously this particular layout is
not directly useful, but it points to an upper bound that should
be achievable. As we widen the gap between the routers, we
see a frequency degradation down to 235 MHz when using a
180x256 (XxY) gap. Varying distance helps us achieve the

TABLE IV: Frequency Scaling of a 2x2 NoC on the
Xilinx VC707 board (XC7V485T).

(a) Impact of Distance (No pipelining)

Distance (SLICEs) 2 4 8 16 32 64 128 256
Frequency (MHz) 1000 950 940 760 520 406 304 235

(b) Impact of Pipelining (180x256 SLICE inter-router distance)

Pipelining (FFs) 0 1 2 3 4 5 6 7
Frequency (MHz) 235 454 524 598 633 633 708 715

full spectrum of frequencies between these two extremes. The
PBLOCK constraints (physical chip region limits) for the four
NoC routers seen in the device layout in Figure 10 are shown
as red rectangular regions.

Impact of Pipelining: We conduct a separate experiment
where the inter-router links are pipelined with a configurable
number of registers to evaluate frequency improvements. In
this scenario, Vivado’s analytic placement engine is able to
position registers at appropriate intervals along the link. The
addition of pipelining registers allows the design to run as
fast as ~700 MHz. While nowhere close to a GHz rate, the
long distance between the router links poses a challenge to
the Vivado CAD engines for placing intermediate pipelining
registers at suitable distances and choosing the appropriate
routing segment. For larger-sized NoCs such as 16x16 NoCs,
we are able to achieve a faster clock rate (800-900 MHz) with
ease. In this case, the router PBLOCK constraint serves as a
convenient place for limiting the wiring distance and delay.
Thus the experiments with layout of a 2x2 NoC push Vivado
to the limit and help us understand the worst-case performance
possible for various configurations.

Folded Layout: For larger NoCs, the wrap-around links
between the extreme edges of the NoC are long and can
constrain performance. To avoid this problem, we use a folded
layout by interleaving alternate router blocks thereby limiting
the worst-case inter-router distance to just two routers. This is
a well-known idea also used for performance optimization in
the base Hoplite design.

V. EVALUATION

In this section, we evaluate the various configurations of the
different NoCs and report NoC metrics, resource utilization,
clock frequency, and power usage information. We then un-
derstand the underlying trends and tradeoffs for optimizing the
NoC for the end user. As mentioned earlier, we perform all our
experiments on the Xilinx VC707 board with the XC7VX485T
-2 FPGA device and use Vivado 2015.4 for compilation.
Where appropriate we generate PBLOCK floorplanning con-
straints using our custom scripts for targeting various NoC
system sizes. We use parameterized RTL based on the original
Hoplite RTL with suitable adaptations for supporting bit-serial
evaluation. The Clock BUFG F},,, frequency range [11] that
is supported by the Virtex-7 fabric is 625-741 MHz (depending
on speed grade). Our layout frequencies easily surpass these
limits, and represent a limit study of what the Xilinx fabric
potential.

A. Single Router

We first assess the logic requirements of individual routers
to compare and contrast the bit-parallel and bit-serial imple-
mentations. In Figure 13a and Figure 13b, we show the effect
of varying bitwidth of the NoC link on LUT and FF count
of the routers on the VC707 board. As expected the bit-
parallel designs can be as much as 8 x (LUTs) and 23 x (FFs)
larger than their bit-serial counterparts. The bit-serial design
is mostly insensitive to variations in bitwidth (certainly FF
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counts stay constant), we observe a minor increase in LUT
counts to store the address patterns in SRL16s.

Next, we evaluate the clock frequency of the stand-alone
routers that is achieved when mapping the routers without
any constraints. In Figure 12a, we observe a frequency gap
when comparing bit-serial over bit-parallel routers as large as
1.8 x. Without the effect of loading from inter-router links, the
individual bit-serial routers easily run as fast as a GHz. The
bit-parallel designs, on the other hand, slow down by as much
as 30—40% as we increase the bitwidth of the packets.

Thus, bit-serial routers are as much as 2.3x faster and
require 8x fewer LUTs and 23x fewer FFs compared to
128b-wide routers. In terms of per-bit efficiencies the bit-
serial routers lag behind their bit-parallel counterparts when
the payload widths are large enough to amortize the addressing
costs. When mapped, the FPGA interconnect fabric shows a

TABLE V: FPGA Utilization and Network Congestion
Data reported by Vivado (XC7V485T mapping).

NoC Logic Utilization Route Utiliz. (%) Route
Size LUTs FFs Vert. Horiz. Congest.(%)
Bit-Parallel 64b NoCs
16x16  57.K (19%) 54K (9%) 7.5 6.7 66-89
8x8 8.7K (3%) 8.7K (1.5%) 0.5 2.5 47-65
4x4 2.1K (0.7%) 2.2K (0.3%) 0.2 0.5 50-53
2x2 0.4K (0.1%) 0.5K (0.1%) 0.3 0.6 27-51
Bit-Serial NoCs

16x16  6.4K (2%) 7.1K (1%) 0.3 0.2 Nil!
8x8 1.6K (0.5%) 1.8K (0.3%) 0.1 0.07 Nil!
4x4 0.4K (0.1%) 0.5K (0.07%)  0.08 0.03 Nil!
2x2 0.1K (0.02%)  0.1K (0.02%)  0.02 0.02 Nil!

"Vivado does not even report Congestion metrics for these cases.
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Fig. 13: Throughput measurements of the different
bit-serial NoC system sizes for uniform RANDOM
workload at various injection rates. Latency distribution at
256 PEs at 10% injection rate.

Route Congestion factor of 20-30% for bit-parallel designs
while only 1-2% for bit-serial designs. Route congestion factor
captures the difficulty faced by the Vivado router in finding
routes that meet user timing targets for the different circuit
paths (lower values are better).

B. NoC System-level Metrics

We show performance (throughput, and latency) metrics of
the bit-serial NoC in Figure 13 for workloads routing 1K
packets/PE. The NoC throughputs saturate at various system
sizes at injection rates above 20% in a manner identical
to Hoplite [7]. The latency distribution also mimics Hoplite
behavior and exhibits a long tail effect (few packets suffer
long worst-case deflections). As expected LOCAL traffic has
shorter packet latencies, while the BITREV workload has the
worse latencies that are 10-20x larger than even uniform
RANDOM traffic. The absolute throughputs and latencies for
bit-serial NoC are derated by a factor equal to packet length
which is expected as the wiring requirements are also reduced
accordingly.

When composing NxN NoCs, the frequency degradation
and route congestion effects become more pronounced for
the bit-parallel design. In Table V, we tabulate the LUT, FF,
Frequency, and Routing Congestion costs reported by Vivado
for different sizes of the bit-serial and bit-parallel NoCs (64b).

In Figure 12b, we show the system-level clock frequencies
achieved by the various NoCs for different system-sizes and
bitwidths. The frequency of the bit-serial NoCs are 2-3x
faster than equivalent bit-parallel routers even when the inter-
router links are optimally pipelined. The larger bit-serial NoC
(16x16) runs the fastest =900 MHz as the inter-router spatial
distance is shorter than the other routers. For the smaller
NoCs (4x4), the inter-route gaps are wider and must be
explicitly pipelined with extra output registers. We rely on
Vivado’s excellent placement engine to identify the precise
positions for these inter-router pipeline stages. However, we
do observe an ~100 MHz frequency drop for the smaller NoCs
(as discussed earlier for the toy 2x2 NoC in Speed Calibration
in Section IV-A) despite adequate pipelining due to the limits
of the automated placement engine.

In Figure 14, we highlight the routing congestion on the
FPGA when comparing bit-serial and bit-parallel NoCs. As is
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Fig. 14: Routing Congestion Maps of 16x16 NoCs on
XCT7VX485T. Blue regions represent high congestion
(dark: 20-50%, light: >50%), Black regions indicate
moderate congestion 10-20%, White regions are low

congestion <10%, Yellow regions have no routing.
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Fig. 15: Figure of Merit (Area-Delay product per bit) for
the Sub-word Bit-Serial design vs. Bit-Parallel Design.

clear, the bit-parallel NoC exhibits congestion hotspots that are
up to 90% congested in certain regions. In the bit-serial NoC,
apart from a few moderate spots with ~20-30% congestion,
the chip is mostly empty. User designs are not only free to
use the logic capacity of the chip but also most of its routing
resources.

C. Area-Delay of Sub-Word Designs

The sub-word parallel NoC designs can match the area-
delay product of purely bit-parallel NoCs and in some cases
offer superior results (lower area-delay) per bit resulting in
higher efficiency for transporting NoC traffic. A sub-word
design introduced in Section III-E still retains the bit-serial
transmission of valid and address, but adds extra wires to
amortize DOR decision costs. This comparison assumes the
sub-word design route the identical packet length of 128 bits
(valid + address + payload). However, this can be enlarged
trivially with an extra LUT (x 4 for valid + data on two NoC
directions) for delay balancing for every 32b increase in packet
size. We see a saturation of area-delay product for sub-word
designs above 5b around 5-6 LUT-ns/bit. We also observe that
the 7b design almost matches the efficiency of 64b bit-parallel
NoC while a 128b bit-parallel NoC is only competitive below
4b sub-word solutions. Purely bit-serial design run fast, and
require very few resources, but do not offer competitive area-
delay results over bit-parallel NoCs. The various sub-word
parallel designs require anywhere from 15—43 LUTs depending
on the sub-word width and require around 0.9-1.2ns clock
periods.

VI. CONCLUSIONS

We show how to design high-speed bit-serial NoCs on mod-
ern FPGAs that operate close-to-GHz rates by (1) LUT-level
optimizations and pruning of design logic to minimize logic
depth, and (2) compact floorplanning and flexible pipelining
of the inter-router links. Using our methodology, we are able
to design and deliver a lightweight 20 LUT, 17 FF NoC router
that runs at a 1.01-1.04 GHz. Our layout tools are able to
map NoCs of various sizes from 2x2 to 16x16 targeting
the VC707 board (XC7VX485T FPGA) while requiring less
than 2% of the LUT resources in the largest case and never
occupying more than 0.3% of the FPGA routing resources.
With suitable pipelining, the chip-spanning NoCs typically run
at 800-900 MHz while relying on Vivado’s placement engines
to auto-place the registers for best performance. We expect
bit-serial NoCs to be used in routing-constrained designs, or
FPGA applications requiring distribution of infrequent control
across the chip fabric at low cost, or to support low-cost in-
system debugging infrastructure. This bit-serial design is part
of the range of Hoplite variants such as Hoplite-DSP [2], and
Hierarchical Hoplite [3].
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