
Hoplite-DSP: Harnessing the Xilinx DSP48
multiplexers to efficiently support NoCs on FPGAs

Chethan Kumar H B
School of Computer Science and Engineering

Nanyang Technological University
Singapore, 639798

chethank001@e.ntu.edu.sg

Nachiket Kapre
School of Computer Science and Engineering

Nanyang Technological University
Singapore, 639798
nachiket@ieee.org

Abstract—
We can embed the crossbar functionality of NoC (network-

on-chip) routers onto the hard multiplexers of Xilinx DSP48E
primitives to support resource efficient mapping of FPGA overlay
NoCs. This embedding also permits the use of dedicated hard
wiring resources of the DSP cascade links to support vertical
NoC channels. This unique mapping allows us to significantly
reduce soft logic (LUTs+FFs) utilization of FPGA overlay NoCs
at the expense of DSP resources while also lowering the routing
requirements on configurable FPGA interconnect. This embed-
ding is made possible by the dynamic mode control feature
of the DSP blocks that allows per-cycle modification of ALU
operation and multiplexer data steering controls within the block.
We multi-pump the DSP block by internally operating at 600–
650 MHz speeds while delivering fabric-facing frequencies of 300–
325 MHz. For 48b-wide chip-spanning 32⇥16 NoC mapped onto
an XV7V485T (VC707 board), a LUT-only implementation of
the Hoplite router requires ⇡70 LUT+140 FFs@2.7 ns instead
of 1 DSP48 block+⇡13 LUTs+17 FFs@2.8 ns on average. For
15% toggle rates, across most system sizes, the DSP-based NoC
exploiting hard resources requires 1.1–2⇥ lower power than the
LUT-based NoC. Across a range of statistical workloads, we are
able to match the performance of LUT-only Hoplite delivering
a sustained rate as high as 8–10% for injection rate of 100%
for LOCAL traffic pattern when mapped to a 16⇥16 NoC. In
previous work, a conventional hard NoC router with virtual
channels, and FIFO buffers has been demonstrated to be 20–
23⇥ smaller, 5–6⇥ faster, and up to 14⇥ lower power than
equivalent soft NoC routers. Our DSP-based Hoplite soft NoC
router requires practically identical silicon area, runs only 3⇥
slower, and consumes 43% less power than the conventional hard
NoC router, while sacrificing certain communication properties
in favor of a lean implementation.

I. INTRODUCTION

Modern Xilinx FPGAs provide hardened resources such
as thousands of DSP48E units along with specialized inter-
connect support between these units. For a range of signal
processing and streaming applications, these DSP blocks pro-
vide unparalleled compute density made possible by the high-
speed 650 MHz+ fixed-point multiply-adder support. How-
ever, in many scenarios such as cryptography, bit-twiddling
computations, small-precision operations, these DSP blocks
are of little use. Furthermore, not all DSP blocks may be
utilized for a given application leaving many of them idle
and underutilized. Even when applications require a large
number of DSP blocks, they may not use them in each cycle

36K Block RAM
DSP48E
DSP48E

18K Block RAM

18K Block RAM

Pkt. Gen
Logic

Hoplite

Hoplite

South

North

C
LB

s 
\ I

nt
er

co
nn

ec
t

West

East

East

West

DOR
opmode

DOR
opmode

DS
P 

ca
sc

ad
e

Fig. 1: Embedding Hoplite NoC functionality into the Xilinx
DSP48E blocks. (grey wires use hard cascade links between
DSP blocks, diagram adapted from Figure 1-2 in [11])

thereby opening the possibility of time-sharing the DSP block
between the computation and communication phases. In these
scenarios, it may be useful to consider alternative creative
uses of the highly flexible design of the DSP block. A key
feature of these blocks for the Xilinx family of FPGAs is
the ability to dynamically change the function and dataflow
inside the blocks at runtime from user logic. The implications
of this freedom for supporting network-on-chip multiplexing
computations is an unintended, but remarkable side-effect. In
this paper, we consider the potential for exploiting Xilinx
DSP48E blocks for supporting deflection routed torus NoC
operations for NoCs such as Hoplite [7].

This may seem like an odd use of a DSP block as NoC
operations are not dominated by any arithmetic operations
supported by the DSP. However, the data steering capabilities
and wide 48b multiplexer support are particularly attractive
from the perspective of mapping the internal NoC crossbars.
In [7], we introduce Hoplite, an extremely lightweight FPGA-
friendly NoC router that implements deflection routing on a
unidirectional 2D torus. The Hoplite router, shown in Figure 2,
occupies 70 LUTs, 140 FFs on a modern Xilinx chip for 48b
flits while operating at over 300 MHz through carefully folded
layout of the 2D torus topology on Virtex-6 and Virtex-7
devices. Analysis of the resource utilization suggests that bulk
of the LUT and FF usage (80–90%) arises from the need to
implement the internal switching crossbar. Juxtaposed with the
configurable dataflow potential and cascade link support of
the Xilinx DSP48 units, we can see a pathway for cheap and
fast implementation of the crossbar functions inside the DSP



block. What makes this mapping particularly appropriate for
deflection routed unidirectional torus NoCs is the requirement
to support 3-input multiplexers and the strict directionality of
the DSP48 cascade connections. We show a high-level vision
of how to configure and use the DSP48 blocks for Hoplite links
in Figure 1. Here the packet generation logic is implemented in
FPGA logic along with the DOR (dimension ordered routing)
functionality that generates the dynamic OPMODE signals for
data-steering within the DSP block. We can also exploit the
Block RAMs for storing packets and use their fast connections
to the DSP48 inputs for high-speed operation. Interestingly,
the dedicated cascade connections allow the NoC to avoid
consuming expensive configurable wiring resources from the
spatial fabric while operating directly on high-speed dedicated
wiring. In this context, we can approach the performance and
cost of a hard NoC routing [3] on FPGAs that are available
today using the lean Hoplite router design. One downside of
the multi-pumped design is the potential increase in power
utilization as we must route a 2⇥ faster clock to the DSP
resources. However, there is an opportunity in the use of
hardened resources being able to offset the increased power
requirement arising from the faster clock.

The key contributions of our paper include:
• Multi-cycle design of Hoplite NoC functionality on Xil-

inx DSP48E blocks. Support for full crossbar design (48b
when using cascades, 27b without cascade).

• Additional considerations for time-multiplexing, and
FPGA layout for enhanced operation.

• Resource, performance, and energy analysis of DSP-
based Hoplite design over the original LUT-based im-
plementation across a range of statistical and real-world
workloads.

II. BACKGROUND

A. Hoplite FPGA Router

5
LUT
5

LUT

5
LUT
5

LUT
5

LUT

5
LUT

W

N

PE E

S/PE

DOR Logic
sel0 sel1

5
LUT
5

LUT

5
LUT
5

LUT
5

LUT

6
LUT

W
PE E

S/PE

DOR Logic
sel0 sel1,2

N

Fig. 2: High-Level diagram of Hoplite router microarchitec-
ture. Mux mapped to fractured Xilinx 5-LUTs. Design on left
implements partial crossbar while the one of the right supports
full crossbar. The tradeoff is a factor of 2 reduction in resource
usage when supporting partial connectivity.

Hoplite is an FPGA-friendly NoC router design that is
designed to be compact, fast and scalable on large, modern
FPGA devices. We show a high-level diagram of the Ho-
plite [7] NoC router in Figure 2. Hoplite uses a simplified 2D

unidirectional torus topology and employs bufferless deflection
routing for lean and fast operation on FPGA fabrics. By
eschewing the need for FIFO buffers, the FPGA resource
utilization is kept low and the associated control logic for
managing deflection is also straightforward to implement.
The choice of unidirectional torus implies that the internal
switching crossbar must support three inputs and three outputs
(one for NORTH-SOUTH link, another for WEST-EAST link
and the final one for the PE connection). When considering
modern fracturable Xilinx 6-LUT architectures, this offers the
possibility of mapping the 3:1 MUXes into 2⇥5-LUTs if we
share the SOUTH and PE exits as discussed in [7]. In Figure 2,
we show two designs for Hoplite. For the partial crossbar
design, we cascade the multiplexers to allow the switching
crossbar to compactly fit in two 5-LUTs that can be charged
to a single 6-LUT. Alternatively, we can implement the full
crossbar directly in a 6-LUT and pay twice the cost of the
partial crossbar design if the additional internal bandwidth
is useful. This forced economy through LUT fracturing has a
measurable impact of throughputs and worst case latency. With
careful 2D folded layouts, Hoplite can run at high speeds 300-
333 MHz even when spanning complete FPGA chips on the
ML605 board (Xilinx Virtex-6 LX240T FPGA).

B. Xilinx DSP48E1/E2 primitives

A

D

B

C

30
/

27
/

18
/

48
/

P

48
/

27
/

48
/

PCIN
48
/

ALU

X

Z

Y

PCOUTOPMODE ALUMODEINMODE

Fig. 3: Simplified diagram of Xilinx DSP48E2 block with
configurable ALU function and programmable dataflow. (48b
mux X, Y, and Z are used for our design, 27b bypass mux in
pre-adder selects between A and D).

Modern Xilinx Ultrascale FPGAs provide configurable DSP
resources, shown in Figure 3, for signal processing applica-
tions requiring 27⇥18 multiplications (25⇥18 for older de-
vices supporting DSP48E1) or 48⇥48 add/subtract operations.
These offer significantly superior logic density, speed and
energy than equivalent LUT implementations of the same
computations. Xilinx DSP blocks allow per-cycle reconfigu-
ration of the arithmetic operation and dataflow inside the DSP
blocks. While this is tricky to exploit, this opens the door to
supporting complex dataflow expressions on the same DSP
block through time-multiplexing. This is achieved by simply
changing multiplexer controls to steer appropriate inputs and
ALU mode controls to change arithmetic/logic function on a
per cycle basis in a repetitive fashion.

2



DSPs as 48b Multiplexers: The X, Y and Z multiplexers
and the embedded multiplexer in the A/D pre-adder are of
particular importance when steering data within the DSP
block. These multiplexers are controlled on a per-cycle basis
from user logic through the signals INMODE and OPMODE. For
mapping NoC crossbar functionality to the DSP block, these
multiplexers and the control signals play a vital role. While
it is also possible to dynamically control the 48b ALU with
the ALUMODE signal, we simply configure it to add X+Y+Z
and leave it at that setting. To then use the DSP block as a
wide 3-input multiplexer, we select zero input for two of the
X, Y or Z multiplexers thereby allowing us to select between
X+0+0, 0+Y+0, or 0+0+Z choices. In this case, it is sufficient
to control OPMODE signals alone to achieve desired routing
functionality.

DSPs as 27b Multiplexers: An astute reader may have no-
ticed that the 48b multiplexer support is only possible if we use
the cascaded PCOUT and PCIN connections. One drawback
when using the cascade connections is the requirement to use
up a series of DSP blocks that are directly next to each other
in the column. In some instances, this may not be possible. In
such scenarios, we can still configure the DSP block as a 27b
multiplexer by using the A, D and C inputs. The 27b width
of the D input constrains overall width. In this scenario the
A:D pre-adder and Y mux control are adequate for support
programmable dataflow through the DSP block. Here, the
control logic needs to drive both INMODE and OPMODE signals
for correct operation.

Multi-Pumping: It is also possible to multi-pump the DSP
blocks by internally operating at the maximum possible
frequency of the DSP blocks 650 MHz+ while rest of the
logic runs 2⇥ slower. This comes in handy as we need to
dynamically change the mode controls when implementing
the NoC crossbars. Multi-pumped DSP designs have been
demonstrated in the context of high-level synthesis before
in [5]. Multi-pumping has also been explored in the context of
other hard resources such as BRAMs [9]. The dynamic control
feature has also been used for processor-oriented designs in [6]
to resource share the DSP block across multiple instructions.

III. HOPLITE DSP

In this section, we describe the main idea behind mapping
multiplexers onto DSP48E blocks on the Xilinx FPGA while
also discussing layout considerations when targeting columnar
DSP layouts.

A. DSP48Es and 48b Multiplexers

The key to embedding Hoplite functionality into the DSP
block is (1) the assignment of NoC router inputs to the correct
DSP block inputs, (2) splitting a single Hoplite-LUT design
cycle into multiple Hoplite-DSP cycles, and (3) the ability
to modify OPMODE signals based on the DOR (dimension-
ordered routing) function. The DOR function forces packets
to route in the X-dimension first before turning in the Y-
dimension. This means that certain turns are disallowed,

e.g. turning from Y-dimension to X-dimension is not permit-
ted. We first focus on exploiting the 48b-wide multiplexers to
the fullest extent, while showing how to achieve reduced band-
width, but less constrained 27b operation later in Section III-E.
In Figure 4, we can see how we map the internal crossbar
of the NoC router to the X, Y, and Z multiplexers across 2
cycles. By carefully presenting the right subset of inputs to
the multiplexer in the right cycle we can achieve identical
behavior as Hoplite. We do have to split the computation
across multiple cycles as the DSP block can only produce
a single output, but multi-pumping helps us compensate for
multi-cycle operation. The original Hoplite design presented
in [7] used a cascaded crossbar implementation to permit
perfect mapping to the fracturable Xilinx 6-LUT architecture.
When using the DSP block, we no longer need to be limited
by the partial crossbar functionality, and can directly support
the full crossbar operation as shown in Figure 4. In this
scenario, the EAST output is resolved in the first cycle by
selecting between the PE and WEST inputs at multiplexer Z
(For DOR, NORTH cannot turn EAST). As is clear, only one
of these two signals can send a packet in a given cycle (in
any direction). In the next cycle, the overloaded SOUTH/PE
output is resolved by selecting between all three inputs with
priority for the NORTH input. These two cycles are sufficient
for correct operation of the Hoplite router. The logic used to
implement DOR computation is a trivial comparison of the
address fields of the packet with the position address of the
switch being traversed. This logic drives the OPMODE controls
sourced from the FPGA LUTs, but the PATTERNDETECT
feature of the previous DSP blocks can also be used here to
help reduce LUTs even further1.

In this design, we use the X, Y and Z multiplexers in
different cycles while programming the DSP unit to simply
execute an addition operation on the 48b inputs. By correctly
driving the OPMODE signals from user logic based on DOR
functionality, we can correctly route all inputs to correspond-
ing output ports. We show the precise OPMODE bit patterns
that must be selected for each multiplexer mapping in Table I.
ALUMODE is set constant to compute X+Y+Z in all cases. From
the perspective of the processing logic, a time-multiplexed
325 MHz design (650 MHz internal DSP clock) is better than
LUT-based Hoplite [7] as we are able to support full crossbar
connectivity without extra cost. Finally, when we use the
cascade connections, we are able to offload almost 25% of
the NoC wiring requirements onto DSP cascade wiring thereby
freeing up interconnect capacity for actual user logic.

B. FPGA Layout Considerations

Now that we saw how a single Hoplite router can be em-
bedded inside a single DSP48 primitive, we turn our attention
to overlaying the complete NoC onto a real FPGA device.
Xilinx FPGAs organize silicon resources into separate columns
devoted to (1) CLBs and interconnect, (2) Block RAMs, and
(3) DSP blocks. The dedicated cascade routes span the column

1Not implemented in our current design, but trivially possible

3



A

D

B

C

30
/

27
/

18
/

48
/

27
/

PCIN
48
/

ALU

X

Z

Y

PCOUTOPMODE ALUMODEINMODE

PE Input

West Input

East 
Output

48
/

P
48
/

CE

CE=1
OPMODE[6:0]=“0000000”
OPMODE[6:0]=“0001100”
OPMODE[6:0]=“0000011”

(a) Hoplite DSP – Cycle 1

A

D

B

C

30
/

27
/

18
/

48
/

27
/

PCIN
48
/

ALU

X

Z

Y

PCOUTOPMODE ALUMODEINMODE

PE Input

West Input

South/PE 
Output

48
/

P
48
/

North Input 

CE=0
OPMODE[6:0]=“0000000”
OPMODE[6:0]=“0010000”
OPMODE[6:0]=“0001100”
OPMODE[6:0]=“0000011”

CE

(b) Hoplite DSP – Cycle 2

A

D

B

C

30
/

27
/

18
/

48
/

27
/

PCIN
48
/

ALU

X

Z

Y

PCOUTOPMODE ALUMODEINMODE

West Input

East
Output

48
/

P
48
/

East
Output
(t-1)OPMODE[6:4]=“001”

OPMODE[6:4]=“010”

CE

(c) Passthrough-DSP

Fig. 4: Packing Hoplite NoC multiplexing operations onto Xil-
inx DSP48E2 blocks for DOR routing algorithm. Passthrough
DSPs are used to help align the duty cycle of the flit for next
Hoplite and provide a fast routing path for vertical traffic. The
NoC is rotated 90� such that the EAST output is going up
the DSP cascade, and SOUTH output is traversing to the right
horizontally along the chip (except wraparounds).

alone which depends on the height restrictions of the particular
FPGA device. For implementing a 2D torus, we need wiring in
both vertical (column) and horizontal (row) dimensions. This
means that we must split our routing requirements across both
resources. In Figure 5, we show the local connectivity pattern
for a single DSP48 block when considering its immediate DSP
neighborhood. The P output of the DSP block is used by
packets exiting the NoC (to the processor/client) as well as
packets traversing in horizontal dimension. Traffic in vertical
dimension uses the dedicated cascade routes. This design

TABLE I: DSP48E2 Per-Cycle Configuration. (Listed in DOR
priority order)

Cyc. NoC Operation OPMODE bits

X Y Z

1 EAST = MUX (PE,WEST)
EAST (PCOUT) = WEST (PCIN) 000 00 11
EAST (PCOUT) = PE (C) 000 11 00

2 SOUTH = MUX (NORTH,PE,WEST)
SOUTH (P) = NORTH 001 00 00
SOUTH (P) = WEST (PCIN) 000 00 11
SOUTH (P) = PE (C) 000 11 00

DSP48E

DSP48E

PCOUT

PCIN

A:B

C

P DSP48E

User
Logic

A:B

DSP48E

PCOUT

PCIN

DSP48E P

dedicated
cascade routes

programmable 
FPGA interconnectDSP

Column

DOR
Logic

Fig. 5: Connectivity pattern for a DSP48 block and its imme-
diate neighbors.

must use consecutive DSP blocks in a column and revert to
programmable FPGA fabric for handing the torus loopback
edges. For high-speed operation, all ports to/from the DSP
are registered (including OPMODE bits).

C. Managing the DSP Cascade
Modern FPGAs contain thousands of DSP48 blocks orga-

nized into separate columns each with their own physically
distinct cascade track. Since DSP cascade links only span in
unidirectional fashion, we must implement loopback edges for
ends of the torus in the configurable fabric. We show a high-
level diagram of this implementation scheme in Figure 6. For
the vertical dimension, the PCOUT and PCIN connections are
not exposed to the logic fabric and must be accessed from
within the DSP block itself. This means that, we must sacrifice
two rows of DSPs (one at the top and one at the bottom)
for enabling this vertical connection by configuring them to
simply steer the cascades to/from the fabric. One row of DSPs
at the top allow the PCIN connection to be routed to the P
output. One row of DSPs at the bottom must be configured
to connect C input (that is manually wired to the top row
P output) to the PCOUT link. This is a small price to pay to
exploit the high-bandwidth, dedicated cascade wiring available
between DSPs in a column. Now that the torus wrap-around
link is a long-distance wire, to minimize its impact on clock
frequency, we must carefully add a suitable number of pipeline
registers. Previously, in Hoplite [7], it was possible to perfectly

4



DSP48E

DSP48E

DSP48E

cascade

fabric

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

DSP48E

fabric

Top-Turn DSPs 
PCIN to P

Bottom-Turn DSPs
 A:B to PCOUT

DSP48EDSP48E DSP48E DSP48E
Pass-thru DSPs
PCOUT to PCIN

Pass-thru DSPs
PCOUT to PCIN

Router DSPs

Router DSPs

Router DSPs

Fig. 6: Supporting torus wrap-around wiring for 2D unidirec-
tional torus with fabric routing. Here, we need to configure
edge DSPs for fixed functions. For flexibility in NoC sizing,
intermediate DSPs can serve as simple route-throughs in
vertical channels. For large multi-die FPGAs, the DSP cascade
only extends the height of a Super Logic Region and must drop
back to FPGA routing for crossing interposer links.

control router placement to permit a high-performance folded
layout where all wires as a fixed length. Unfortunately, the
presence of fixed cascades means this is no longer possible
(unless using cascade-free 27b design shown in Section III-E).
A minor side-effect of the lack of visibility of the cascade
wires from the FPGA logic is the nominal need to modify
DOR logic by pre-calculating route decisions upfront. This
requires reading the P output in the correct cycle for data that
is sent over PCOUT exit.

The design we have seen so far, suggests a need to use all
DSPs in a column if we want to exploit the cascade links
for routing vertical channels. This may be (1) wasteful of
DSP resources, and (2) force us to size NoCs to be much
larger than we need for our application. In this case, we can
program the DSP blocks as simple pass-through connections
with appropriate amount of pipelining. With time-multiplexing
it is also possible to return almost 50% of the DSP bandwidth
to the user logic in these pass-through DSPs. This flexibility
allows us to embed various NoC sizes on top the DSPs while
reducing wastage of DSP bandwidth with a resource-bound
upper limit. Additionally, depending on congestion, unused
DSP blocks can be used by user logic to run arithmetic
operations in idle cycles. Again, the key here is the ability
to reconfigure the DSP48 functionality on a per-cycle basis.

D. Multi-Pumping
We show the operational timing diagram of a DSP48 unit

I/Os and the exact alignment of signals required to achieve
correct operation in Figure 7. The multi-pumping of the DSP
block requires that we carefully ensure signals along the NoC
remain active for the full 2-cycle stretch at the faster clock

dspclk

PCIN w1 w2

A:B n1 n2 n3

usrclk

C i1 i2 i3

Z_IN w1 w2

X_IN n1 n2

Y_IN i1 i2

P ?w1:i1 ?w1:i1:n1 ?w2:i2

e1 s1/o1 e2

Fig. 7: Timing Diagram showing correct operation for the
multi-pumped DSP48 block. The Z_IN, X_IN and Y_IN are
inputs at the internal multiplexers in the DSP48 block.

to ensure correct sampling in the DOR decoder. We use the
inbuilt programmable clock enable feature to spread the fast
signal across two clocks along the A:B input. The signal
traveling out on PCOUT port is suitably stretched by the
intermediate DSP block in the vertical channel with the use
of internal feedback. In Figure 7, we observe that the A:B
input is valid on alternate clocks of the faster dspclk. This
is internally stretched to occupy two dsp clock cycles at the X
multiplexer. Inputs from user logic are driven by usrclk and
are automatically valid for two dsp cycles. The final output
P alternately produces data for the SOUTH/OUTPUT port and
EAST port at the fast clock. The EAST output is dispatched
along the PCOUT vertical channel and spread to occupy two
cycles by using the neighboring DSP48 to alternately sample
the PCIN and P output at the Z multiplexer. This allows the
PCIN input to be valid for two clocks. The number of hops in
the vertical dimension must be adjusted to be an odd number
of stages to ensure correct cycle alignment with rest of the
signals at the next Hoplite block.

E. 27b Cascade-free DSP Overlays

A

D

B=1

C

30
/

27
/

18
/

48
/

P

48
/

27
/

48
/

PCIN
48
/

ALU

X

Z

Y

PCOUTOPMODE ALUMODEINMODE

Fig. 8: 27b Hoplite design on the DSP48E block. Avoiding
PCOUT and PCIN connections.

Alternatively, it is also possible to generate a smaller 27b
design that does not use the 48b cascade connections at all.
While this is clearly a lower-bandwidth solution, it offers
more layout freedom by disentangling connectivity restrictions

5



(a) 8⇥8 NoC (Full chip) (b) 2⇥2 NoC (Zoom-in)

Fig. 9: FPGA Layouts for the ML605 board with wiring and
DSPs highlighted. (produced via FPGA Editor in Xilinx ISE)

within DSP columns and permitting free placement anywhere
on the FPGA fabric. Additionally, it also cleanly separates
unused DSPs from the topology. However, it is clear that traffic
that was previously relegated to dedicated cascade connections
must now compete for space in the ordinary programmable
FPGA fabric interconnect. From Figure 8, we see that the
inputs are now mapped to A, D and C signals, while output is
exclusively sampled from P port. In this case, we are using the
internal multiplexer available in the pre-adder block as selected
by INMODE signals as well as a selection at the Y multiplexer.
We still need two cycles to resolve both outputs (one cycle per
output), but can directly support the full crossbar design as all
three inputs are available simultaneously and selectable by the
mux cascade.

IV. METHODOLOGY

We synthesize and compile various FPGA layouts using
Vivado 2015.4 for the VC707 board (XC7VX485T chip) and
using ISE 14.7 for the ML605 board (XC6V240T chip). The
compatibility of our approach across both Virtex-7 and Virtex-
6 families concretely demonstrates the backwards compatibil-
ity of the DSP48-based NoC design. We can even go further
behind in the Xilinx family tree to other FPGAs that support
these reconfigurable hard DSP blocks. Thus, our NoC is a
value-add to multiple FPGA generations and not just exclusive
to the latest, expensive FPGAs.

We report resource utilization in LUTs, FFs and record
Clock Period (ns) and Power (W) based on Vivado’s analysis
passes. With suitable PLL configuration and pin constraints
to route signals to FMC connections (FPGA Mezzanine Card
ANSI standard), we are able to correctly synthesize the design
and record total board power with Energenie power meter.
We simply plug the board’s AC power connector into the
Energenie socket and measure board-level power at that point.

Fig. 10: 16⇥16 NoC FPGA Layouts for the VC707 board with
DSPs in vertical channels highlighted. (produced from Vivado
device view)

In this configuration, the board is maintained stand-alone
with a host computer only connected over USB for FPGA
programming. The packet injection logic is designed to be
lightweight and small but setup to inject packets into the
network at a specific rate. We consider different system sizes
and generate XDC constraints that generate chip-spanning
NoCs that use large portions of the DSP columns. While it is
theoretically possible to use up all 100% of the DSP resource
to implement a 140⇥20 NoC on the VC707 or 96⇥8 NoCs on
the ML605, the logic/DSP balance leaves a paltry ⇡100 LUTs
per router for user logic. Furthermore, at 48b datapaths and
100% DSP utilization, the horizontal routing resources are
completely exhausted and the router aborts the mapping phase.
Instead, we consider more realistic scenarios with a need to
interconnect user designs larger than ⇡500 LUTs/PE (512 PEs
or less per FPGA). For the multi-die Virtex-7 series devices,
the DSP columns do not span across the SLRs [10] (super
logic regions). In these cases, our tool inserts DSP!fabric
connections to route the signals over the interposer connections
between the dice.

When tuning for performance, we evaluate the effect of
additional pipelining stages between horizontal links (non-
DSP-cascade wires). For instance, we added between 1–4
stages of pipeline registers to improve the clock frequency,
but generally failed to see noticeable improvements beyond
a single stage for large system sizes. This is because, the
inter-router spacing is short enough to support single-stage
connections for large sizes. As the horizontal distance between
the DSP columns increases, for smaller sizes, more pipelining
stages are required. For vertical links, the DSPs themselves
provide required pipelining and are never in the critical path.
For chip-spanning layouts, with larger spacing between routers
(larger PEs), it becomes necessary to introduce gaps between
DSPs. The intermediate DSPs operate as dumb pass-through

6



links and can be optionally pipelined. This expansion of an
N⇥N NoC to span across the FPGA fabric with intermediate
gaps increases DSP usage, and power with a slight degradation
of the NoC frequency (longer horizontal wires). However, this
degradation is typically only 10–15% in frequency and 20–
30% in power usage for the ranges considered.

We show representative layouts on the ML605 board for
8⇥8 NoC in Figure 9 along with a zoomed-in layout for a
2⇥2 NoC. Here the yellow colored links in the left panel
show the higher density of horizontal connections using the
FPGA routing fabric with fewer red colored vertical channels
as most of that traffic is absorbed by the DSP cascades. A
closer look at a toy 2⇥2 NoC in the right panel shows colored
DSPs performing different roles – red DSPs serving as actual
Hoplite routers, green DSPs simply being pass-throughs and
yellow DSPs at the top and bottom rows providing wraparound
torus connections. In Figure 10, we show an equivalent layout
for a 16⇥16 NoC. The vertical lines are the DSP cascade
blocks and the DOR routing logic and pipeline registers are
the shaded irregularly-distributed blocks. The vertical NoC
wiring is routed over the cascade links. The inter-DSP column
spacing is different on the Virtex-7s than the older Virtex-6
parts making them more amenable to a uniform layout.

V. RESULTS

We synthesize NoCs of varying sizes that fit the ML605
and VC707 boards and perform real power measurements
when operating the boards stand-alone (without PCIe). We
compute achievable bandwidths across various traffic patterns
suitable for multi-processor-oriented applications by routing
workloads with 16K packets per PE and recording completion
time. While various injection patterns were investigated in
Hoplite [7], we focus on the LOCAL pattern in this paper as
it best captures real-world traffic locality. Here, we generate
traffic that produces packets heading to destinations within a
short radius of the injection position. For our experiments with
set this radius to 3. We vary injection rates (packets injected
per PE per cycle) between 1% and 100%. Based on this setup,
we first present the FPGA mapping results, power data and
then show bandwidths of the resulting NoCs. All comparisons
are based on the full-crossbar implementation of the Hoplite
router for reasons identified earlier in Section II-A.

A. FPGA Mapping Results
In Table II, we show the results of implementing Hoplite

NoCs of various sizes on the VC707 FPGA board with
specific XDC constraints for rectangular high-performance
layout. As you can see, almost all designs run at very fast
speeds 2–3 ns due to careful but simple placement constraints
provided to each router block. Without the XDC constraints,
we consistently lost speed across all sizes resulting in longer
4–5 ns clock periods. Furthermore, the portion of logic that
must switch at the faster multi-pumped frequency is the DOR
logic which is merely a few LUTs worth of computation and
easily meets the faster timing target. When using LUT-based
design, we can need as much as 10% of the soft resources

TABLE II: FPGA Implementation Results for Chip-Spanning
Layouts on VC707 board (XC7VX485T).

X Y LUTs (%) FFs (%) DSPs (%) Clk Pow.
ns W

Without DSPs – Hoplite-LUT Implementation

32 16 35K 10 62K 12 0 0 2.7 6.8
16 16 14K 4.8 36K 6 0 0 2.2 4.5
8 8 3.5K 1.1 9K 1.5 0 0 2.4 2.2
4 4 900 0.3 2.3K 0.3 0 0 2.8 1.2

With DSPs – Hoplite-DSP Implementation

32 16 7.1K 2.0 9.1K 1.5 1.5K 56 2.8 7.2
16 16 4.3K 1.4 5.2K 0.8 800 28 2.4 4.1
8 8 1.4K 0.5 1.7K 0.3 208 7 2.1 1.1
4 4 500 0.2 600 0.1 56 2 2.1 0.5

of the FPGA chip and consume as much as 6.8 W of active
power for systems as large as 32⇥16 configuration. In contrast,
equivalent DSP-based mappings only consume at most 2% of
the soft resources (almost 5–6⇥ less) at the expense of as much
as 56% of the hard DSP resources. Furthermore, this DSP
implementation requires roughly 5% more power (7.2 W) due
to the multi-pumped clock. We note that this increase in power
is only observed for the 32⇥16 NoCs while rest of the system
sizes are 1.1–2⇥ power efficient when using DSPs. We believe
this is due to extra loading on the clock distribution network to
support the 2⇥ faster multi-pumped clock. At large system size
32⇥16, we have a clear tradeoff between a modest increase in
power due to multi-pumping and large resource reduction in
LUTs by absorbing multiplexers into DSP blocks. For all other
system sizes we considered, our DSP-based NoC delivers both
superior energy-efficiency and LUT count reduction.

We also show a visual representation of the various imple-
mentation costs and evaluation metrics for the 32⇥16 NoC
in Figure 12 assuming an activity rate of 15%. This is the
activity rate of the LUT/FF and DSP resources applied across
all routers and is a high over-estimate compared to the actual
activity even under a 100% injection rate for LOCAL traffic.
For applications that do not use 100% of the DSP48 resources
of the FPGA, our DSP-based NoC mapping approach provides
an attractive alternative to repurpose unused DSPs for the
NoC and still meeting overall design goals. Even when DSP
resources are required for logic, they can be switched into
communication mode when data must be routed to different
parts of the chip, thereby sharing them for both computation
and communication.

B. Bandwidth Measurements and Normalization
In Figure 11, we compare the effect of varying injection rate

on the performance of a 16⇥16 NoC implemented using LUTs
and DSPs when routing the statistically generated LOCAL
traffic pattern for 16K packets/PE. When considering time
alone (i.e. clock frequency), the effective sustained bandwidth
in the NoC is marginally higher for the LUT-based NoC due
to the faster clock (see columns Clk in Table II), as shown
in Figure 11a. When we factor in the energy required to route
the workload, we see that the use of multi-pumping in the

7



●

●

●

●

●●
●●● ● ●

0.01

0.02

0.03

0.01 0.10 1.00
Injection Rate R

N
or

m
al

ize
d 

B/
W

 p
ac

ke
ts

/n
s

● DSP LUT

(a) Time (ns)

●
●

●

●

●
●
●●●

● ●

0.0e+00

4.0e−08

8.0e−08

1.2e−07

1.6e−07

0.01 0.10 1.00
Injection Rate R

N
or

m
al

ize
d 

B/
W

 p
ac

ke
ts

/(n
s.

J)

● DSP LUT

(b) Time+Energy (ns·J)

● ●

●

●
●●●●

● ● ●

0e+00

1e−12

2e−12

3e−12

4e−12

0.01 0.10 1.00
Injection Rate R

N
or

m
al

ize
d 

B/
W

 p
ac

ke
ts

/(L
U

T.
ns

.J
)

● DSP LUT

(c) Time+Energy+Area (ns·J·LUTs)

Fig. 11: Bandwidth of LUT-based and DSP-based FPGA Overlay NoCs normalized to various metrics for 16⇥16 design. Here
one DSP is considered equivalent to 120 6-LUTs in area based on approximations from [2].

FFs(64K)

LUTs
(36K)

DSPs
(1.5K)

Power (8W)

B/W
(4%)

Hoplite-LUT
Hoplite-DSP

Fig. 12: Comparing LUT and DSP implementations of Hoplite
NoC. Measuring resource utilizations (LUTs, DSPs, FFs) and
metrics (power, sustained rates)

DSP blocks allows the LUT-based NoC to outperform the
DSP-based design by ⇡5–10%, as observed in Figure 11b.
Finally, if we count resource cost in terms of normalized LUTs
(1 DSP48 ⇡ 120 6-LUTs)2. the DSP-based NoC is 3⇥ less
efficient in terms of normalized LUT resources (silicon area)
as demonstrated in Figure 11c. This is expected as we are only
using the multiplexer functionality of the DSP block leaving
the arithmetic resources unused. For application that leave the
DSP resources idle, the DSP mapping does not represent any
loss in silicon area.

C. Multi-Pumping
Multi-pumping is not strictly required for correct operation

of Hoplite-DSP. Multi-pumping allows the user-side interface

2Approximated from [2], where 1 DSP = 11.9 Altera LABs, each LAB =
20 Stratix-III ALUTs (4-LUTs). Rounding to 120 6-LUTs per DSP48.

to retain identical cycle-by-cycle behavior as the LUT-based
NoC. However, for most real-world multi-processor-oriented
workloads that inject traffic into a NoC, we rarely observe
injection rates of 100% and see rates between 15-20% instead.
In these cases, we can avoid multi-pumping the DSP48 units at
the expense of only supporting 50% peak injection rates from
the PEs. We tabulate the reduction in power usage without
multi-pumping in Table III. As expected, we get as much as
2⇥ reduction in power by clocking the DSPs at the single
slower clock. For streaming-oriented designs where 100%
activity rates are possible, we can still revert to the multi-
pumped design.

TABLE III: Comparing Multi-Pumping (100% injection rate)
vs. Single Clock (50% injection rate) Power.

X Y Multi-Pump Single Clk. Ratio
(W) (W)

32 16 7.2 3.3 2.1
16 16 4.1 1.9 2.1
8 8 1.1 0.7 1.5
4 4 0.5 0.4 1.2

D. FPGA Layout
We also visualize the horizontal and vertical congestion of

the LUT and DSP-based 32b NoCs of size 32⇥16 for the
VC707 board as shown in Figure 13. Both NoCs are able
to keep congestion below 50% leaving adequate interconnect
capacity for processing elements. LUT-based NoC has conges-
tion hotspots scattered uniformly throughout while DSP-based
NoC has larger hotspots in certain regions. This is somewhat
counter-intuitive as half the vertical traffic is absorbed by the
DSP cascades. Closer inspection of the layout reveals that
the DSP-based NoC requires pipelined loopback register paths
unlike the folded torus layout of the LUT-based NoC. These
seem to collect around the bottom portion of the NoC as

8



determined by the Vivado placer. Furthermore, the vertical
congestion is larger due to closer packing of the DSP columns
(colored orange in Figure 13) in the FPGA. We also see
spillover wiring extending beyond the NoC boundary. Both
these effects result in somewhat larger congestion for the DSP-
based NoC.

E. Board-Level Power Measurement

TABLE IV: VC707.

Reset PLL

With DSPs
14.6 15.2

Without DSPs
14.6 15.4

On the VC707 board, we mapped
various NoC bitstreams and measured
resulting power. In Table IV, we
breakdown the various stages of the
power measurements. Under FPGA
Reset, the board still consumed a
steady-state power of 14.6 W. When
we only activated the PLLs while
still keeping NoC operation disabled,
this rose to 15.3–15.4 W. The slightly

higher power measurement was for the PLL configuration
driving the user clock as well as the multi-pumped DSP
clock. We use the Active Power (= Total Power - PLL Power)
attributed to the NoC operation in our efficiency calculations
shown earlier in Figure 11.

VI. DISCUSSION

While the Hoplite-DSP design outperforms Hoplite-LUT
on resource, speed and power metrics, it is also surprisingly
competitive with a hard NoC [2], [1].
• From [2], we can approximate the resource utilization

of a 1-VC (single virtual-channel design is closest ap-
proximation to our approach) 48b wide NoC router as
8.3 LABs⇥ 48

32=12.45 LABs3. The paper also reports the
DSP block to be 11.9⇥ larger than a LAB. In relative terms,
when adding the cost of DOR logic LUTs, this represents
a small reduction in resource requirements over the 1-VC
hard NoC router. For simplicity, we assume relative costs
of Altera DSP and LAB to hold for Xilinx devices. We
attribute this reduction to an absence of FIFOs, simplified
control logic for deflection routing, and removal of other
features that are supported by the hard NoC router. One
could argue that the hard NoC is more capable than Hoplite,
but for multi-processor traffic patterns, the deflection-based
router is adequate and sufficiently capable. The few com-
munication properties that Hoplite does not provide include
in-order delivery, and low worst-case packet latency.

• Again from [2], we observe that the frequency of a 64-
router 1-VC design to be 1035 MHz (32b) and 957 MHz
(64b), which we approximate as 996 GHz for a potential
48b design. Our 8⇥8 48b NoC with DSPs runs at 650 MHz
(multi-pumped), for an eventual fabric-facing frequency of
325 MHz. This is representing a 3⇥ performance reduction
over a hard NoC. However, this is still better than the 6⇥
advantage over a soft NoC claimed in [2].

• In [1], the authors report a 64-node hard NoC power
consumption of between 1.21 W (32b) and 1.95 W (64b),

3See Section 5.3.1 in [2], projecting 32b data to a 48b design.

(a) Hoplite-LUT

(b) Hoplite-DSP

Fig. 13: Congestion Map for Hoplite with LUTs and DSPs
on the VC707 board. (light-green 0–20%, green 20–40%,
dark green 40–50%). DSP-based Hoplite has 40–45% vertical
congestion and 20–30% horizontal congestion while Hoplite-
LUT has 35–40% congestion along both dimensions.

9



which is averaged once again to 1.58 W for a 48b version.
According the Vivado power models our 8⇥8 DSP-based
NoC consumes only 1.1 W of power for a 15% activity
rate resulting in a 43% power reduction. While this may be
attributed to our slower clock frequency, this again reaffirms
the closing of the gap over a hard NoC.
The current design of the DSP48E block provides a suffi-

cient template for NoC embedding and actually works properly
all generations of FPGAs that support the DSP48 primitive.
For future FPGAs, we can significantly improve cost and
performance of a DSP-based NoC, if we had the following
wishlist additional features in the DSP.
• Configurable Cascades: We can approach Hard NoC

behavior if we have freedom in directionality of the DSP
cascade connectivity. In addition to horizontal cascade sup-
port, it would help significantly if we could skip DSPs en-
tirely through some form of segmented routing for cascade
links. The A:B cascades can be useful here, but in cascade
mode, they do not permit the normal user input to be used.
Furthermore, if horizontal cascade connections are provided,
then the entire NoC wiring bandwidth can be offloaded
from the global FPGA interconnect onto these dedicated
resources. When not used by a NoC, these cascades can be
used as ordinary DSP connections.

• Pattern Detection Logic: We can repurpose the pattern
detector logic in the DSP to support DOR routing decoder.
However, currently we are only able to pattern match
against a single constant and mask, limiting it to single-
dimension per DSP. For our case, we have to distribute
the DOR decision logic across the vertical pass-through
DSPs to make this work. The Altera DSP blocks [4]
embed multiple constant coefficients internally which can
be selected dynamically at runtime. Having similar freedom
for storage of multiple masks and patterns would allow
complete embedding of DOR decoder functionality inside
the Xilinx DSP48 block as well.

• Cascade Pipelining: The cascade paths entering the DSP
block do not have any pipelining support and have to
rely on PCOUT pipelining from the previous DSP stage.
Having configurable support for PCIN input pipelining
with suitable clock enables would help align inputs and
potentially simplify DOR decoder design.

• SIMD Multiplexing: While the DSP48E ALU supports
configurable SIMD mode with the ability to fracture the
48b datapath into 2⇥24b or 4⇥12b implementations, the
multiplexer input bits cannot be independently switched.
With OPMODE configuration support for SIMD functional-
ity, we can separately control two or four concurrent NoCs
to permit an additional degree of flexibility to the user.

• Energy Efficiency: We expect multi-pumped designs to
consume more power that is proportional to the increase in
frequency (P = f · C · V 2). However, the use of hardened
DSP resources helps us improve this gap [8] for most system
sizes (except 32⇥16). At these larger system sizes, there
may be opportunities to better tune the complete DSP fab-
ric for energy-efficient multi-pumping through configurable

power-gating of unused arithmetic functions in the DSP.

VII. CONCLUSIONS

We demonstrate a novel use of the Xilinx DSP48E blocks
to implement expensive multiplexer operations in deflection-
routed Hoplite NoC. For FPGA designs that do not fully
utilize all available DSP units, or focus on other applications
such as cryptography, this DSP-enhanced NoC conserves LUT
resources while routing NoC traffic over hard DSP units
and hard inter-DSP cascades. For 32⇥16 NoC mapped onto
a VC707 board with the Xilinx XC7VX485T FPGA, we
consume 1.5K DSP48E blocks (56%) but reduce LUT costs
from 35K to 7K (5⇥ saving), FF costs from 62K to 9K (6⇥
saving), at the expense of increasing active power draw from
6.8 W to 7.2 W (15% activity rate, 5% increase) at 300 MHz
user clock (DSP clock is 600 MHz). For smaller system
sizes, the use of hardened DSP48 blocks and cascade wiring
delivers lower power utilization by 1.1–2⇥ over a LUT-based
implementation. We also demonstrate practically no difference
in silicon area, only a 3⇥ loss in clock speed, coupled with
43% lower power requirement over a conventional single-
virtual channel hard NoC router. This allows our DSP-based
Hoplite design to close the gap over hard NoC resources
championed in prior work. As part of future work, we also
intend to investigate non-torus NoC topologies which may be
a better fit to the directional nature of the DSP cascades.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Jan Gray for providing
access to Hoplite RTL source code and for supporting this
work through email/twitter conversations.

REFERENCES

[1] M. S. Abdelfattah and V. Betz. The power of communication: Energy-
efficient NOCS for FPGAS. In 2013 23rd International Conference on
Field programmable Logic and Applications, pages 1–8, Sept 2013.

[2] M. S. Abdelfattah and V. Betz. Networks-on-Chip for FPGAs: Hard,
Soft or Mixed? ACM Trans. Reconfigurable Technol. Syst., 7(3):20:1–
20:22, Sept. 2014.

[3] M. S. Abdelfattah and V. Betz. The Case for Embedded Networks on
Chip on Field-Programmable Gate Arrays. IEEE Micro, 34(1):80–89,
Jan 2014.

[4] Altera Inc. Enabling High-Performance DSP Applications with Stratix
V Variable-Precision DSP Block, 2011.

[5] A. Canis, J. H. Anderson, and S. D. Brown. Multi-pumping for resource
reduction in FPGA high-level synthesis. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2013, pages 194–197, March
2013.

[6] H. Y. Cheah, S. A. Fahmy, and D. L. Maskell. iDEA: A DSP block
based FPGA soft processor. In Field-Programmable Technology (FPT),
2012 International Conference on, pages 151–158, Dec 2012.

[7] N. Kapre and J. Gray. Hoplite: Building austere overlay NoCs for
FPGAs. In Field Programmable Logic and Applications (FPL), 2015
25th International Conference on, pages 1–8, Sept 2015.

[8] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 26(2):203–215, Feb 2007.

[9] C. E. LaForest and J. G. Steffan. Efficient multi-ported memories for
FPGAs. In Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’10, pages 41–
50, New York, NY, USA, 2010. ACM.

[10] Xilinx Inc. Large FPGA Methodology Guide, 2012.
[11] Xilinx Inc. UltraScale Architecture DSP Slice User Guide, 2014.

10


