
LegUp-NoC: High-Level Synthesis of Loops with
Indirect Addressing

Asif Islam
University of Waterloo

Ontario, Canada
a27islam@uwaterloo.ca

Nachiket Kapre
University of Waterloo

Ontario, Canada
nachiket@uwaterloo.ca

Abstract—
Loops with indirect addressing, of the type A[B[i]], are

notoriously difficult to parallelize using contemporary FPGA
High-Level Synthesis (HLS) tools. In contrast, loops with direct
addressing can be parallelized using compile-time approaches
by replicating datapaths and memory blocks. Such compile-time
approaches do not work for indirect addressing as indices B[i]
are not known until runtime. Consequently, since addresses may
point to any memory bank, HLS tools generate expensive cross-
bars between datapaths and memory banks. As all datapaths may
target the same bank in a given cycle, a sequential arbitration is
provided to control the crossbar multiplexers. In this paper, we
show how to overcome the resource and performance limitations
of existing tools using a Network-on-Chip (NoC) approach to
route indirect indices to the memory banks over a packet-
switched fabric. NoCs provide scalable connectivity between
FPGA datapaths and memory banks and allow parallel routing
of packets from datapaths to the banks. We develop a LegUp
5.0 compiler pass that (1) handles loops with indirect memory
access by inserting NoCs into the circuit as required, (2) provides
a performance and resource tuning framework for optimizing
the resulting hardware, and (3) obviates the need for NoC
expertise during programming. We quantify the effectiveness of
our approach across a range of kernels with indirect accesses
by comparing against baseline LegUp 5.0 targeting a Xilinx
VC707 board. For synthetic indexing at 256 threads, we observe
an improvement of 150× LUTs, 4–5× Fmax, 15–16× II for
UNIFORM RANDOM indexing. For real-world case studies such as
Sparse Matrix-Vector multiplication, Graph Analytics and 1-D
FFT, we see 5–20× speedups for 16–256 threads with a 20–30%
overhead for adding the NoC infrastructure.

I. INTRODUCTION

FPGAs are now first-class computing devices that enjoy
increasing adoption in data-centers such as Microsoft Azure,
Amazon F1, Baidu, Huawei, and Alibaba clouds. RTL design
of data-center applications using VHDL/Verilog is ill-suited
for these cloud-based FPGA platforms due the constantly
changing nature of web workloads and the diversity of cloud
hardware platform configurations. High-level programming
approaches using OpenCL or C/C++ supported by HLS (High-
Level Synthesis) compilers make it possible to keep pace with
the rapid evolution of the software codebase while providing
platform portability. Using hardware-aware HLS programming
patterns and appropriate use of compiler directives, it becomes
possible to automatically generate RTL that can close the
quality gap with hand-optimized code.
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Fig. 1: FPGA HLS tools generate crossbars with round-robin
scheduling (left) between datapaths (fi) and memory banks
(yi) for loops with indirect addressing. NoCs can enhance

this interconnect with a superior alternative (right).

HLS tools like LegUp [3] and Vivado HLS are aimed pri-
marily at parallelization of loop-oriented code with additional
support for task parallelism and dataflow parallelism. Loops
can be optimized using a wealth of techniques such as loop
pipelining, loop unrolling, loop tiling, and loop partitioning.
This is possible when loops have memory operations based
on direct addressing where memory addresses are simple
linear functions of the loop index. This allows the gener-
ated hardware structures, the datapath and attached RAM
memory blocks, to be neatly partitioned and replicated in a
scalable manner. Irregular addressing is found in important
computational kernels of contemporary interest such as deep
learning (sparse matrix algebra), graph analytics (sparse graph
algorithms), databases (sorting), signal-processing (FFTs), and
other areas. HLS tools currently do not support indirect ad-
dressing in an effective manner due to the complex interaction
between the datapaths and memory banks (Figure 1a). In this
paper, we address this important limitation of FPGA HLS tools
by using packet-switched networks.

FPGA overlay NoCs (Network-on-Chips) are used for con-
necting hardware components using a packet-switched style of
communication and a resource-shared hardware infrastructure.
In the extreme case, it is possible to connect the different N
hardware components using a crossbar for high-performance at
high-cost O(N2) or shared busses/rings for low-performance
at low-cost O(1) solutions. NoCs offer a resource-efficient,
high-performance alternative that enables sharing of hardware
while permitting dynamic scheduling (routing) of packets in
the fabric. In this paper, we show how to deploy NoCs in the



#pragma omp parallel for num_threads(UNROLL)
for(int i=0;i<N;i++) {
// direct addressing
y[i]=f(x[i]);

}

Fig. 2: Simple loop with direct addressing, array indices for
x and y arrays are the loop iterator i. Trivial to parallelize

such loops through existing HLS tools and pragmas.
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Fig. 3: Parallelizing loop with direct addressing using
unrolling + array partitioning in LegUp.

HLS toolflow without programmer intervention to automati-
cally parallelize loops with indirect indexing (Figure 1b).

We make the following key contributions in this paper:
• We quantify the cost-performance trends for loops with

irregular indexing when using LegUp 5.0 HLS tool.
• We develop a LegUp 5.0 compiler pass that inserts NoCs

between HLS-generated datapaths and memory banks.
• We evaluate the cost-performance benefits of NoC-

assisted loop parallelization across a range of irregular
benchmarks, and case studies involving Sparse Matrix-
Vector Multiplication, Graph Analytics, and FFT.

II. BACKGROUND

FPGA HLS tools generate hardware that balances area
usage with performance to make the most efficient use of
available resources. Performance is measured in terms of two
metrics: (1) Latency: number of cycles required to evaluate the
loop, and (2) Initiation Interval (II), or the number of cycles
between consecutive loop iterations in hardware.

A. Loop Parallelization for Direct Loops

For simple loops with known bounds, and direct indexing,
the use of loop pipelining optimizations will allow launching
of a new loop iteration each cycle (II=1) at high frequencies
(high latency). If FPGA developers are willing to spend
FPGA resources, they can improve performance through loop
unrolling optimizations. Here, the compiler creates identical
copies of the loop hardware and divides the iterations across
the copies. In Figure 2, we show a simple for-loop with direct
addressing of x and y arrays based on loop index i. We can
visualize the hardware implementation of this loop in Figure 3.
The omp parallel for OpenMP pragma hint is used by
the HLS compiler to generate multiple copies of the function
f along with partitioned memory banks of the arrays x and y.
This is possible only if (1) multiple copies of f and memory
banks can fit the FPGA device, and (2) array indices into the

#pragma omp parallel for num_threads(UNROLL)
for(int i=0; i<N; i++) {

// indirection through dest[]
y[dest[i]] = f(x[i]);

}

Fig. 4: Loop with indirect addressing, array access to y
requires an indirection through dest array. Difficult to

parallelize due to unknown contents of dest.
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Fig. 5: Parallelization of loop with indirect addressing.
Expensive crossbar needed as f can write to any memory

bank. LegUp and Vivado HLS arbiters are static and
sequential as every f can target same bank in same cycle.

memory banks are strictly local to each copy. For f = x2, we
tabulate the results of the compilation in LegUp in Table I.
We observe that II=1 for all cases, latency reduces smoothly
with the unroll factor, while LUT cost increases as expected.

B. Loop Parallelization for Indirect Loops

Loops with indirect addressing are challenging to implement
in hardware using HLS tools. (see Section V-A for discussion
on related work in this area). In Figure 4, we show a simple
example of a loop with indirect addressing where the indices
into y array require an indirection through dest. Since the
contents of the dest array are unknown at compile time,
it is not possible to parallelize the loops into independent
copies in the same manner as the direct loops. We show
the hardware generated by LegUp 5.0 and Vivado HLS to
support the unrolled loop in Figure 5 and tabulate mapping
results in Table I. An all-to-all multiplexer arrangement is
necessary to allow the output of the many copies of f to
write to any memory bank y. This structure is expensive as
the multiplexer cost grows quadratically with the number of
parallel instances of f and memory banks. To make matters
worse, both LegUp and Vivado HLS use static sequential
arbitration (1) to ensure bank conflicts can be avoided, and
(2) (possibly) to vainly enforce sequential ordering where none
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TABLE I: Loop Parallelization of direct and indirect loops
using LegUp 5.0 and Vivado 2017.3 for N=1024 iterations.

Unroll → 1 2 4 8 16 32

Simple loop in Figure 2
LUTs 84 446 943 1.9K 3.8K 8.2K
Clk (ns) 6.6 6.6 6.8 7.5 6.7 6.0
Cycles 32770 20491 10255 8210 8207 8207

Indirect loop in Figure 4
LUTs 209 696 2.4K 10.4K 41.4K 201.2K
Clk (ns) 6.6 7.1 7.8 8.7 15.9 18.8
Cycles 32770 32770 32770 32770 32770 32770

is required from OpenMP’s weak-consistency [6] semantics1.
This slices up the timeslots on the memory bank ports resulting
in large values of II that scale with the unroll factors. This
defeats the entire purpose of parallelizing these loops and
consumes quadratic FPGA area cost for no improvement in
performance (a lose-lose situation).

C. FPGA Overlay NoCs

Loops with indirect addressing are expensive to realize on
FPGAs with current HLS tools as we need wide-multiplexers
to allow indirect access and arbiters for each memory bank to
resolve potential conflicts in bank accesses and guarantee se-
quential consistency. Complexity of these hardware structures
scales quadratically with loop unroll factor; for N banks and
N datapaths, we need to implement N separate N : 1 multi-
plexers. In contrast, FPGA overlay NoCs are implemented as
a series of N router stages with small multiplexers per stage
resulting in linear increase in cost. Instead of centralized static
sequential scheduling used by HLS-generated arbiters, a NoC
routes data dynamically using address information at runtime.
Furthermore, we can customize the FPGA overlay NoC in a
manner that allows the configuration to suit loop requirements.
However, the use of a NoC requires explicit packetization of
data, a different interface and handshake design, and awareness
of deadlock considerations. Each NoC packet needs to be
stamped with both the destination address, and the payload
data. The destination address encodes the target memory bank
and is used by the NoC to switch the packet to its intended
destination. One must also worry about deadlock and livelock
avoidance that can occur for certain indirect access patterns.
This can be a tedious overhead for a software developer and
require NoC design and usage expertise.

These considerations motivate the need for an automated
HLS flow that can determine the effectiveness of how and
where NoCs can be inserted in the generated hardware. We
choose the Hoplite [9] NoC for this paper as it is an FPGA-
optimized, low-cost implementation, but any cheap NoC will
suffice. Hoplite routes single-flit packets (header + payload
routed as one unit). The key to area efficiency of Hoplite is
the use of deflection routing (no buffering cost) and choice
of unidirectional torus topology (low-complexity router multi-
plexers). Unlike static scheduling that guarantees conflict-free
bank access with pessimistic assumptions, deflection routing

1Unless atomic operations are explicitly used
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Fig. 6: NoC-assisted implementation of indirect addressing.
Each NoC client i at position x, y has datapath fi (injection)

and memory bank yi (ejection).

manages conflicts through deflections. It remains to be seen if
deflections can outperform static scheduling, and is the focus
of our experimental evaluation.

III. LEGUP-NOC
The key idea introduced in this paper is the use of FPGA

overlay NoCs as a building block in High-Level Synthesis to
support scalable parallelization of loops with indirect indexing.
In this section, we show how to relate NoC behavior with HLS
kernel performance, and describe how to integrate NoCs with
HLS optimizations for two classes of indirect access patterns.

A. Interfacing with the NoC
In Figure 6, we show a high-level view of the intercon-

nect between HLS-generated FPGA datapaths and partitioned
memory banks for the code example with indirect addressing
shown earlier in Figure 5. Here, the NoC routes packetized
address and data tuples from dest and the output of f
respectively. The most significant bits of the index stored in
dest is used as the remote packet address (or lane address)
for routing on the NoC. The local address into the memory
bank and the data are sent as the payload of the packet. This
packet format is shown below in Figure 7 and automatically
constructed by the NoC-Datapath interface logic generated by
our compiler pass.

LANE LOCAL DATA

dest[i] f(x[i])

NoC

Address

NoC

Payload

Fig. 7: Constructing a NoC packet for routing address + data
for parallel loops with indirect addressing

Unlike existing HLS tools that use static round robin
arbitration, we use the NoC to implement dynamic, runtime

3



arbitration for us. Due to data-dependent arbitration, the path
taken by the packets through the NoC and the resulting latency
are known at runtime. Static arbitration requires pessimistic
assumptions about the possibility of bank conflicts, and results
in latency and initiation interval counts that are large. For
dynamic arbitration, the properties of the indexing pattern is
used to make better-informed, dynamic, runtime decisions.

We can understand the exact behavior of the NoC-assisted
design in Figure 6, through an example. In this case, the
second lane of the unrolled design will loop through the
2 ≤ i ≤ 3. Let us assume that dest[2] = 6 and dest[3] = 3.
The lane will dispatch two NoC packets with payloads f(x[2])
and f(x[3]). These packets will carry destination addresses
6 and 2 respectively. The NoC will bitslice the value read
from dest[] to compute the destination lane index (2 most-
significant bits) and local address into the y memory bank
(one remaining least-significant bit). Here, we will have
laneindex ∗ 2localbits + localindex = indirectaddress. Thus,
f(x[2]) will be routed to y[6] with lane index 3 and local
address 0 (3 ∗ 21 + 0 = 6). Similarly, f(x[3]) will be routed
to y[3] which incidentally is the same lane as the origin (lane
index 1) with local address 1 (1 ∗ 21 + 1 = 3).

B. Performance Analysis

The quality of HLS tools is evaluated by measuring perfor-
mance in terms of latency and initiation interval as well as
FPGA implementation cost. The quality of an FPGA overlay
NoC is evaluated by measuring the injection rate, sustained
rate, worst-case routing latency along with FPGA implemen-
tation cost. How do we bridge the gap in terminology and
meaning of these metrics across the HLS and NoC domains?
• Recall that initiation interval (II) is the rate at which loop

iterations can be launched. This value is an integer greater
than or equal to 1. It counts the number of cycles the inputs
to the loop hardware must wait before the next loop iteration
can be launched, and the inputs can be consumed. An II=1
is the fastest rate at which loop iterations can be processed.
Loop-carried dependencies, or resource constraints may
result in higher values of II than this ideal of 1.
• For NoCs, injection rate (IR) measures the intended rate

of packet injection into the NoC and is achieved in absence
of conflicts. It counts the number of cycles between consec-
utive packet constructions. The sustained rate (SR) metric
measures the observed rate of packet injection into the NoC
and is typically lower than IR due to packet conflicts. SR
counts the number of cycles between consecutive packet
injections into the NoC. Both IR and SR are numbers
between 0 and 1 with 1 being the best result. In fact, this
is another way of measuring initiation interval of the NoC,
where II = 1/SR.

C. Cost Analysis

The cost of the hardware required to support indirect loops
with crossbars or the NoC are a direct measure of the count
and size of multiplexers needed in the design.

• When supporting loops with indirect addressing of the
form shown in Figure 5 using existing HLS tools, the
generated hardware includes wide multiplexers for each
shared memory bank in the design. For a loop that must
be unrolled by a factor N and arrays partitioned by
factor N , this results in a crossbar-style organization of
connections. Each copy of the loop datapath can connect
to any memory bank. Thus, we need N multiplexers
(one per bank) with N inputs each (one input from each
datapath). Each multiplexer is routing the output of the
datapath f with B bits. Thus, we need N2×B wires and
N× N : 1 multiplexers of width B.

• Hoplite NoC routers are dominated by the cost of multi-
plexers. Each router needs 2× 2:1 multiplexers of size W
where W is the width of the packet. For an

√
N ×

√
N

NoC, this results in a cost of 2×N 2:1 multiplexers of
width W . When the NoC is used in lieu of the HLS-
generated crossbar, W = B. It is important to note that
the cost of the FPGA overlay NoC scales linearly with
N instead of the quadratic N2 cost that is necessary with
conventional HLS.

D. Indirect Access Patterns

We partition the types of indirect accesses generated by HLS
loops into multiple classes:
• Destination Indirection: This captures the class of ac-

cesses where the destination index is computed through an
indirection e.g. y[dest[i]] = f(x[i]). Thus, the indirection
is applied to the LHS (left hand side) of the dataflow
expression. This pattern imposes fewer requirements of the
NoC arbitration infrastructure and is implemented using
the high-level organization shown previously in Figure 6.
The values from the indirection dest array become des-
tination addresses for packets on the NoC. For this class
of addressing, sequential consistency of parallel execution
can be supported with additional resources2 but generally
not required for associative algorithms, nor expected by
OpenMP weak-consistency [6] semantics.

• Source Indirection: This form of access inverts the in-
direction to the RHS (right hand side) of the expression
e.g. y[i] = x[src[i]] as shown in the code fragment of
Figure 9. While this sounds like a simple change, the impact
of NoC traffic is less obvious, particularly to a software
developer with no hardware design experience, let alone
NoC expertise. Source indirection generates Request-Reply
style traffic pattern on the NoC that can lead to protocol
deadlocks without virtual channel support. In a traditional
NoC environment, two virtual channels are required to break
this deadlock by routing requests and replies on two separate
virtual channels. Hoplite does not support virtual channels to
reduce FPGA implementation cost, and instead we choose
to use multiple physical channels to support this class of

2An extra index RAM can be used to quash updates to y from packets
reordered by the NoC. This will be investigated in future work.
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Fig. 8: Supporting source indirection using two physical
NoCs for FPGA-friendly, deadlock-free implementation of

Request-Reply NoC traffic.

traffic. It has been shown that support for virtual channels,
associated buffers, and flow control logic is expensive on
FPGAs by an order of magnitude or more [9]. Thus, a
doubling of resources is a significantly cheaper alternative
to increasing it by 10×.

for(int i=0; i<N; i++) {
y[i] = f(x[src[i]]);

}

Fig. 9: Source indirection example.
We show a high-level organization of this design in Figure 8
for the code sketch in Figure 9. Here, the Request NoC
routes NoC packets, from the src memory banks, carrying
payload src[i] to memory banks of x. Here, a lookup is
performed to extract x[src[i]] which is the input to the
FPGA datapath f . This is routed back to the original bank
for the index i over a physically distinct Reply NoC. The
resulting packet is delivered and written into y[i].
• Nested Indirection: In some cases, we may have nested

indirection that requires a chain of lookups. For instance,
Figure 10, shows a snippet of Sparse Matrix-Vector multi-
plication application with two levels of indirection through
offset and src. This is often the case for compressed sparse
structures, pointer-based data structures, or sparse graph
representations. This generates a dataflow ordering between
packets on the NoC and also requires two deflection-routed
physical channels for deadlock-free implementation.

IV. EVALUATION

In this section, we first discuss our experimental setup and
benchmarks used in our study. Next, we discuss the resource
and performance tradeoffs for the LegUp-NoC designs across
various benchmarks.

RTL: We use LegUp 5.0 for our work and build a LegUp
compiler pass for processing loops with indirect accesses. We

for(int i=0; i<N; i++) {
y[i] = 0;
for(int j=offset[i];j<offset[i+1];j++) {

y[i] += a_nz[j] * b[src[j]];
}

}

Fig. 10: Nested indirection example.
TABLE II: Benchmarks for different indirect access patterns.

Access
Pattern

Label + Code Snippet Applications

Destination
Indirection

indirect_dest
y[dest[i]]=f(x[i]);

Remote stores, Sorting,
FFT, Scatter

Source
Indirection

indirect_src
y[i]=f(x[src[i]]);

Remote loads, Sparse
Matrices, Gather

Nested
Indirection

indirect_nested
y[i]=f(x[dest[src[i]]]);

Sparse Matrices, Graph
Analytics

also evaluated Vivado HLS 2017.3 and observe similar trends
as LegUp 5.0 due to the use of crossbar interconnect between
datapath and memory banks along with static scheduling.
Unlike Vivado HLS, LegUp 5.0 allows us to develop our
own compiler pass that connects the FPGA datapaths to the
memory banks with NoCs during the system generation phase
of the compile flow. In LegUp 5.0, we use the Pthreads pass as
it supports stalling the thread datapath in case on resource con-
flicts3. We develop a novel memory banking and partitioning
pragma syntax to drive the interconnection process. The exist-
ing predicated banking support in LegUp 5.0 is not compatible
with NoC-based design. Our approach is modular and allows
simpler assembly of the NoC with the banks and datapaths. We
use Modelsim 10.4d for cycle-accurate simulations to extract
cycle counts for the different benchmarks. We compile the
generated RTL with Vivado 2017.3 targeting the Virtex-7 485T
(xc7vx485tffg1761-2) device from the VC707 board to
extract post place-and-route metrics (area, frequency).

Benchmarks: We evaluate the effectiveness of the NoC-
assisted HLS flow across various access patterns described
in Section III. Each access pattern represents a class of
application scenarios requiring indirect indexing. We evaluate
these access patterns with a range of synthetic index distribu-
tions of the indirection arrays. We also consider workloads
from real-world applications such as Sparse Matrix-Vector
Multiplication (upto 16K nodes, 65K edges), Graph Analytics
(upto 64K nodes, 131K edges), and 1-D FFT (1K–8K-point).

A. Initiation Interval (II) Trends

They key question we must answer is how the use of
NoC affects the II of the benchmarks. The baseline LegUp
II is always equal to threads (or unroll factor) due to static
scheduling. First, we discuss results in the context of various
access patterns with synthetic index traces.

LOCAL indexing: In Figure 11a, we use a fully local
indexing pattern where dest[i] = i. This trivial pattern is
meant to confirm the baseline behavior of the datapaths.

3Not supported by the loop unrolling pass
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Fig. 11: Initiation Interval Trends for various access patterns
and indexing distributions as a function of number of threads.

• An II=1 is easily possible for simple destination indirection
indirect_dest pattern as NoC traffic simply returns
back to the sender directly.
• For source indirection indirect_src, we can only

achieve an II=2. Recall, we need two separate physical
NoCs to support Request-Reply NoC traffic pattern gen-
erated by the access pattern. It is not possible to accept
back-to-back packets at the interface between Request and
Reply NoCs as there is no guarantee of free slot in the Reply
NoC in the subsequent cycle.
• For the indirect_nested, the II that we can achieve

is 8–10. This is a limitation of LegUp 5.0 as it does not
permit loop pipelining optimization when the loop indices
are variable (not known at compile time).
RANDOM indexing: In Figure 11b, we quantify the impact

of uniformly distributed indices dest[i] = rand() on resulting
II of the circuit. As we increase the thread count there is
increasing contention in the FPGA overlay NoC resulting
in higher II. At 256 threads, we see an II≈15 across all
access patterns. Contrast this with LegUp behavior where
II=256. This means that, with the NoC, we can launch loop
iterations once every 15 cycles as compared to once every 256
cycles with baseline LegUp. Another important trend is how
II of indirect_nested case catches up with rest of the
access patterns at thread counts > 64. This suggests that the
lack of pipelining does not hurt this access pattern at high
thread counts. This also reveals an optimization opportunity
for designs to save cost by generate smaller datapaths with a
target II chosen to match the NoC’s SR (sustained rate).

B. FPGA Resource and Mapping

The next question we must address is regarding the impact
of the NoC on FPGA implementation costs and operating
frequencies over baseline LegUp. In Figure 12, we quantify
this effect on the physical implementation metrics of the
FPGA (LUTs, Frequency). It should be no surprise that the
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Fig. 12: FPGA LUT cost, and Frequency trends for various
access patterns when comparing NoCs against LegUp 5.0.

NoC (O(N)) is more scalable than the Crossbar (O(N2)).
For indirect_dest and indirect_src, we see area
gap as large as 150× at 32 threads. At 64 threads and
above, we run out of FPGA capacity to implement the
crossbar. For indirect_nested, the resource wins are
only 25×, as the datapath dominates the NoC area. When
considering Frequency, the large crossbars slow down the
LegUp designs significantly by almost 5× at 32 threads. As
before indirect_nested frequency is constrained by the
datapath rather than the communication structures resulting in
a lower, yet significant, 2–3× frequency win. When combined
with the 16× improvement in II (RANDOM indexing), the
overall speedups are as high as ≈50× over baseline LegUp.
These numbers simple illustrate the overheads of pursuing a
crossbar-based design strategy and we fully expect a smart
FPGA developer would not intentionally choose this approach.

C. Real-World Benchmarks and Datasets

When considering real-world examples of indirect access
patterns, how does our NoC-assisted approach hold up against
LegUp? Real-world benchmarks include the indirect accesses
as a component of their application, and we must understand
how indirect accesses fit into the complete design:
• The SpMV and Graph benchmarks split computation

across two phases. The first phase implements the indirect
accesses to assemble data, and the second phase performs
purely local operations in dataflow manner. In this case,
the indirect accesses are routed over the NoC, while local
operations do not need NoC function. The LegUp-generated
32b datapath for this implementation costs 278 LUTs + 343
FFs per thread which is larger than the NoC router (≈ 55
LUTs, 82 FFs) by ≈5× (Thus NoC is a 20% overhead over
baseline area cost).
• An N -point FFT can be implemented as a sequence of
log(N) phases, with abundant parallelism within each level.
Data transfer between consecutive levels of the FFT is
routed over the NoC using the butterfly pattern for that level.
Thus, this benchmark reuses the NoC repeatedly in different
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Fig. 13: Speedup trends for real-world benchmarks and datasets when using the NoC-enabled LegUp framework.

application phases. For 32b fixed-point FFTs, the leaf-level
butterfly building block occupies 186 LUTs and 172 FFs
which is ≈3.3× larger than the NoC router (NoC is a 30%
overhead over baseline area cost).
In Figure 13, we show the performance scaling trends

across these benchmarks for various datasets (problem sizes)
by measuring total application time (sum of cycles across all
phases). We compute speedups against a sequential design to
avoid penalizing the baseline needlessly with the avoidable
overheads of a crossbar-based implementation. It is clear that
the NoC helps deliver 5–20× speedups across the various
designs. The quantum of speedup is a function of locality
structure of the datasets. We observe diminishing returns over
64 threads primarily due to NoC bottlenecks. These speedups
are different from the 8–16× speedup possible with the
RANDOM indexing data seen earlier in Figure 11b due to effect
of application locality and extra time spent in other non-NoC
application phases. When considering only the NoC phase of
operation of these benchmarks, the speedups are significantly
higher at 15–35× suggesting the performance bottleneck is
the LegUp-generated datapath pipelines.

D. Multiple NoC Channels

If the FPGA developer can afford to invest more resources
in the communication infrastructure, there is an opportunity
to use multiple NoC channels for improving performance.
Multiple, concurrent NoC channels can provide parallel paths
for the packets in the system to handle network congestion.
In our design, we distribute packets across multiple channels
in round-robin fashion, and retain the single packet injec-
tion/ejection constraint imposed by the client (datapath and
RAM bank4). As shown in Figure 14, we see performance
improvements of 2–3× (on top of existing wins) when using
just two channels. This comes with a 20–30% increase in
overall area as the NoC is smaller than the datapath blocks
by 3.3–5×. The improvements are superior at larger system
sizes due to lower contention at the NoC exit.

4Second port of the BlockRAM is reserved for HLS scheduling, and can
unlock more improvements if exposed to the NoC
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Fig. 14: Impact of two NoC channels on packet routing
performance of the system. Improvement factors are larger at

larger system sizes with lower NoC exit contention.

V. DISCUSSION

A. Related Work

There have been various attempts at parallelizing loops with
indirect addressing on FPGAs. We enumerate these ideas and
highlight their limitations with respect to our work:
1. Polyhedral techniques: Loop tiling [2], [12] to determine
bank configuration is possible for affine loops through
suitable polyhedral analysis. This approach is only valid
for loop with affine loop indexing (linear operations on
loop index) that is not applicable to arbitrary indirection
supported by our work where nothing is known about the
access pattern B[i]. For large number of tiles, the memory
banks may still need expensive wide multiplexers as per
the results of the polyhedral analysis. Experimental results
in these papers are limited to stencil-based workloads that
only have nearest-neighbor communication pattern that is
trivial to route on NoCs. Our technique applies to irregular
graph-oriented workloads that are more difficult to analyze
and parallelize.

2. Trace-based analysis: It is possible to mine the ad-
dresses [13] and analyze these address sequences to deter-
mine how to partition arrays and tile loops. This approach
uses the address trace to prune the complexity of the
memory bank crossbar to lower resource cost. With trace-
based analysis, the presence of even a single indirection to
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a bank requires the multiplexer to accommodate the link. In
contrast, our approach uses a shared NoC and requires no
static analysis of the addresses as they get resolved dynam-
ically by the NoC through packet-switched operation. This
paper uses datasets with regular communication patterns
that would be easy to route over NoCs.

3. Crossbar: TILT-VLIW[11] employs statically-scheduled
read and write crossbar across the various lanes of the
VLIW architectures to enable parallel operation of the loop
body across various ALUs. In contrast, our approach replies
on an O(N) scalable, cost-effective NoC and is dynamically
routed requiring no knowledge of communication pattern.
We have quantified the LUT and Fmax overheads of a
crossbar-based solution in Figure 12.

4. Configurable Connections: EURECA [10] shows how
to support dynamic indirect accesses through the use of
configurable multiplexers, and dynamic generation of the
multiplexer controls. This requires a modification to the un-
derling FPGA architecture , while our approach works with
existing FPGA chips through the insertion of overlay NoCs.
We use packet-switching to determine NoC switch multi-
plexer controls while EURECA essentially time-multiplexes
the hardware by supplying the per-cycle mux controls.

5. Off-chip DRAM: Our work complements other effort
aimed at optimizing indirect accesses to single-ported exter-
nal DRAM interfaces [5], [7]. While we focus on distribut-
ing indirect accesses across multi-bank on-chip RAMs, you
can extend this idea to the design of memory controllers
managing multiply address channels of external DRAMs
and emerging multi-die HBM2-based architectures.

6. FCUDA-NoC: Prior work such as FCUDA-NoC [4]
have supported interconnecting HLS-generated datapaths
to a shared DRAM using expensive directory-based NoC
routers. Their work does not address the opportunity for
using HLS within the compilation itself, and focuses on
system-level interfacing (DRAM) like others [1]. As shown
in our paper, NoCs can become first-class citizens in the
HLS toolflow.

B. Future Work

Going forward, NoCs in FPGA HLS can support routing of
HLS AXI streams, OpenCL pipes, load-store shared-memory
traffic, as well as operand routing between operators in dy-
namic HLS [8]. We can also support sequentially consis-
tent operation by providing extra RAM and index checking
hardware associated with each update. Further throughput
improvements are also possible with the use of isolation
buffers between the Request and Reply NoCs used in our
design for source indirection.

VI. CONCLUSIONS

In this paper, we demonstrate how to integrate FPGA
overlay networks-on-chip with high-level synthesis to provide
scalable parallelization of loops with indirect addressing. NoCs
provide a cheaper alternative than existing crossbar-based
memory bank access structures, inferred by both LegUp and

Vivado HLS, while delivering significant improvements to
Frequency and Initiation Interval of the loops. Furthermore,
we bundle this capability as a LegUp compiler pass thereby
allowing the programmer to use NoC resources without NoC
expertise. For various access patterns parallelized to 256
threads, we see as much as 16× improvement in II, 150×
reduction in LUT cost, 4–5× increase in frequency for uniform
random indexing. When applied to real-world benchmarks
parallelized between 16–256 threads, we observe speedups of
5–20× for SpMV, Graph, and FFT benchmarks with a 20–30%
overhead for introducing the NoC over baseline.
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