
Comparing Soft and Hard Vector Processing in FPGA-based Embedded Systems

Soh Jun Jie
School of Computer Engineering

Nanyang Technological University
50 Nanyang Avenue, S639798
Email: jjsoh001@e.ntu.edu.sg

Nachiket Kapre
School of Computer Engineering

Nanyang Technological University
50 Nanyang Avenue, S639798

Email: nachiket@ieee.org

Abstract—
Soft vector processors can augment and extend the capability

of embedded hard vector processors in FPGA-based SoCs such
as the Xilinx Zynq. We develop a compiler framework and an
auto-tuning runtime that optimizes and executes data-parallel
computation either on the scalar ARM processor, the embedded
NEON engine or the Vectorblox MXP soft vector processor as
appropriate. We consider computational conditions such as pre-
cision, vector length, chunk size, IO requirements under which
soft vector processing can outperform scalar cores and hard
vector blocks. Across a range of data-parallel benchmarks, we
show that the MXP soft vector processor can outperform the
NEON engine by up to 3.95× while saving 9% dynamic power
(0.1W absolute). Our compilation and runtime framework
is also able to outperform the gcc NEON vectorizer under
certain conditions by explicit generation of NEON intrinsics
and performance tuning of the auto-generated data-parallel
code.

I. INTRODUCTION

Embedded computing SoCs (systems-on-chip) increas-
ingly support a heterogeneous assembly of µarchitectures
and co-processors organized around a central co-ordination
processor. This co-ordination processor is typically a low-
power, low-cost ARM or MIPS implementation that runs
the host OS or firmware that drives the rest of the system.
Depending on system requirements, we may pick SoCs that
include vector processors (e.g. ARM NEON), graphics en-
gines (e.g. NVidia Tegra, ARM Mali), custom analog blocks
(e.g. Cypress SoC), or FPGA logic (e.g. Xilinx Zynq and
Altera SOC solutions). While this diversity brings freedom
and versatility, designers of these embedded systems are
expected to manually decide how to assign and optimize
computational kernels for these heterogeneous SoC blocks.

The Xilinx ZedBoard platform, shown in Figure 1, has a
Zynq SoC which includes the ARM Cortex A9-series CPU
as the central co-ordination processor augmented with the
NEON SIMD hard vector engines under the same memory
hierarchy as well as a tightly-coupled FPGA logic substrate
connected over a low-latency, high-bandwidth AXI and ACP
interconnect. In this case, the designer has to decide whether
to map data-parallel code to (1) simply run as scalar code
on the ARMv7 CPU, (2) run as data-parallel code on the
NEON hard vector engine, or (3) use FPGA logic. The

ARMv7
32b CPU

NEON
SIMD

Vector
RF

RF +
Caches

Vector
Scratchpad

MXP Soft Vector
Processor

Offchip DRAM

Hard silicon blocks Soft programmable logic

Zynq SoC

667MHz 110MHz
256kB2kB1.75kB

AXI-HP
880MB/s

Figure 1: Xilinx Zynq SoC Platform Compute Organization

proximity and tight integration of the NEON engine offers a
tempting option for effortless acceleration for many existing
embedded applications through a recompile of the code.
However, if power utilization and absolute performance is
desired, the FPGA logic may offer a superior alternative.
To retain the fast development times and performance of
mapping to NEON, we consider the Vectorblox MXP [12]
soft vector processor as the alternative implementation. MXP
is an FPGA-based soft vector processor designed to perform
data-parallel tasks with high performance. It is able to deliver
high performance due to parallel scratchpad accesses and
support for fast DMA transfers. When using the MXP soft
vector engine, the developers can choose the number of vec-
tor lanes, scratchpad capacity, precision and other parameters
that match application requirements. We show specifications
of the NEON and MXP block in Table I. In this paper,
we develop an automated framework to select between soft
vector processors (programmed on FPGA logic) and embed-
ded hard vector blocks for acceleration of data-parallel code
in embedded SoC platforms. Our framework also generates
optimized NEON code using auto-vectorization and explicit
generation of NEON intrinsics if desired.

With this framework, we address the following questions:
Under what conditions does the MXP soft vector processor

offer superior performance and power benefits compared
to NEON hard vector engines? How do we automate this
decision process while generating optimized code for these
systems? How do we optimize the configuration and opera-
tion of the soft vector processor without relying on manual
tuning?

Consider the simple example a ·x2+b ·x+c implemented
inside a data-parallel for loop operating on 8-bit data. When
the loop trip count is low (<128 with warmed-up caches),
we might as well avoid vectorization (hard or soft) and
simply run code as scalar instructions on the ARM CPU.
For a larger trip count (>≈0.5M with uncached data), we
can exploit automatic gcc vectorization for NEON (or when
using NEON intrinsics) for achieving a 3.7× speedup. With
NEON intrinsics we can achieve somewhat larger speedups
in some instances compared to auto-vectorization. Finally,
the MXP soft vector processor delivers faster runtime at vir-
tually all trip counts (≈1.3× faster than NEON). The result
of these decisions change with the benchmark, precision and
internal state requirement of the computation. Our compiler
and runtime system help the developer navigate this space
of choices.

The key contributions of this paper include:
• Development of a compiler backend that targets ARM

NEON intrinsics, ARM NEON gcc and the MXP soft
vector processor.

• Design of an auto-tuning framework that helps select
between ARM scalar, NEON hard vector and MXP soft
vector engine.

• Performance and Power characterization of the different
hardware configurations using the ZedBoard across a
range of data-parallel kernels.

II. BACKGROUND

A. Zynq SoC Platform

In Table I, we show the key architecture specifications of
the scalar ARM CPU, the NEON SIMD engine as well as
the fully parallel, best-case configuration of the MXP soft
processor on the Xilinx ZedBoard platform. As we can see,
the 28nm hard silicon ARM Cortex A9 CPU and NEON
SIMD engines are configured to run at 667MHz (-1 speed
grade part) yielding an 8b peak throughput of 0.667 Gop/s
and 3.9 Gops/s respectively. The 16-lane MXP processor
can only reach 110 MHz but is still capable of 8b peak
throughput of 7.04 Gop/s. While the MXP can scale up to
128 lanes, the Zynq device on the ZedBoard limits us to
16 lanes. When mapping data-parallel computation to the
NEON engine, we must load/store the vector operands into
a constrained vector register file (32×64b) whereas the MXP
processor permits loads/stores from a software-managed
scratchpad up to 256kB (again limited by the ZedBoard
capacity). This disparity in register storage state allows the
MXP to support multiple intermediate live variables without

Table I: Architecture Specifications

Metric ARMv7 CPU NEON [1] MXP [12]
µarch Scalar SIMD Soft vector
Clock Freq. 667 MHz 667 MHz 110 MHz
Throughput
32b (Gops/s) 0.6 1.3 1.7
16b (Gops/s) 0.6 2.6 3.5
8b (Gops/s) 0.6 3.9 7
Memory 1.75kB 2kB 4–256kB

(Scalar RF) (Vector RF) (Scratchpad)
Lanes 1 2×32b 1–16×32b

4×16b 2–32×16b
8×8b 4–64×8b

incurring memory transfer penalties. Despite being a hard
vector core, the NEON SIMD engine does permit a degree
of programmability; we are allowed to switch between 8
lanes at 8b, 4 lanes as 16b and 2 lanes at 32b when
using doubleword vectors. The programming challenge is
to optimize code under these user-selectable metrics and
architecture parameters.

B. Programming Vector Architectures

Programming the NEON SIMD engine can be as trivial
as invoking gcc with the right compiler options. The
gcc compiler has an auto-vectorizing backend that de-
tects suitable for loops and converts them into NEON-
compatible code. However, the compiler might miss several
opportunities for parallelization including register reuse in
the small vector register file and potential memory transfer
optimizations. Furthermore, when programming the MXP
soft processor, the programmer may be unable to easily pick
the optimal set of resource parameters (e.g. vector lanes,
scratchpad size) that best match the design requirements.
This may result in overprovisioned resources and sub-
optimal performance.

To address these challenges, we select the open-source
SCORE [2] compiler framework as the development envi-
ronment for constructing our vectorizing backends. SCORE
is a stream-oriented framework for reconfigurable execution
that supports automated compilation of high level parallel
dataflow operators to low level hardware. Computations
described in SCORE obey the dataflow compute model.
Originally developed for streaming circuit design, it has
been extended to support a varity of other backends such as
sequential control [6], and fixed-point ciruit generation [9],
[5]. In this paper, we adapt the compiler to support two
extra backends for the NEON SIMD engine and the MXP
soft processor.

2

(a) SCORE (b) ARMv7 C (c) NEON intrinsics (d) MXP code

po ly (
i n p u t i n t x ,
o u t p u t i n t y)
{

s t a t e on ly (x) :
y = a∗x∗x

+ b∗x
+ c ;

}

f o r (i =0 ; i<N; i ++)
{

y [i] = a∗x [i]∗ x [i]
+ b∗x [i]
+ c ;

}

i n t 8 x 8 t t1 , t2 , t 3 ;
t 1 = vmul s8 (a , x) ;
t 2 = vmul s8 (t1 , x) ;
t 3 = vmul s8 (b , x) ;
t 1 = vadd s8 (t2 , t 3) ;
y = vadd s8 (t1 , c) ;

vbx dma to vec to r (x , x h o s t) ;
v b x b y t e t ∗ t1 , ∗ t2 , ∗ t 3 ;
vbx (SVB, VMUL, t1 , a , x) ;
vbx (VVB, VMUL, t2 , t1 , x) ;
vbx (SVB, VMUL, t3 , b , x) ;
vbx (VVB, VADD, t1 , t2 , t 3) ;
vbx (SVB, VADD, y , c , t 1) ;
vbx dma from vector (y , y h o s t) ;

Table II: Comparing code generation for the different backends

III. VECTORIZING COMPILER AND AUTO-TUNING
FRAMEWORK

To achieve best performance and power characteristics
from the embedded platform, system developers will usually
rely on manual mapping, tuning and optimization heuristics.
As discussed earlier in Section I, the availability of hetero-
geneous compute elements further adds to developer burden.
In Figure 2, we show a block diagram of our compiler and
runtime system to help alleviate developer costs.

The goal of our compiler framework is to generate op-
timized code for the three targets on the Zynq platform.
This allows the developers to describe their data-parallel
kernels once without manual porting effort. Furthermore,
our compiler framework also supports optimizations such
as straightforward register reuse and vector strip mining.

The goal of the auto-tuning step is to (1) pick the best
hardware target for a given problem configuration, and (2)
perform runtime optimizations on data transfer mechanics.
Our auto-tuner runs optimized code under various configu-
rations of bitwidth, lane count, vector length and datasize
to identify the best backend target for our code. From
our experimental results we also identify a simplistic and
preliminary predictive model that can guide the mapping
process.

In Table II, we see the input SCORE program and the
generated backend code for the simple a · x2 + b · x + c
example. The SCORE program is a stateless, data-parallel
operation that consumes inputs x to generate y. As SCORE
is originally designed to generate FPGA circuits, this code
is converted to streaming, pipelined Verilog where a new
set of values is injected into the circuit in each cycle. For
the scalar C backend, we perform a simple source-source
translation and wrap the code around a for-loop of user-
specified length. For the NEON backend, we first attempt
gcc auto-vectorization of the scalar code by simply using an
appropriate build setup. When we generate NEON intrinsics
directly, we use a dataflow expression rewriting engine that
parallelizes the dataflow expressions and runs a register reuse
optimization pass to conserve the vector registers utilized by
our code. Here, an intrinsic is an inline-assembly function
used in the generated C code that directly calls a documented
ARM NEON instruction at specific bitwidth and lane-count

Data-Parallel
Source Code

Streaming
Compiler

ARMv7
Backend

NEON
Backend

MXP
Backend

(source-source
translation)

Auto-Tuner
(length, precision, chunking, registers)

Optimized
Execution Time

Predictive
Model

Figure 2: Block Diagram of the Compiler and Runtime
Framework

combination thereby overriding gcc compiler. This could be
useful in cases where the compiler may not correctly detect
NEON optimization opportunities. This may be seen in the
way temporary variable t1 gets used twice in the code block.
We use a minor modification of the same backend to also
generate optimized MXP code. In addition to these simple
dataflow code-generation passes, we wrap the code blocks
with double-buffered loads and stores to allow overlapped
evaluation of computation and communication phases (not
shown in Figure II for simplicity).

IV. METHODOLOGY

We develop an experimental methodology to compare the
different vector backends and architectures based on a range
of benchmark problems. In Table III we show our set of
benchmark problems that were derived from kernels from
EEMBC, SCORE and certain OpenCV functions. These
benchmarks are characterized by variations in the compute
(arithmetic), intermediate storage requirements, IO require-
ments, and precision. We tested the data-parallel problems
on a range of trip counts up to 214 elements.

3

Table III: Benchmark Properties

Name Description Ops. Reg. IOs

EEMBC-derived
rgb2gr rgb filter 4 3 3
rgb2lm rgb filter 7 6 4
OpenCV-derived
tap4flt fir filter 8 6 9
FX-SCORE-derived
vecadd vector addition 1 1 3
poly degree-2 polynomial 3 2 3
matmul 2x2 matrix multiply 12 8 12
dotprod 4-elem dot product 3 2 5
l1lin transistor linear 7 18 4
l1sat transistor saturation 8 19 4

We use the Xilinx ZedBoard for our experiments. We
use the Xillinux OS v1.1 (Ubuntu) when executing scalar
ARMv7 and NEON code. We use gcc v4.4 for gen-
erating ARM binaries and exploit auto-vectorization for
a portion of our experimental flow. To compile NEON
code using the automatic vectorization pass we use the
-ftree-vectorize switch in conjunction with the
-mfpu=neon option. We use <arm_neon.h> v4.4 when
directly generating NEON intrinsics from the SCORE com-
piler. In this case, we simply supply the -mfpu=neon
option. For generating bitstreams for the ZedBoard for
various MXP experiments, we use Xilinx ISE 14.7.

For timing measurements, we use ARM hardware timers
for extracting runtime information of the ARM, NEON and
MXP binaries. For the MXP soft processor, we use the
MXP timing API. For ensuring statistical significance of
measured data, we consider averaged values measured across
several timing runs to minimize the effect of measurement
noise. This also considers the impact of caching to ensure
we perform fair comparisons across the different hardware
backends.

We measure power usage of the ZedBoard using En-
ergenie Power Meter (2% accuracy). We record power
measurements after reaching steady state on the vectorized
code execution. We measure steady state power utilization
for the scalar and NEON implementation when running
Xillyinux from the SDCARD. The MXP implementations
are programmed and executed over the PROGUSB cable
connected to a host PC which adds a non-trivial power
overhead. We recorded a stable 5.1W steady-state power
utilization when running Xillyinux which rose to 5.5W with
PROGUSB cable connected. We calculate runtime power
utilization from these two baselines for the experiment as
appropriate.

V. RESULTS

Speedups and Runtime Comparisons: We first compare
speedups achieved by the 16-lane MXP soft processor when

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

dotprod l1lin l1sat matmul poly rgb2gr rgb2lm tap4flt vecadd

S
p

e
e

d
u

p
 F

a
c
to

r
o

v
e

r
N

E
O

N

Application Kernel

Speedup 32b

1.28

0.96
1.19 1.17 1.16

1.44
1.31 1.28

1.53

Speedup 8b

1.17
1.00

1.96

1.28

2.01 2.07

1.24

0.89

3.95

Figure 3: Speedups of MXP over best NEON
implementation

10
-9

10
-8

10
-7

10
-6

l1lin l1sat matrix poly rgb2gr rgb2lm tap4flt vecadd

T
im

e
 p

e
r

e
le

m
e

n
t

(s
)

Application Kernel

ARMv7 Scalar
NEON GCC

NEON intrinsics
MXP (no inline)

MXP

Figure 4: Comparing runtime of the different application
kernels

compared to optimized NEON vector runtimes in Figure 3.
We observe that in most cases that MXP outperforms NEON
implementations by as much as 3.95× at 8b computations
which drops to 2.07× at 32b computations. We would expect
this drop as NEON has 8 8b lanes and only 2 32b lanes (See
Table I). These speedups for the MXP are primarily due
the superior double-buffered memory transfer optimizations
made possible by the fast AXI-FPGA interconnect. We
note that certain application kernels like vecadd show
substantial speedups due to simple data-parallelism with few
intermediate states. In contrast, kernels such as l1lin and
tap4flt are unable to beat NEON speeds due to low IO
to compute ratios (See Table III).

In addition to MXP and NEON performance, we are also
interested in understanding the quality of code generated
by our compiler framework. The gcc compiler is already
capable of generating vectorized code for NEON backend.
However, in conjunction with explicit intrinsic generation,
dynamic auto-tuning and register allocation passes, our
framework offers the ability to improve NEON performance.
For the MXP soft processor we use the inlining compiler
optimization to lower overheads and tune lane count and
vector strip length as appropriate. To illustrate this, in
Figure 4, we show the runtime comparison between the
ARMv7 scalar CPU, NEON SIMD evaluation and MXP
soft processor mappings for 32b computations. We observe
that the inlining allows MXP code to run marginally faster
due to lower function call overheads. When using explic-
itly generated intrinsics for the NEON, we see a mix of

4

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

dotprod l1lin l1sat matmul poly rgb2gr rgb2lm tap4flt vecadd

T
im

e
 p

e
r

e
le

m
e

n
t

(s
)

Application Kernel

Figure 5: MXP Auto-Tuning Dynamic Range

10
-8

10
-7

10
-6

dotprod l1lin l1sat matmul poly rgb2gr rgb2lm tap4flt vecadd

R
u

n
ti
m

e

Application Kernel

Figure 6: NEON Auto-Tuning Dynamic Range

improvements and slowdowns across the benchmark set
suggesting additional optimizations may be necessary to
comprehensively beat the gcc auto-vectorizer. Additionally,
for certain cases like matrix and poly, we do not observe
benefits for NEON SIMD execution over scalar CPU due to
simplistic calculations and memory-bottlenecks.

Need for Auto-Tuning: To understand the importance
of auto-tuning on user code, we represent the space of
measured runtimes on the MXP soft vector processor in
Figure 5. As you can see, the dynamic range of possible
combinations can be as high as four orders of magnitude.
This large range suggests a critical need to pick the best
parameters. The choice of parameters also affects resource
costs (not shown) but for our experiments, we are already
tightly constrained by the 16-lane limit imposed by the
ZedBoard FPGA capacity. Being a hard vector architecture
with few programmable elements, the auto-tuning range is
much lower for the NEON as shown in Figure 6. However,
the order of magnitude range is still large enough to merit
a tuner-assisted optimization.

Tuning MXP Performance: When designing soft vector
processors, we have the unique capability of being able to
select the best lane configuration desired for optimum per-
formance while keeping resource utilization low. For small
datasets, we would expect fewer parallel lanes to offer better
value for resource consumption as we will be unable to fully
saturate all lanes. Under bandwidth-limited circumstances,
excessively large lane counts would be equally wasteful of
resources. Most applications we characterized preferred a
lane count of 8 or 16 with sufficient parallel work. As shown
in Figure 7, our auto-tuner identifies poly benchmark as

3.7*10
-9

7.5*10
-9

1.5*10
-8

3.0*10
-8

6.0*10
-8

1.2*10
-7

 1 2 4 8 16

T
im

e
 p

e
r

e
le

m
e
n
t
(s

)

Vector Lane (L)

vecadd
rgb2gr
rgb2lm

dotprod
poly
l1lin

l1sat
tap4flt

Figure 7: Tuning Lane Width for the MXP soft-processor
(16b data and VL of 1024)

9.3*10
-10

3.7*10
-9

1.5*10
-8

6.0*10
-8

2.4*10
-7

9.5*10
-7

3.8*10
-6

1.5*10
-5

 1 4 16 64 256 1024 4096

T
im

e
 p

e
r

e
le

m
e
n
t
(s

)

Vector Length (VL)

matmul
vecadd
rgb2gr
rgb2lm

dotprod
poly
l1lin

l1sat
tap4flt

Figure 8: Tuning Vector Length for MXP
(16b data and 16-lane design)

the most scalable design with continuing improvements at
16 lanes, while the vecadd benchmark saturates quickly at
2 lanes due to the accumulation loopback limit. Rest of the
benchmarks show saturated speedups above 8 lanes.

An additional tunable feature of the MXP soft processor,
is our ability to choose the vector strip length. The MXP
eschews the vector register file in favor of a user-managed
scratchpad. In certain cases, we can achieve performance
parity with a larger lane count design simply by choosing
an appropriate vector length for best mapping to a given
scratchpad size. As onchip memory resources can be sub-
stantially denser than logic, this optimization can offer a
cheaper alternative to improving vector code performance
than adding expensive additional lanes. In Figure 8, we show
the impact of varying the vector length with performance.
For our benchmarks, the largest achievable vector length can
vary between 1024–4096 due to variations in IO capacity
and internal state requirements (see Table III). However,
performance of most benchmarks saturates above a vector
length of 1024 in any case.

Different data-parallel workloads require the vectorizable
loop body to run for varying trip counts. In Figure 9, we
observe the impact of overall trip counts on performance.

5

2.4*10
-7

9.5*10
-7

3.8*10
-6

1.5*10
-5

6.1*10
-5

2.4*10
-4

9.8*10
-4

2
9

2
10

2
11

2
12

2
13

T
im

e
 p

e
r

e
le

m
e
n
t
(s

)

Datasize (N)

matmul
rgb2gr
rgb2lm

dotprod
poly
l1lin

l1sat
tap4flt

Figure 9: Impact of Total Element Count
(16b data, 16-lane design)

Table IV: Power Consumption Measurements

Configuration Power ∆ (% over Idle)
Idle 5.1W 0 0
ARMv7 Scalar 5.9W 0.8W 15
NEON Vector 5.7W 0.6W 11
Idle+PROGUSB 5.5W 0 0
MXP Vector 5.6W 0.1W 2

We note peculiar scaling behavior for certain workloads
where performance stays stable even at larger datasizes.
These workloads are those that have high arithmetic intensity
i.e. fewer IO load/stores and register requirements per vector
computation. For workloads with larger IO and intermediate
register needs, runtime is dominated by memory bottlenecks.

Power Usage: Finally, in Table IV, we show the overall
power consumption of the ZedBoard used in our experi-
ments. We note that the use of ARMv7 CPU or NEON for
running our benchmarks increases power consumption from
an idle consumption of 5.1W to 5.9W and 5.7W respectively
(mean). This indicates an improvement of 0.2W when ac-
celerating code on the NEON engine. When using MXP, the
power consumption increases from an idle consumption of
5.5W (due to PROGUSB cable requirements) to 5.6W. This
represents a modest increase of 0.1W in power usage when
running code on the FPGA-based soft vector processor. Even
in absolute terms, this is still a 0.1W improvement over
NEON execution.

VI. DISCUSSION

From our experiments we can draw the higher-level con-
clusion that soft vector processors such as the MXP architec-
ture are capable of matching and exceeding the performance
of hard vector processors such as NEON in FPGA-based
heterogeneous embedded systems. For simple, data-parallel
computations with low compute requirements (poly), vec-
tor performance scales with increasing lane counts. For
computations with accumulation (matmul, tap4flt), we
observe limited scalability due to the feedback loop. An

optimized reduction primitive would be a useful addition to
the vector architecture for such computations. As expected,
8b vectors permit larger lane counts and consequently higher
speedups.

VII. CONTEXT

Many soft vector processors [3], [11], [14], [13], [7] and
their building blocks have been reported in literature. Each
of these studies represent increasingly refined designs of
FPGA-based vector units for improved performance and
reduced resource utilization. VESPA [13] introduced the idea
of soft-processors that use VIRAM-like vector processing
engines on FPGA fabrics while showing speedups over or-
dinary scalar soft processors. VIPERS [14] provided a NIOS
host to the soft vector engine and demonstrated the impor-
tance of memory scaling on performance. The improved
VEGAS [3] soft vector processor added local scratchpads
and demonstrated comparable performance against Intel SSE
SIMD execution for the integer matmul benchmark (≈2×
faster). VENICE [11] is a resource-optimized VEGAS that
shows 10–200× speedup against the NIOS-II/f processor
embedded in soft logic on Altera FPGA platforms such as
the DE2-115 and DE4 boards. BlueVec [10] is a Bluespec-
based vector processor developed for applications that are
constrained by the FPGA memory wall. While VIPERS,
VESPA, VEGAS, VENICE and BlueVec operate on integer
data, the vector architecture presented in [7] works with
floating-point operands. For our experiments, we use the
MXP [12] soft vector processor with supports integer and
fixed-point calculations only. While existing vector archi-
tectures offer superior performance when using FPGA logic,
the performance comparisons have always been against other
soft processors with poor performance e.g. MicroBlaze,
NIOS, other lightweight soft processors or 1-lane self-
comparisons. In this study, we compare the MXP soft vector
engines against the 667MHz hard silicon processor ARM
Cortex A9 along with NEON SIMD vector engine that
is of direct relevance in embedded system environments.
Furthermore, the ARMv7 CPU and NEON engines offer
substantially higher throughput over the NIOS, MicroBlaze
and other soft processor used in earlier studies.

For a long time, soft vector architectures lacked a high-
level programming model that can make it easy to target
these platforms. While vectorizing compilers are not new,
even gcc supports auto-vectorization, it is not trivial to
adapt these existing backends to support newer, custom
vector architectures easily. Hence, earlier versions of soft
vector processors were programmed directly in low-level
API calls to the instruction handling logic. The Accel-
erator [8] compiler showed how to auto-generate Venice-
compatible code from high-level descriptions of parallel
programs. The SCORE framework is a similar high-level
programming environment for data-parallel stream compu-
tations. Unlike Accelerator, we develop an auto-tuning pass

6

that helps choose the best soft vector configuration (number
of lanes, chunk size, computation-communication overlap)
without programmer involvement. The custom vector com-
piler [4], extracts custom vector instructions to generate
CVUs (custom vector units) based on frequently occurring
patterns in data-parallel programs. Our emphasis, in this
paper, is on a simpler RISC-like vector architecture observed
in NEON and the MXP processor and an associated compiler
framework to target these architectures.

VIII. FUTURE WORK

At present, we rely on gcc auto-vectorization but intend
to investigate the potential of using armcc for generating
better vector code that may close the gap with SCORE-
generated code. As part of future work, we will also consider
partitioning computation across all three backends (scalar,
NEON SIMD and MXP soft vector) together. Furthermore,
larger Zynq SoCs will permit MXP configurations larger
than 16 lanes and a larger scratchpad. While MXP currently
uses a single 64b AXI-HP lane, the switch to ACP and use
of multiple AXI-HP ports will offer further improvements in
DMA throughput. Furthermore, we can consider larger Zynq
devices (than the Z7010 part on the ZedBoard) to support
larger MXP lane counts and consequently higher speedups
for vectorizable computations with low IO requirements.

IX. CONCLUSIONS

Heterogeneous FPGA-based SoCs like Xilinx Zynq offer
a novel computing platform for embedded processing that
allows us to unify a scalar ARMv7 core, hard vector
NEON SIMD engines as well as the FPGA-based MXP
soft vector processor in the same chip. Using our compiler
and auto-tuning framework, we demonstrate speedups as
high as 3.95× for offloaded data-parallel computation when
comparing an MXP soft vector processor to optimized
NEON mappings across a range of embedded data-parallel
kernels. MXP is able to outperform NEON due to better
customizability of vector lane counts, scratchpad size and
memory transfer optimizations. In addition to performance
improvements, we also measure ≈9% power savings when
choosing FPGA-based vector acceleration over NEON. On
larger FPGA-based SoCs with the already-available faster
interconnect options, we expect MXP code to provide scal-
able performance when compared to the hard silicon NEON
engines. We will be making the benchmark codes and the
compiler frameworks open-source for community use.

REFERENCES

[1] ARM Ltd. Cortex-A9 NEON Media Processing Engine.
pages 1–49, July 2011.

[2] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and
A. DeHon. Stream computations organized for reconfigurable
execution (SCORE). Field-Programmable Logic and Appli-
cations: The Roadmap to Reconfigurable Computing, 2000.

[3] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant,
and G. G. Lemieux. VEGAS: Soft vector processor with
scratchpad memory. In Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate arrays,
pages 15–24. ACM, 2011.

[4] J. Cong, M. A. Ghodrat, M. Gill, H. Huang, B. Liu, R. Prab-
hakar, G. Reinman, and M. Vitanza. Compilation and archi-
tecture support for customized vector instruction extension. In
Design Automation Conference (ASP-DAC), 2012 17th Asia
and South Pacific, pages 652–657. IEEE, 2012.

[5] Y. Deheng and N. Kapre. MixFX-SCORE: Heterogeneous
Fixed-Point Compilation of Dataflow Computations. pages
1–4, Mar. 2014.

[6] N. Kapre and A. DeHon. VLIW-SCORE: Beyond C for
Sequential Control of SPICE FPGA Acceleration. In Field-
Programmable Technology (FPT), 2011 International Confer-
ence on, pages 1–9, Dec. 2011.

[7] J. Kathiara and M. Leeser. An Autonomous Vector/S-
calar Floating Point Coprocessor for FPGAs. In Field-
Programmable Custom Computing Machines (FCCM), 2011
IEEE 19th Annual International Symposium on, pages 33–36.
IEEE, 2011.

[8] Z. Liu, A. Severance, S. Singh, and G. G. Lemieux. Acceler-
ator compiler for the venice vector processor. In Proceedings
of the ACM/SIGDA international symposium on Field Pro-
grammable Gate Arrays, pages 229–232. ACM, 2012.

[9] H. Martorell and N. Kapre. FX-SCORE: A Framework
for Fixed-Point Compilation of SPICE Device Models us-
ing Gappa++. In IEEE International Symposium on Field-
Programmable Custom Computing Machines, pages 77–84,
Mar. 2012.

[10] M. Naylor, P. J. Fox, A. T. Markettos, and S. W. Moore. Man-
aging the FPGA memory wall: Custom computing or vector
processing? In Field Programmable Logic and Applications
(FPL), 2013 23rd International Conference on, pages 1–6.
IEEE, 2013.

[11] A. Severance and G. Lemieux. VENICE: A compact vector
processor for FPGA applications. In Field-Programmable
Custom Computing Machines (FCCM), 2012 IEEE 20th
Annual International Symposium on, pages 245–245. IEEE,
2012.

[12] A. Severance and G. G. Lemieux. Embedded supercom-
puting in FPGAs with the VectorBlox MXP matrix proces-
sor. In Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), 2013 International Conference on, pages
1–10. IEEE, 2013.

[13] P. Yiannacouras, J. G. Steffan, and J. Rose. VESPA: portable,
scalable, and flexible FPGA-based vector processors. In Pro-
ceedings of the 2008 international conference on Compilers,
architectures and synthesis for embedded systems, pages 61–
70. ACM, 2008.

[14] J. Yu, C. Eagleston, C. H.-Y. Chou, M. Perreault, and
G. Lemieux. Vector processing as a soft processor accel-
erator. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 2(2):12, 2009.

7

