
Marathon: Statically-Scheduled Conflict-Free
Routing on FPGA Overlay NoCs

Nachiket Kapre
Nanyang Technological University

50 Nanyang Avenue, Singapore 639798
Email: nachiket@ieee.org

Abstract—
We can improve the performance of deflection-routed FPGA

overlay networks-on-chip (NoCs) like Hoplite by as much as
10⇥ (random traffic) at the expense of modest extra storage
cost when combining static scheduling with packet switching in
an efficient, hybrid manner. Deflection routed bufferless NoCs
such as Hoplite, allow extremely lightweight packet switched
routers on FPGAs, but suffer from high packet latencies due to
deflections under congestion. When the communication workload
is known in advance, time-multiplexed routing can offer a
faster alternative by eliminating deflections but require expensive
storage of routing decisions in context buffers in LUT RAMs. In
this paper, we propose a hybrid Marathon NoC that combines the
low packet latencies of deflection-free time-multiplexed routing
with the low implementation cost of context-free packet-switched
Hoplite NoC. The Marathon NoC requires a deterministic routing
function to be implemented in the switch along with time-
stamped packet injection in the PEs to ensure deflection-free
routing in the network. The network also needs a one-time offline
static scheduling stage that determines the appropriate time to
inject a packet to guarantee conflict-free deflection-free route
on the shared network. For random traffic patterns, Marathon
outperforms Hoplite by as much as 10⇥ and time multiplexing
by as much as 1.2⇥ when considering total communication time
at identical area costs. For other synthetic patterns, Marathon
outperforms Hoplite in all cases except local pattern and is within
2–5⇥ of best time multiplexing performance at large system sizes.
For communication workloads extracted from real-world sparse
matrix-vector multiplication kernels, Marathon outperforms both
Hoplite and Time Multiplexing by 1.3–2.8⇥.

I. INTRODUCTION

The management of communication requirements in digital
designs is a first-class design concern in the effective use of
spatial computing fabrics such as FPGAs. Modern FPGAs can
easily support million-LUT designs, and at these scales it is
imperative that we find resource-efficient ways to support on-
chip communication. This can be in the form of system-level
communication to the logic from high-speed external inter-
faces to memories, PCIe, or network ports (GB/s of I/O band-
width) as well as application-level intra-FPGA communication
(TB/s of bisection bandwidths). NoCs (network-on-chip) are
a popular mechanism to deliver shared network resources to
communicating spatial applications while transferring packets
across the chip in a fast, pipelined manner.

Hoplite [7] is a lean 60–90 LUT, 100 FF, 2.9 ns 32b packet-
switched router that paves the way for efficient realization of
communication requirements in FPGA applications by careful
engineering of the logic architecture to match the capabilities

●●
Hoplite

Time−MuxThis work

0

1000

2000

3000

0 50 100 150 200 250
Cost per Switch (LUTs)

Ti
m

e
(n

s)

●● Hoplite
Marathon
Time−Mux

Fig. 1: Evaluating NoC performance-cost trends for an
SpMV add20 workload with 142K packets. Marathon
NoC is 2⇥ smaller than Time-Multiplexed NoCs, and

2.5⇥ faster than Hoplite. See Figure 11 for details.

of the FPGA fabric. Hoplite is able to deliver low cost
by eliminating expensive packet buffers, simplifying crossbar
complexity by choosing a unidirectional torus topology and
easing flow control overheads with deflection routing. How-
ever, the penalty of deflections [3] under realistic workloads
can often result in high worst-case packet latencies. Thus,
Hoplite achieves economy of implementation by sacrificing
worst-case packet latency that limits its effectiveness for real-
istic latency-critical applications (10–30% slower than conven-
tional mesh-based NoCs for injection rates above 0.1, severe
drop in performance for tornado traffic pattern). Conventional
packet-switched NoCs such as CMU Connect [11] and Penn
Split-Merge [5] routers are able to avoid these worst-case
latency penalties but they are substantially larger (25⇥ larger,
1.7K LUTs) and slower (1.5⇥ slower, 5–10 ns) than Hoplite.

Under these circumstances, we look for inspiration towards
time-multiplexed NoCs [8], [15], [13], [9]. Time-Multiplexed
NoCs require static knowledge of the communication work-
load and can offer fast packet delivery without any deflection
or buffer wait penalty as each switch is programmed with rout-
ing decisions upfront1. This is achieved with a static scheduler

1A macro-economist would compare time-multiplexed NoCs to socialist,
centrally-managed systems while a packet-switched NoC to a chaotic, capi-
talist framework.

that arranges the network traffic to provide each packet of
communication a dedicated path through the network. Instead
of provisioning the full path for all timeslots, the scheduler
generates assigns the exact timeslot in each switch being
traversed by the packet along the spatial path to allow efficient
reuse of NoC resources. To store the routing decisions, time-
multiplexed NoCs require extra storage of routing tables
(context memory) in each switch and Processing Element (PE).
While we expect spatial FPGA application to generally offer
static communication workloads (i.e. communication profile
of video-processing applications [9], accelerated processing of
knowledge-bases [8]), the mapping of storage requirements
and programming infrastructure of context memories can
become a challenge. LUT-RAMs can work for very small
contexts, but we will be forced to steal valuable embedded
BlockRAMs away from the FPGA application for larger, real-
world communication requirements.

To overcome the twin challenges of high packet latencies
(packet switching) and high storage costs (time multiplexing),
we propose the hybrid Marathon NoC in this paper. Marathon
retains the switching hardware of Hoplite to deliver fast and
lean routers. It introduces a minimal scheduling context mem-
ory at the PE injection port to record when to inject a packet
into the network. Marathon also needs an offline static sched-
uler that simulates the Dimension-Ordered Routing (DOR)
routing function of Hoplite routers when finding paths in the
network and adjusts the injection timeslot to ensure conflict-
free routing. In contrast with time multiplexing, Marathon is
unable to choose arbitrary paths in the network and must
accept a slight degradation in routing quality. However, as
we will discover, our solution still outperforms both Hoplite
and classic Time Multiplexing while lowering resource costs
by a large margin. For instance, in Figure 1, we show a
preview of the area (LUTs) and time (ns) required to route the
142K packet add20 communication workload (sparse matrix-
vector multiplication kernel). Here, Marathon is roughly 2.5⇥
faster than Hoplite and 30% cheaper than conventional Time
Multiplexing.

In this paper, we develop Marathon to make the following
key contributions:

• Design and engineering of the Marathon Processing El-
ement (PE) RTL2 and associated implementation on a
Virtex-6 LX240T FPGA.

• Development of a space-time router for static scheduling
of user-supplied communication workloads that fit bulk-
synchronous and dataflow models of communication.

• Quantification of performance and mapping cost of
Marathon NoC against Hoplite and Time-Multiplexed
FPGA NoCs.

II. BACKGROUND

In this section, we introduce the key principles behind the
operation of FPGA NoCs and discuss our initial design to
establish a starting point for further investigation.

2The NoC Router RTL is already available from the software repository at
fpga.org/hoplite.

FIFO

M
ux

FI
FO

Mux

address+
payload

depth

PE
Route
Arbiter

muxsel

(a) Packet Switching

PE

M
ux

Mux Context
Memory

payload

depth

muxsel

(b) Time Multiplexing

Fig. 2: Packet-Switched and Time-Multiplexed NoC
Routers.

A. Switching Styles
Packet-switched routers process packets arriving from dif-

ferent incoming directions and dispatch them along appropri-
ate outgoing directions based on a routing function and some
congestion management strategy. Simple deterministic routing
functions such as Dimension Ordered Routing are designed to
avoid deadlock in the network by eliminating certain turns in
the NoC. The congestion management logic improves routing
performance by fairly distributing outgoing port bandwidth
using locally available congestion information at the switch.
The specific implementations may be buffered [11], [5] or
deflection-routed [7]. In Figure 2a, for the buffered packet-
switched router, arriving packets must first queue inside the
FIFO awaiting their turn. The routing and congestion logic
selects the appropriate input-output combination to be serviced
in a given clock. For the deflection-routed, packet-switched
router (e.g. Hoplite), arriving packets do not queue in a FIFO
and are instead hot potato [4] routed to available output
ports. On one hand, this eliminates the need for expensive
FPGA buffers, but on the other hand, packets can often deflect
multiple times resulting in long worst-case routing delays.

Time-Multiplexed routers also essentially forward incoming
packets to outgoing ports but without the need for FIFO
storage or any dynamic decision-making logic in the switch.
This is possible as the static router is programmed with
switching decisions that are made by a traffic compiler offline
before the workload is processed by the NoC. This allows the
statically-scheduled network to avoid queueing or deflections
in the network by keeping a complete view of congestion
and occupancy information. In Figure 2b, we observe that
cycle-by-cycle routing decisions must be stored in the context
memory that supplies control information to the output multi-
plexer. Time multiplexed routers also do not need any address
information to accompany the packet as they already know
where the packet is headed thereby saving precious wiring
resources. However, the physical implementation size of a
time-multiplexed switch varies with the number of cycles re-
quired to route a given workload on a given system size. Each
switch must provision sufficient storage, best implemented
as a compact Xilinx SRL shift register, to store multiplexer
decision per cycle.

● ● ● ● ● ● ● ● ●

100

1000

1 2 4 8 16 32 64 128 256
PEs

Ar
ea

 p
er

 S
w

itc
h

(6
−L

U
Ts

)

● Hoplite
Time−Mux Fixed Cost
Time−Mux Variable Cost

Fig. 3: Area Comparison of Hoplite and Time
Multiplexing. 16K messages, RANDOM traffic.

●

●

●

●

●

●

●

●

●

1000

10000

1 2 4 8 16 32 64 128 256
PEs

C
yc
le
s

● Hoplite
Time−Mux

Fig. 4: Performance Limits of Packet Switching when
routing 16K packets generated using RANDOM pattern.

B. Limitations of Packet-Switched and Time Multiplexed NoCs

In Figure 3, we quantify the resource requirements for
a packet-switched Hoplite switch against a time-multiplexed
switch. The time-multiplexed switch has a fixed cost compo-
nent that is purely the cost of implementing wide multiplexers
on the FPGA, and a variable component that is the cost of
storing the multiplexing decisions in memories (Xilinx SRL-
based RAMs). The fixed cost portion is marginally larger than
Hoplite as the multiplexers support more routing connections
(full crossbar) than dimension-ordered routing (DOR) sup-
ported by Hoplite. The bulk of the cost at smaller PE counts
comes from context memory required to store the multiplexing
decisions. As we need more cycles to route a fixed set of
messages with fewer PEs, the size of the context memories
is large. As we scale system size to more PEs, the variable
cost reduces as we are able to route the complete workload in
fewer cycles. However, this only helps at large system sizes.

Next, we identify the limitation of packet switching net-
works when considering performance in Figure 4. While
Hoplite switches are small, the communication workloads
suffer a large number of deflections for congested packets. In
contrast, time-multiplexed routes are able to avoid congestion
by choosing a different timeslot for injection. Packet Switching
loses by as much as 2–3⇥ for large PE counts.

Message
 Memory

rdaddr

TI
M
E

Address
Address
Address

PA
C
KE

TS Payload
Payload
Payload

Address Payload
1
0
0
1
1
1

S

E

M
ux

Mux

N

W

valid+
address+
payload

Route
Arbiter

muxsel

incr.

address

Packet

payload

Hoplite
Switch

Static
Scheduler

Output

Counter

0

Context
Memory

valid

Fig. 5: Hardware Organization of Marathon NoC (Switch
and packet injection portion of PE shown, packet receipts

in PE are non-blocking).

III. MARATHON SOFT NOC ARCHITECTURE

In this section, we introduce our hybrid Marathon architec-
ture and identify the limitations and advantages through an
illustrative example. We also describe the software scheduling
engine used for time-multiplexed mapping.

A. Hardware
The key idea behind Marathon is to combine the benefits

of Hoplite (small resource use) and Time Multiplexing (high-
quality schedule). In Figure 5, we see this is achieved by
combining the Hoplite switch with a modified PE that injects
packets at pre-determined timeslots. The use of a Hoplite
switch without FIFO buffers, or context memories implies
that NoC implementation costs stay as cheap as Hoplite. It is
important that the NoC implements a DOR routing function
(or a similar, deterministic function) that is also implemented
identically in the software scheduler (details on software
scheduling in Section III-C). We also show a portion of the
PE which corresponds to the logic required to order packet
injection into the NoC. The extra cost imposed by the context
memory in the PE is identical to the cost of a time-multiplexed
PE and a small percentage of overall time-multiplexed context
cost that would otherwise be required. In a statically-scheduled
scenario, the entire communication workload needs to known
in advance – this corresponds to storing the Address field
in the Message Memory of the PE at configuration time.
The Payload can be calculated dynamically as required by

1 2 3

4 5

6

1

2

3

2 3

4

source

sink

source

sink

source

sink

deflection due to
congestion

avoid congestion
in space

avoid congestion
in time

0

1

2

210

(a) Hoplite (b) Time-Multiplexing (c) Marathon

Fig. 6: Comparing paths taken by a packet routing from PE (0,0) to PE (2,2) with congestion at cycle 3 for wrap-around
path from PE (0,2) to PE (2,2). Packet-switched route on Hoplite must deflect at cycle 3 and wrap-round in row 0.

Time-Multiplexed routes can take a non-Manhattan path that snakes to the destination. Marathon NoC simply delays
injection by a cycle while still taking a DOR path without any deflections or conflicts enroute.

the parallel application or workload. As packet injection is
scheduled, we need a 1b-wide Context Memory to store
valid bits for the packet and corresponding increment count
indication for the message address generation. The size of this
memory will need to be as long the number of cycles required
to route the entire communication workload and will generally
be larger than the total number of messages to be sent. As
the communication structure is known in advance, our static
scheduler organized the Message Memory in injection order
and simply uses the counter to decide which message is to
be read for transmission. The Context Memory bit serves
a dual purpose of incrementing the counter (read address)
as well as a valid bit for packet injection. Since contention
is impossible, we know that the injected packet will never
suffer a deflection and will smoothly arrive at the destination
PE using the DOR route. The software scheduler routes the
communication graph offline and keep track of used resources
when determining packet injection time.

B. Limits of Marathon

While it may seem that the Marathon NoC simply gives us
the best of both NoC styles, there is a possibility of quality
degradation when compared to classic Time Multiplexing. To
understand how this tradeoff is encountered, let us consider the
example shown in Figure 6. We show a comparative example
where we need to send a packet from PE (0,0) in the lower
left corner of the NoC to PE (2,2) in the upper right corner. In
a conflict-free routing case, we will simply follow the DOR
path of moving along the x-dimension first and then turning
south in the y-dimension to reach the destination. We assume
a hypothetical scenario where the turn from x-to-y dimension
encounters congestion i.e. some other packet is using the south
port at Switch (0,2). In this scenario, the different NoCs will
handle congestion in different ways, thereby clarifying their
mode of operation:

• Hoplite: The packet will simply deflect and continue in
the x-dimension for another round before returning to
the same turn. In this example, after one round-trip in
the row, the packet will not see any congestion and be
able to take the turn and reach the destination.

• Time Multiplexing: The static scheduler will be aware
of an impending congestion choke point and the breadth-
first search heuristic will direct the scheduler to use an
alternate path that avoids the congestion entirely. In this
case, we have routed around the congestion in space by
taking a non-DOR route. Notice how we take two turns
for this packet. To enable this route, the Time-Multiplexed
scheduler relies on configuring the switch to store the
routing decisions and steer packets accordingly.

• Marathon: Unlike Time Multiplexing, Marathon is re-
stricted to using a DOR route. This means we only have
freedom in time and can delay packet injection at the PE
to avoid the congestion hotspot. Thus, our packet will not
suffer any deflections like Hoplite, nor be able to take a
fastest available route like Time Multiplexing.

C. Static Scheduling

In Listing 1, we show the high-level Breadth-First Search
(BFS) algorithm that searches for the specific shortest path for
a given workload in both space and time. The actual computa-
tion is traditional multiple-source multiple-sink Breadth-First
search with a modification in the priority queue to hold cost
as well as the timestamp of a given segment in the route.
For Time Multiplexing, there are no restriction on how the
search wavefront proceeds for loop index k (line number 13
in Listing 1) – all unidirectional torus links can be searched
in both space and time. For Marathon, the neighborhood
expansion in loop k is done in Dimension-Ordered style
thereby restricting spatial freedom to strict DOR path. Failure
to find a route results in searching for a new route on a delayed

starting timeslot. This is also evident in Figure 6, where
Time-Multiplexed route is able to take two turns to reach the
destination sooner, while Marathon is more constrained and
can only avoid congestion by delaying the injection cycle.
Additionally, Time Multiplexing can naturally handle fanouts
using a single route tree RT in a manner similar to VPR
by restarting search for multiple fanouts from existing trees.
Hoplite and Marathon NoCs must serially inject a new packet
for each fanout. These differences form the basis of potentially
superior performance for Time Multiplexing. The benefit of
having a cheaper router permits more PEs to be accommodated
in a fixed-size FPGA chip, overcoming any potential loss in
route quality.

1 Q = priority queue; RT(i) = shortest path
2 // route each message in workload
3 for (message i: workload) {
4 // search over timeslots
5 for (time cyc: start to end) {
6 // initialize proprity queue
7 PQ.push(source(i),0,cyc);
8 while (!found_all_sinks || !PQ.empty()) {
9 // get cheapest wire

10 <wire,cost,time> j,cost(ij),t = PQ.pop();
11 // How fanout is populated differentiates
12 // Time-Mux vs. Marathon
13 for(wire k: fanout of j) {
14 // incr. timeslot and cost by 1 per hop
15 PQ.push(k, cost(ij) + 1, t+1);
16 if(shortest(k)) {
17 backtrace(k)=j;
18 }
19 }
20 }
21 }
22 }

Listing 1: Pseudo-code for BFS shortest path search for
Time Multiplexing and Marathon NoC scheduling. (not

showing backtracking or message fanout handling)

IV. METHODOLOGY

A. Hardware Mapping
We compile our NoC hardware blocks, written in Verilog, on

the Xilinx Virtex-6 LX240T FPGA device for rapid prototyp-
ing. We map the design to the FPGA using Xilinx ISE 14.7 and
supply PBLOCK floor-planning constraints to generate systems
as large as 10⇥10 switches and PEs. Apart from the Hoplite
switch, both Time Multiplexing and Marathon NoCs require
a variable component to resource utilization depending on the
Context Memory size which also affects clock frequency.

We report the resource utilization and frequency data in
Table I for a 32b design with N cycles of scheduling time.
For the Hoplite router, we do not require any supporting logic
overhead in the PE and consequently the PE LUTs entry is
zero3 Additionally, the Hoplite PE will require other datapath
logic and lightweight handshaking controls. For the time-
multiplexed router, we note that the bulk of the variable cost
due to context is placed in the router itself. We need a total of

3Technically, Hoplite PE does need to provide sufficient storage for sinking
all packets, but that requirement is valid for all NoCs in this paper.

TABLE I: Comparing the different NoCs
(32b payloads, Xilinx Virtex-6 LX240T). Period is for

N=32. 64b SRLs used to store context memories.

NoC Router PE Router Period
LUTs LUTs FFs (ns)

Hoplite 60 0 100 2.9
Time-Multiplexed 100 + 4⇥dN/64e dN/64e 100 3.4
Marathon 60 dN/64e 100 3.2

2b/mux and 2 outgoing ports for a total of 4b of multiplexer
select control. The PE needs a 1b vector to store injection
control decision. For the Marathon PE, as expected, we only
need to store 1b context in the PE to determine injection time.

B. Workloads and Metrics

Traditionally NoCs are evaluated with synthetically-
generated point-to-point workloads [1] with configurable injec-
tion rates. Under various traffic patterns and injection rates, the
sustained rates are recorded and compared. This is of limited
applicability for statically-scheduled networks as (1) we are
primarily interested in overcoming latency limits of packet
switching, and (2) perform an area-aware performance analysis
of the NoCs as they must be mapped to actual FPGAs.

This implies that we must record total completion time for
each workload (in addition to sustained rates) and characterize
metrics as a function of FPGA LUTs (in addition to PEs).
Furthermore, instead of purely relying on statically-generated
traffic, we also consider real-world communication traces In
this real-world scenario, we cannot vary injection rate directly,
but can control total communication workload size and bisec-
tion bandwidth. We measure key matrices such as total routing
time, injection rate (where applicable), congestion time and
network efficiency. We consider two sets of workloads:

• Statistically-generated point-to-point workloads: We
use standard NoC evaluation workloads including
RANDOM, LOCAL, TORNADO, BITREV patterns. Each of
these datasets are run from 16K packets with each packet
having one source and one sink. We do not vary injection
rate, but only control total workload size (i.e. number
of packets to be scheduled) and record the number of
cycles required to route the workload. This can be used
to calculate sustained rate.

• Sparse Matrix-Vector Multiplication (SpMV) work-
loads: We extract communication graphs from BSP
(Bulk-Synchronous Parallel) applications such as sparse
matrix-vector multiplication. Here each matrix row is
a node in the graph, while non-zeros in each row
corresponding to vector-element products become edges
in the graph. These communication traces are captured
and represented as dataflow graphs where packets can
have multiple sink nodes (multiple non-zeros in a matrix
columns). Again, we record total number of cycles re-
quired to route the workload. Matrices are selected from
the Matrix-Market dataset [2].

V. RESULTS

In this section, we discuss resource utilization, and per-
formance results for the different NoCs to understand the
engineering tradeoffs. We first evaluate the torus topology
against a mesh, provide resource and performance analysis
of Marathon.

A. Choice of Topology

●

●

●

●
● ●

● ● ●0

20000

40000

60000

1 k 10 k 100 k
Area (LUTs)

Ti
m

e
(n

s)

Fig. 7: Time-Multiplexed Routing Topology Selection
when injecting 16K packets with RANDOM workload. In
most cases, Mesh (red) is outperformed by Torus (blue).

Choice of topology has a strong impact on FPGA NoC
costs due to complexity of switch implementations and wiring
requirements. In Hoplite, the use of a unidirectional torus
instead of a bidirectional mesh significantly reduced the cost
of the crossbar within the switch and enabled a better match
the modern 6-LUT FPGA architecture. The original time-
multiplexed FPGA overlay paper [8] used the butterfly fat-tree
which was a better fit to the 4-LUT architectures in vogue
in that era (Virtex-2 XC2V6000 and Virtex-4 XC4VLX100).
However, subsequent studies [10]4 showed the high cost
of latencies in the upper stages eliminated any advantages
over ordinary bidirectional meshes. This early work did not
consider the torus in their analysis. Inspired by Hoplite, we
revisit this briefly to evaluate whether a torus-based time-
multiplexed NoC delivers competitive performance against a
mesh-based time-multiplexed NoC. In Figure 7, we compare
the performance of the 2D bidirectional mesh against a torus
when routing the add20 workload (142K packets extracted
from sparse matrix-vector multiplication) for various system
sizes. We count the area required by the complete NoC (switch
multiplexers + context memory + PE context) on a newer
Virtex-6 LX240T 6-LUT design. The unidirectional torus
delivers cheaper, better-performing NoCs at small system-
sizes. At larger system sizes when performance saturates the
torus and the mesh have indistinguishable performance. For
this paper, we restrict all our comparison to the unidirectional
torus-based NoCs.

4Figure 6.1, Page 48, http://thesis.library.caltech.edu/2335/1/final.pdf.

●

●

●

●

●

●

● ●

●

● ●
● ●

●

●

● ●

●

Marathon Time−Mux

40

60

80

100

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
PEs

%
 o

f A
re

a
in

 C
on

te
xt

● 1024
2048
4096
8192
16384

Fig. 8: Impact of Workload Size (colors) on the Cost of
Time-Multiplexed and Marathon Switch

B. Context Overheads
While we organized the per-switch costs in Table I earlier,

we show the effect of size of the workload being mapped on
the cost of Time-Multiplexed and Marathon NoCs in Figure 8.
Here we calculate overhead as Context LUTs as a % of
Total LUTs required. As the Marathon NoC only requires a
1b context to be stored in the PE for injection control, the
overheads are 2–3⇥ lower compared to overall NoC costs.
For instance, when routing a larger workload requiring 1K
cycles, the Marathon NoC overheads are only 30% vs. Time
Multiplexing overheads of 70%. These trends generally stay
true for other cases evaluated in the paper.

C. Statistical Patterns

●

●

●

●
●

●
●

●

●

1000

10000

1e+05

100 1000 10000
Area (LUTs)

Ti
m

e
(n

s)

● Hoplite
Marathon
Time−Mux

Fig. 9: Comparing NoC Performance for Hoplite, Time
Multiplexing and Marathon when routing identical

RANDOM workload with 16K packets.

Back in Figure 4, we showed how Time Multiplexing
outperformed Packet Switching when routing RANDOM work-
load with 16K packets while considering only PE counts
(actual cost of PEs and routers not considered) and measuring
performance in terms of cycles. In Figure 9, we show the
same data by accounting for physical resources costs (x-axis

●
●

● ●●●●●●●●●●●●●

●

●
●

●●●●●●●
●●●●●●

●

● ●

●●●
●●●●●

●●●●●

●
●

●
●
●●●●●●●●●●●●

● ● ● ●●●●●●●●

RANDOM LOCAL TORNADO BITREV TRANSPOSE

100

1K

10K

100

1K

10K

100

1K

10K

100

1K

10K

100

1K

10K

100 1K 10K 100 1K 10K 100 1K 10K 100 1K 10K 100 1K 10K
Area (LUTs)

Ti
m

e
(s

)

● Hoplite Marathon Time−Mux

Fig. 10: Evaluating the NoCs with various statistically generated traffic patterns – a total of 16K packets injected for each
pattern. For almost all patterns Time Multiplexing delivers substantially better sustained rate ⇡0.5. For Marathon NoC,

only the RANDOM traffic pattern routes particularly well while the rest are 2–3⇥ less capable. Hoplite is beaten in all cases.

is LUTs instead of PEs) and clock frequency (y-axis is time
instead of cycles). Now we see that for small system sizes
(< 500 LUTs), the ordinary Hoplite-based NoC offers the best
runtime (least time required). Above this tiny system size,
the Marathon NoC overwhelmingly dominates performance
edging out Time Multiplexing entirely. The smaller routers and
negligible loss in route quality ensures that Marathon provides
the best solution in this space.

In Figure 10, we show the effect of varying area on
total routing time (and sustained rates) required to schedule
16K packets under various statistical patterns. Overall we
see that the total time taken to route the entire workload
generally decreases with more area up to a limit. Broadly,
Time Multiplexing delivers better performance than Hoplite
in all cases above 2–3K LUTs (⇡36–50 PEs) which is ex-
pected due to higher quality scheduling. The specific traffic
patterns seems to have virtually no impact on time-multiplexed
router performance as our greedy router is limited by the
scheduling order more strongly than the distribution of packet
traversal locations. For Hoplite, performance saturates rather
early >1K LUTs with the LOCAL pattern showing fastest
performance. For Marathon, we see the randomly-generated
traffic patterns delivering better performance than locality-
based traffic and even exceeding (slightly) the performance of
Time Multiplexing. This counter-intuitive observation is linked
to the ordering of routes available during static scheduling
(line 3 in Listing 1). This effect where randomization performs
better than locality-rich traffic has been previously observed
in the Connection Machine [14], [6]. The randomization
effects allow the static router to avoid pathological worst
cases of congestion that are otherwise handled by Hoplite
though simple deflections. For most traffic patterns (except
LOCAL and TORNADO), Marathon outperforms Hoplite by
2–10⇥, but is slower than Time Multiplexing by as much
as 2–5⇥ at larger system sizes. For these adversarial traffic
scenarios, the restrictions imposed on sequencing routes (line
3 in Listing 1) can be eliminated and a VPR-like multi-pass
heuristic deployed to improve performance (future work).

D. Real-World Traces

In Figure 11, we show the effect of routing the add20
sparse matrix-vector workload with 142K messages at various
sizes. The Hoplite NoC is only useful at a couple of small
system sizes below 500 LUTs. Beyond that the Marathon NoC
generally delivers best performance. The Time-Multiplexed
NoC catches up and marginally outperforms Marathon only
at almost 20⇥ larger system size ⇡100K LUTs.

●

● ●

●

● ●
●
●
●
●
●●

●

●●●

●●

1000

10000

1e+03 1e+05
Area (LUTs)

Ti
m

e
(n

s)

● Hoplite
Marathon
Time−Mux

Fig. 11: Comparing Marathon with Hoplite and Time
Multiplexing for the 142K message add20 benchmark.
Highlighted data-points correspond to those shown in

Figure 1

When considering a range of real-world traces extracted
from bulk-synchronous sparse matrix-vector computations,
the Marathon NoC deliver better results compared to both
Hoplite and Time Multiplexing by 1.3–2.8⇥ (mean 1.4⇥)
when considering best-performing designs. In the case of
add20 benchmark, the static scheduling order as well as
DOR restrictions result in very similar performance for time
multiplexing and our hybrid design. But, for other benchmarks
we evaluate, Marathon easily beats both Hoplite and Time

add20.mtx

bomhof_circuit_1.mtx

bomhof_circuit_2.mtx

hamm_memplus.mtx

simucad_dac.mtx

10 1000
Time (ns)

Hoplite Marathon Time−Mux

Fig. 12: Comparing NoC routing time for sparse
matrix-vector multiplication (best performance achieved).

Multiplexing unlike the case with synthetic locality where time
multiplexing wins be a large margin at larger system sizes.

VI. DISCUSSION

Time Multiplexing has been explored in the design of video-
processing SoCs [9] and high-performance architectures [15]
to permit software optimizations to deliver fast implementa-
tions of communication while making better use of limited
silicon budgets. In contrast, modern FPGAs are much larger,
but lightweight time-multiplexed NoCs can still permit devel-
opers to use available LUT budgets effectively to parallelize
their intended computations. A notion of static reservation of
NoC bandwidths was discussed in [12] that allows conven-
tional packet-switched hardware to deliver higher quality of
service for critical communication requirements in a NoC. The
underlying NoC router hardware used in that study required
expensive embodiments of virtual-channel based routers and
modifications to the complex flow control schemes to support
flit reservation. In contrast, Hoplite packet-switched routers
are more amenable for FPGA mapping by using substantially
simpler flow control and complete elimination of virtual chan-
nel and queuing logic. Furthermore, our time multiplexing
enhancements to Hoplite require no modification to actual
router hardware. The idea of time-multiplexed NoCs tailored
for FPGA fabrics was initially explored in [8] to clearly
identify the space of opportunities (application characteristics,
injection rates) for time multiplexing when compared to tra-
ditional packet switching architectures. Our work shows how
to allow higher quality time multiplexing algorithms to work
with cheaper packet-switched hardware to go beyond vanilla
time multiplexing.

VII. CONCLUSIONS

It is possible to build smaller, faster and more efficient
FPGA NoC structures by combining (1) packet switching
routers which allow fixed-sized implementation of switches,
with (2) time-multiplexed packet injection at the processing
nodes that enables low latency scheduling of routes. This

hybrid approach permits lower overall cycle counts and better
congestion management in the FPGA NoC. In this paper, we
demonstrate the capabilities of such a hybrid Marathon NoC
that is as much as 10⇥ faster than state-of-the-art Hoplite
FPGA NoC and 1.2⇥ faster than a Time-Multiplexed FPGA
NoC when routing synthetic workloads with the RANDOM
traffic pattern. For communication traces extracted from real-
world traffic patterns, Marathon outperforms both Hoplite and
Time Multiplexing by 1.3–2.8⇥. A key consideration when
designing the hybrid routers is the apriori knowledge of the
workload which promotes applicability of such designs to
sparse linear algebra kernels, signal processing benchmarks
or other computational domains with predictable communica-
tion patterns. Despite being restricted to deterministic routing
algorithms, our space-time router is able to deliver superior
performance due to better scheduling optimizations within the
restricted search space.

REFERENCES

[1] P. Abad, P. Prieto, L. G. Menezo, A. Colaso, V. Puente, and J. A.
Gregorio. TOPAZ: An Open-Source Interconnection Network Simulator
for Chip Multiprocessors and Supercomputers. Networks on Chip
(NoCS), 2012 Sixth IEEE/ACM International Symposium on, pages 99–
106, 2012.

[2] R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and JJ. The Matrix
Market: A web resource for test matrix collections. Quality of Numerical
Software: Assessment and Enhancement, pages 125–137, 1997.

[3] J. Brassil and R. Cruz. Bounds on maximum delay in networks with
deflection routing. Parallel and Distributed Systems, IEEE Transactions
on, 6(7):724–732, Jul 1995.

[4] W. J. Dally and B. P. Towles. Principles and practices of interconnection
networks. Elsevier, 2004.

[5] Y. Huan and A. DeHon. FPGA optimized packet-switched NoC using
split and merge primitives. In Field-Programmable Technology (FPT),
2012 International Conference on, pages 47–52, Dec. 2012.

[6] Z. Johan, T. J. Hughes, K. K. Mathur, and S. L. Johnsson. A data
parallel finite element method for computational fluid dynamics on the
connection machine system. Computer Methods in Applied Mechanics
and Engineering, 99(1):113–134, 1992.

[7] N. Kapre and J. Gray. Hoplite: Building austere overlay nocs for
fpgas. In Field Programmable Logic and Applications (FPL), 2015
25th International Conference on, pages 1–8, Sept 2015.

[8] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson,
M. Wrighton, and A. DeHon. Packet switched vs. time multiplexed
FPGA overlay networks. In Proc. 14th IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 205–216. IEEE,
2006.

[9] A. Laffely, J. Liang, P. Jain, W. Burleson, and R. Tessier. Adaptive
systems on a chip (asoc) for low-power signal processing. In Signals,
Systems and Computers, 2001. Conference Record of the Thirty-Fifth
Asilomar Conference on, volume 2, pages 1217–1221 vol.2, Nov 2001.

[10] N. Mehta. Time-multiplexed FPGA overlay networks on chip. PhD
thesis, California Institute of Technology, 2006.

[11] M. K. Papamichael and J. C. Hoe. CONNECT: re-examining conven-
tional wisdom for designing nocs in the context of FPGAs. In the
ACM/SIGDA international symposium, page 37, New York, New York,
USA, 2012. ACM Press.

[12] L.-S. Peh and W. Dally. Flit-reservation flow control. In High-
Performance Computer Architecture, 2000. HPCA-6. Proceedings. Sixth
International Symposium on, pages 73–84, 2000.

[13] A. Rohe, S. Teig, H. Schmit, J. Redgrave, and A. Caldwell. Operational
time extension, Sept. 8 2009. US Patent 7,587,698.

[14] L. G. Valiant. A scheme for fast parallel communication. SIAM journal
on computing, 11(2):350–361, 1982.

[15] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal.
Baring it all to software: Raw machines. Computer, 30(9):86–93, Sep
1997.

