Preventive Detection of Mosquito Populations using
Embedded Machine Learning on Low Power loT Platforms

Prashant Ravi
prashant014@e.ntu.edu.sg
School of Computer Science and

Uma Syam
uma005@e.ntu.edu.sg

School of Computer Science and

Nachiket Kapre

nachiket@uwaterloo.ca
Electrical and Computer

Engineering Engineering Engineering
Nanyang Technological University Nanyang Technological University University of Waterloo
Singapore Singapore Waterloo, Canada.
ABSTRACT

We can accurately detect mosquito species with 80% accu-
racy using frequency spectrum analysis of insect wing-beat
patterns when mapped to low-power embedded/TIoT hard-
ware. We combine energy-efficient hardware acceleration
optimizations with algorithmic tuning of signal processing
and machine-learning routines to deliver a platform for in-
sect classification. The use of low power accelerator blocks
in cheap embedded boards such as the Raspberry Pi 3 and
Intel Edison, along with performance tuning of the soft-
ware implementations enable a competitive implementation
of mosquito classification task on standard datasets. Our
approach demonstrates a concrete application of embedding
intelligence in edge devices for reducing system-level energy
needs instead of simply uploading sensory data directly to
the cloud for post-processing. For the mosquito classifica-
tion task, we are able to deliver classification accuracies as
high as 80% with Intel Edison processing times as low as
5ms per set of 8K audio samples and an energy use of 5mJ
per sample (2 months of continuous non-stop use on an AA
battery with 2000 mAh capacity or longer depending on in-
sect activity). We envision a network of connected sensors
and embedded/IoT platforms deployed in vulnerable areas
such as construction sites, mines, areas of known mosquito
activity, ponds, riverfronts, or other areas with standing wa-
ter bodies. In our experiments, targeting a 20% packet loss
rate, we observed the ad-hoc WiF'i range for mesh networks
using the Raspberry Pi 3 boards to be 14 m while the Pho-
ton board connecting to infrastructure WiFi router nodes
can stretch this to 35m.

1. INTRODUCTION

Vector-borne diseases such as malaria and dengue account
for 17% of all infectious diseases, causing more than a million
deaths annually [1]. It is estimated that almost 2.5 billion
people in over 100 countries are at risk of contracting dengue

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ACM DEV ’16, November 17 - 22, 2016, Nairobi, Kenya

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4649-8/16/11...$15.00

DOIL: http://dx.doi.org/10.1145/3001913.3001917

Lo

| |
0 448

Figure 1: Global Distribution of Dengue, Zika and
Chikungunya incidents from April to June 2016.
Data from Healthmap.org [4]. Scale from green
(low) to red (high).

alone. Malaria causes 600 000 deaths every year globally,
most of them children under 5 years of age. To compound
matters further, other diseases such as Chagas disease, leish-
maniasis, and schistosomiasis affect hundreds of millions of
people worldwide. In Figure 1, we show the geographical
distribution of Zika and dengue incidents reported across
the world over a three month period from February to May
2016. The data shows that the highest density of dengue
and Zika incidents are concentrated in the Americas and
South-East Asia making this a challenge in many develop-
ing countries. However, with high incidence rates in the US,
Canada, and mainland Europe, this challenge is shared by
the developed world as well. Disease control has a particu-
larly severe socio-economic impact on the developing world.
The impact of dengue fever in just eight countries alone:
Brazil, El Salvador, Guatemala, Panama, Venezuela, Cam-
bodia, Malaysia, and Thailand results in monetary losses of
$1.8 billion every year [2]. In the Americas, dengue fever was
estimated to cost, on average, about $2.1 billion annually
(2009 estimates [3]). Despite these abysmal statistics, many
of these diseases are preventable through informed protec-
tive measures [1]. Considering these high costs of treatment,
it is considerably cheaper to invest in preventive measures.
There are a number of existing methods that different
countries use for early detection of vector borne diseases.
For example,
e In India, the method of Sentinel Surveillance [5] is used
in order to obtain data regarding dengue and chikungunya

outbreaks under the National Vector Borne Disease Con-
trol Programme (NVBDCP). Under this approach, a set
of specific sentinel hospitals are monitored for cases of
vector-borne diseases [6]. Once alarms are raise in these
sentinel hospitals, corrective measures are activated as ap-
propriate. The cost of diagnostic facilities and kits limits
the deployment of this programme to specific sentinel hos-
pitals. As a result of these cost-constrained measures, the

actual number of dengue cases were under-reported by a

factor of 282x [7] in 2006-2012.

e The National Environment Agency (NEA) in Singapore
creates awareness regarding dengue outbreaks by marking
geographical clusters [8] that are prone to outbreaks based
on historical data. A cluster is declared when two or more
cases have emerged within 14 days and are located within
150m of each other. This method relies on waiting for
two infections to be detected before kick-starting control
measures. Unlike India, the economic pressures on Singa-
pore are lower, and hence the analysis of data is based on
hospitals island-wide across the tiny country. The NEA
has offices and well-equipped labs in all hospitals across
the country to track these metrics.

e Mexico uses Syndromic Surveillance [9] to trigger imple-
mentation of control measures. This is based on collect-
ing data on patient symptoms during doctor visits. While
this approach still waits for symptoms to manifest, con-
trol measures are applied before a disease is confirmed,
thereby saving valuable time.

Thus, despite some variations in effectiveness and cover-
age, most of the early detection mechanisms discussed above
wait for the disease to actually manifest through symptoms
of confirmed outbreaks in human patients before any control
action is taken to prevent a wider outbreak. Countries and
national agencies need not wait for symptoms or confirma-
tion of diseases prior to activating control measures. In this
paper, we focus on a technological solution to these real-
world challenges through the design of early-warning elec-
tronic systems. In particular, we are interested in low-cost
implementation of electronic components of a sensory in-
frastructure that processes wing-beat frequencies to identify
and classify species of mosquitoes. We combined machine
learning techniques with hardware-software co-optimization
of the classification algorithm on a low-power embedded
hardware platform to deliver our solution. The classified
data could be transmitted over any telematics medium to
the disease control authorities in order to initiate preven-
tive measures. We envision a mesh of connected low-cost,
low-energy classifier hardware units operating in high vul-
nerability zones such as swamps, construction sites, flood-
prone roads, hospitals and other areas. An early-warning
system built on analysis of this data can help deploy limited
preventive resources in a developing environment where it
is needed the most. While we focus on mosquito analytics
in this paper, there are many other vectors that can trans-
mit infectious diseases between humans or from animals to
humans. Beyond mosquitoes, other vectors include ticks,
flies, sand-flies, fleas, triatomine bugs and some freshwater
aquatic snails but their impact on spreading disease is rel-
atively low. Our technological platform approach can be
easily reconfigured to support detection of specific features
of other vectors as appropriate.

The key contributions of this paper include:

1. Optimization of the software stack for implementing ana-

lytics of wing-beat frequencies on an embedded platform
through precision analysis, and parallelization.

2. Performance and Power-Usage Analysis and Tuning of the

software stack on a set of hardware platforms with on-chip
accelerators, such as the Raspberry Pi 3, and Intel Edison.

3. Radio power and throughput analysis for low-energy com-

munication infrastructure.

4. Evaluation of the effectiveness of our classification ap-

proach on the Mosquito wing-beat dataset.

2. WING-BEAT CLASSIFICATION

While there are various solutions for analyzing and track-
ing insect populations, they are labor intensive and are use-
ful for passive scientific analysis rather than active predic-
tive purposes. Microsoft Project Premonition [10] aims to
develop cloud-connected insect traps and drone-based insect
collection devices. It relies on gene sequencing of pathogens
to track their propagation in the environment. Instead of
this expensive trap-based approach, our idea is to rely on
inexpensive wing-beat sensors [11] that track insect wing-
beat frequencies to classify and track species. This approach
forms the basis of this paper.

2.1 Background

The effectiveness of the classification depends on the relia-
bility of wing-beat frequency to classify insects as belonging
to a particular species. The work in [11] shows that funda-
mental frequency as a classification parameter can deliver
high accuracy detection of mosquito species. This idea of
using wing beat frequency to classify insects dates back to
the early 1900s [12]. During these early years, the scientists
used bulky acoustic microphones for recording the wing-beat
sound. But this technique possesses various limitations like
sensitivity to wind and to ambient noise [13]. Batista et.
al overcame this limitation by proposing a clever low-cost
optoelectronic sensor arrangement [11].

The sensor arrangement consists of a laser beam and a
photo-transistor array which is connected to an electronic
board, and the laser is made to point at the array. When an
insect flies across the laser beam, it causes small light fluctu-
ations which are captured by the photo-transistor array as
changes in current, and the signal is filtered and amplified
by the custom designed electronic board which converts the
changes in current into sound. The laser beam uses laser
pointers as cheap as 99 cents and phototransistors similar
to those employed in commodity TV remote controls. Ac-
cording to the authors, the entire sensor setup can be built
in under $5.

Once the wing-beat sound is recorded, we must post-
process the data to identify the insect species. The detection
of certain kinds of insects or species can then be used by the
health and environmental authorities to deploy corrective
measures. The solution proposed in [11] requires logging
the audio data in mp3 format followed by offline data analy-
sis of the signals using analytics techniques implemented in
Matlab on a PC. This approach is manual, time-consuming
and delays corrective measures. A preliminary implementa-
tion that attempts to embed processing in the sensor was
presented in an Arduino DUE [14]. However, the solution
is power hungry and was not suited for high throughput
classification in battery-operated environments. Our work
provides a comprehensive exploration and solution for selec-
tion of a suitable, low power, embedded platform along with

| 4K—16K audio samples

Extraction

v

o [¢]
[¢] [¢]

o fy

© o

o o
o

o [¢] o
Bayesian

Classification

Figure 2: High-Level View of the Computational
Flow of Insect Classification. (For our application,
kNN is a 1-D problem)

associated software and communication optimizations.

2.2 Algorithmic Flow

‘We show a high-level view of the complete wing-beat clas-
sification flow in Figure 2. The key steps of the underlying
algorithm are explained below:

e FFT: First, we compute the Fourier Transform of the un-
known wing-beat audio samples to determine the funda-
mental frequency, which is the parameter used for the clas-
sification. The FFT can be mathematically represented
as:

N-—1
X(k) =Y am)e? Tk =01, . N=1 (1)
n=0

where, N is the number of samples in input signal x(n)
The fundamental frequency is determined as the frequency
corresponding to the maximum FFT magnitude in the
wing-beat frequency range.

e k-Nearest Neighbor (kNN): The next step is to com-
pute the distance of the unknown sample’s fundamen-
tal frequency with every value in the training frequency
set. We compute the Euclidean distance for the one-
dimensional data set as the absolute value of the difference
between the two frequencies, which is given as:

D = |F; = Fol;)

F; is the i'" sample frequency from the training set.

F, is the fundamental frequency of the input audio.

The computed distances are inputs to the kNN algorithm
and indicate the probability of belonging to a particular
species. The kNN algorithm identifies the k nearest neigh-
bors to the unknown mosquito’s frequency. This is given
by the k frequencies corresponding to minimum distance
values. The value of k with the best accuracy works out to
be eight for our dataset. To keep the system scalable, we
do not continually update the clusters with newly sampled
data.

e Bayesian Classifier: While there are multiple classifi-
cation algorithms, we select the Bayes classifier due to its
performance in minimizing the probability of misclassifi-
cation [15]. The classifier is conservative in both CPU and
memory requirements which makes it particularly well-
suited for an embedded mapping. The ability to allow
the incorporation of auxiliary features also supports our
classification choices for this task, as it can gracefully in-
corporate evidence from multiple sources and in multiple
formats. The probability values are The Bayesian classi-
fier identifies the unknown insect sound based on probabil-
ity computations. computed from the knowledge of eight
nearest neighbors and the fraction of frequencies clustered
around a particular insect class. The conditional probabil-
ity of extracted frequency belonging to a class is computed
as:

P(F)Cs) = ke, [ki=1,2,3 (3)

P(F1/C;) is the probability of the fundamental frequency
of unknown insect F} belonging to a class C;.

kc, is the number of frequencies belonging to class C;
among the eight frequencies selected earlier.

Finally, the insect sound is classified as the class which
resulted in maximum probability.

3. IMPLEMENTATION

In this section, we describe the key implementation con-
siderations when mapping the insect classification task to
an embedded device. Our approach addresses several cru-
cial engineering concerns such as (1) addressing the selection
of a suitable embedded device(s) for the complete task from
the vast set of possible IoT platforms, (2) the extent of as-
sociated algorithmic and software transformations that are
possible for improving performance and lowering energy use
, as well as (3) determining the ideal balance between radio
communication and embedded computation in the device.

3.1 Choice of Embedded Hardware

In the extreme, we only really need a sensor connected
to a radio-capable board with Bluetooth or WiFi support
that allows easy uploading of sensory data directly to some
central server node. While this seems convenient, the en-
ergy cost of radio communication of raw data is high. For
instance, it would cost us 300400 mJ of energy to commu-
nicate 8K samples of audio data using a highly efficient Par-
ticle Photon board with an efficient Broadcom BCM43362
WiFi chip. Under continuous use, this translates into a mere
20 hour lifetime with a 2000mAh AA battery. Instead, we
investigate the potential to perform lightweight computation
on the embedded board to reduce the communication band-
width needs and lower overall energy use. For instance, an
optimized implementation of the algorithm, shown earlier

\ 4

FFT + Max Freq. Extraction

kNN

\ 4

Bayesian Classify

// Declare FFTW wariables
fftw_complex *in, *out;
fftw_plan p;

}
// Compute FFT
size = sizeof (fftw_complex) * FFT_SIZE;
in = (fftw_complex*) fftw_malloc(size);

// Compute Euclidean 1D distances
for(count = 0; count < NUM_SAMPLES; count++) {
diff [count] = fabsf(diff[count] - maxfreq);

// Pick k Nearest Neighbours (k=8)
for(i = 0; i < K; i++) {

// Determine class count

if (idx <1000) {
++class_count [0];

} else if(idx >= 1000 && idx < 2000) {
++class_count [1];

} else {
++class_count [2] ;

out = (fftw_complex*) fftw_malloc(size); for(j = 1; j < NUM_SAMPLES; j++) { ¥

p = fftw_plan_dft_1d(FFT_SIZE, in, out,
FFTW_FORWARD, FFTW_ESTIMATE);
fftw_execute(p);

min = diff[j];

idx = j;
// Compute maz frequency ¥
max_freq = max((sqrt(out[i] [0]*out[i] [0] + }
out [i] [1]*out [i]1[1])); }

if(diff[j] < min) {

min_vals[i] = diff[j];

diff[idx] = FLT_MAX;

// Determine conditional probability
for(i = 0; i < NUM_CLASS; i++) {
prob[i] = (float)class_count[i]/K;
if (prob[i] > max_prob)
max_prob = probl[il;

}

Figure 3: Pseudocode Sketches of the underlying algorithm and arithmetic.

in Figure 2, on an Intel Edison platform, we require 5ms
of compute time and under 5mJ of energy. This represents
an ~80x reduction in best-case energy use stretching the
battery life to around 2 months. This allows the device to
be powered for long periods of time over a battery and be
deployed even in remote, hard-to-service locations such as
swamps, gutters, and large construction sites.

Specifically, we consider a set of boards optimized for com-
pute (Arduino DUE, Raspberry Pi 3, and Intel Edison) along
with those optimized for communication (Particle Photon
3). Our eventual solution combines two platforms instead
of using a single one for both tasks resulting in sub-optimal
overall behavior. In order to lower overall power consump-
tion, it is essential that we rapidly perform our computations
in short bursts as energy consumed is directly proportional
to time. We can then put the systems in low power standby
modes wherever supported to extend battery lifetime. The
communication hardware is activated infrequently to send
summarized digests once a day as appropriate.

e Arduino: They are trendy and easy to program devices
that are available off-the-shelf. The low peak power pro-
file of the Arduino, the vast community support, ease of
peripheral integration, makes it particularly attractive.
However, their compute capacity is somewhat limited,
particularly when compared to other platforms such as
the Raspberry Pi 3 and Intel Edison. Arduino DUE does
not natively have radio/WiFi support but can be extended
with a suitable shield extension card.

e Particle Photon: This is a relatively new development
board with similar peripheral support like the Arduino.
The Photon has a much more powerful processor and also
has an in-built Broadcom WiFi module with its own cloud
support. This makes the Photon particularly well-suited
for our task requiring communication capabilities.

e Raspberry Pi 3 and Intel Edison: In comparison with
the Arduino and the Particle Photon, the Intel Edison
and the Raspberry Pi 3 platforms are far more powerful.
Their processors also provide in-built hardware accelera-
tion blocks that are well-suited for energy-efficient accel-
eration of computations such as FFTs. In addition, some
of these boards can be put into a low-power sleep mode
when not in use in order to save energy even further.

3.2 Optimizations

At a high level, we have the opportunity to optimize the
implementation of the classification code in various ways.

We show the software code sketches of the three key com-
putational blocks in Figure 3.

Hardware Accelerators: Preliminary mapping experi-
ments on the different boards suggested that the FFT com-
ponent takes up almost 80-90% of the overall runtime of
the code. The FFT component can be accelerated through
the use of hardware accelerator blocks such as SSE [16] (In-
tel Edison) or VideoCore GPUs (Raspberry Pi 3). These
accelerators can help speedup this component by up to 2x
(see Section 5 for more details). Furthermore, with the use
of parallelism across multiple cores (Intel Edison), there is
scope for further performance improvements through the ex-
plicit use of OpenMP [17] multi-threading extensions. The
rest of the code blocks in Figure 3 are organized in the form
of for-loops. These are also easy to parallelize and map to
the SIMD accelerator units such as SSE (Intel Edison) and
NEON [18] (Raspberry Pi 3). Thus, we can push the hard-
ware capabilities to their fullest extent by careful use and
exploitation of available accelerator resources. The easy-
to-use Arduino environments typically do not expose these
opportunities resulting in wasted capacity.

Precision Reduction: The overall effectiveness of the
implementation is measured in terms of the final classifica-
tion accuracy of the code. The baseline implementation uses
expensive floating-point hardware that is slower and results
in high storage costs for the 32b data types. We also con-
sider the impact of reducing precision to 16b fixed-point data
types. This allows us to use integer arithmetic units and
greater parallelism in the SIMD blocks (SSE and NEON)
along with reduced storage costs. This reduction in preci-
sion is supported through the use of KissFFT library [19]
that allows configurable data-width support.

Compiler optimizations: Finally, it is possible to direct
the C/C++ compilers to optimize your implemented code
in specific ways. For instance, to compile the code with
OpenMP pragmas we must use the compiler flag ~fopenmp.
In case of Intel Edison, we had to use the -msse2 flags to
explicitly make use of the SSE unit[20] [16]. This auto-
vectorizes the code and run parts of the code in parallel in
the SSE unit. In the Raspberry Pi 3, this auto-vectorization
on the NEON unit is enabled by the flag -0fast. Further-
more, we also use loop unrolling, reassociation and other
arithmetic transformations by means of compiler flags to
tradeoff precision for speed. This is acceptable as long as
overall classification accuracy is unaffected.

Table 1: Comparing Embedded/IoT Platforms.

Table 3: Power Usage of Embedded/IoT Platforms.

Arduino Particle Raspberry Intel
DUE Photon PI3 Edison
Arch. Cortex- Cortex- Cortex-A53 x86
M3 M3
Cores 1 1 4 2
Cache 32KB L1 32KB L1 16KB L1, 56KBLI,
512KB L2 1MB L2
DRAM 96KB 128KB 1GB 1GB
Freq. 84 120 1200 500

(MHz)

4. METHODOLOGY

In this section we describe the key technical specifications
of the various embedded/IoT platforms and compare their
potential. It is important to note that these datasheet spec-
ifications may not directly translate into equivalent appli-
cation runtimes due to various factors such as accelerators,
software optimizations, and other platform-specific consid-
erations. However, they give us an overview of the rich set
of platforms that are available with varying capabilities and
relative strengths.

In Table 1, we enumerate the important metrics of the var-
ious platforms in terms of CPU capacity, memory potential
and speed. We also highlight the radio capabilities of these
platforms as they are important for quantifying communi-
cation energy and time to compile the classification results.
We list the compilation stacks, libraries, and operating sys-
tems used in Table 2.

The fundamental difference that separates these platforms
is the choice of ARM-based processors or x86-based ones.
The vast majority of embedded software tools and ecosys-
tem is already built around the ARM platform with the
x86 systems being very recent entrants into this space. For
the IoT/connectivity-oriented applications, the distinction
may not matter much if the energy profile meets application
requirements. Even within the ARM family of products,
there are micro-architectural differences between the low-
cost, low-performance, low-energy Cortex-M3s and more ca-
pable, but higher energy Cortex A-53s. Hence, we must tune
the classification algorithm carefully for each device so as
to extract best results. Barring the Arduino which needs
special shields, the chosen platforms support WiFi protocol
stacks out of the box which is crucial for communication of
classification results efficiently.

The Arduino DUE and Particle Photon are relatively low-
end platforms, but they are cheap and can be programmed
very quickly using well-established, easy-to-use tool flows
with lightweight OSses or bare-metal modes. They have rel-
atively low on-chip RAM capacity which makes it difficult

Table 2: Software Toolchains

Device Raspberry Intel Edison Particle Pho-
Pi3 ton
(O] Debian Ubilinux Free RTOS
Jessie Lite
Kernel 4.14 3.13 N/A
Compiler gee 4.8.4 gee 4.8.1 arm-none-
eabi-gcc
5.3.1
Acceleration GPU_FFT OpenMP 4.0 None
Library release 3.0
Timing Lib. PAPI 54.3 PAPI5.4.3 Particle API

Board Voltage Current (mA)

(V) I I I3 Iy
Raspberry Pi3 5.1 0.2 0.2 0.24 0.26
Intel Edison 5.1 0.03 0.08 0.09 0.15
Particle Photon 5.1 0.02 0.04 0.06 0.06

I,=Sleep Current, Ix=Stead-state no radio, Is=Stead-state
with radio, Iy=active current.

to process long sample sequences of wing-beat recordings.
In contrast, the Raspberry Pi 3 and Intel Edison platforms
are significantly more powerful, support larger RAM capaci-
ties and can even support complete operating systems. This
directly translates into a greater energy efficiency potential
for the more capable boards as they are able to rapidly pro-
cess incoming data with minimal expensive off-chip activity.
Both the Raspberry Pi and Edison platforms provide ac-
celerators that can help significantly speed up data-parallel
computations. For instance, nested for loops can work in
SIMD parallel fashion on NEON (Raspberry Pi) and SSE
(Edison) hardware units. Furthermore, the Raspberry Pi
has a Broadcom VideoCore IV GPU that can run graphics
computations in parallel. With suitable extensions, we can
use the GPU to perform other parallel tasks such as FFTs
that are a key component of our application.

A final factor that matters to an energy efficient imple-
mentation is the cost of leakage current or effectiveness of
standby modes. We expect our devices to be activated in-
frequently when a mosquito or insect flies past the sensor
assembly. This means, we must be able to power down the
board very effectively and wake up on demand without wast-
ing energy. Particularly, in the case of a battery-operated
unit out in the field, we want to maximize the lifetime of
operation. In Table 3, we tabulate the standby currents of
the different platforms. All currents are represented in mA.
I refers to sleep current, I> refers to steady state current
without radio, I3 refers to the steady state current with ra-
dio and I represents the current drawn during computation.
The Photon offers the lowest currents across the board while
Edison is superior to the Raspberry Pi 3 in this comparison.

4.1 Wing-beat Datasets

We use audio samples from [21] for our analysis. The
benchmark samples represent three species of mosquitoes
being classified, namely Culex stigmatosoma (fermale), Aedes
aegypti (female), and Culex tarsalis (male). The dataset
contains a thousand audio samples per species for a total of
three thousand samples. The original audio files provided
are used for training the classification models. A subset of
these samples is used for testing and evaluating prediction
accuracy. A Matlab-formatted mat file contains fundamen-
tal frequencies corresponding to three thousand audio files
that are used for verification of correctness.

Each audio file contains the mosquito wing-beat sound
centered and zero-padded elsewhere to create a one-second
long audio sample. This results in each audio file containing
16384 samples. The raw data is processed in floating-point
or fixed-point representations depending on the hardware
platform. We also extract subsets of the audio stream to
evaluate its effect on accuracy while significantly saving on
FFT compute times.

S. RESULTS

In this section, we describe the results of various perfor-
mance and energy metrics of the different software algo-
rithms on the hardware platforms. We also quantify the
accuracy of classification on mosquito detection datasets to
help certify the correctness of our implementations.

5.1 Initial Benchmarking

We first microbenchmark the various IoT/embedded plat-
forms for suitability of use for our problem. While we nar-
row down the vast set of potential platforms to those listed
in Table 1 shown earlier, we must identify a few promis-
ing candidates. We run FFT computations cross various
boards used in our study and plot the resulting trends, as a
function of a number of input samples, in Figure 4. As ex-
pected, the runtime increases with sample count with large
gaps opening up between the different platforms. The pop-
ular Arduino board is the slowest of them all taking as much
as 2-3x more time than the nearest competitor. The Par-
ticle Photon board is popular among IoT enthusiasts due
to its connectivity options, but it is only marginally faster
than the Arduino. The two stand-out platforms in this ini-
tial analysis are the Intel Edison and the Raspberry Pi 3
boards. Their runtimes are as much as 100x faster than the
Arduino implementations. This speed is important for intel-
ligent edge devices. If we can quickly digest large volumes
of audio data into small nuggets of information that can be
periodically sent to a data collection server, we can lower
the overall system cost and the energy requirements for ra-
dio transmissions at the edge. This is because energy use
is proportional to time as most platforms roughly consume
2-3 W of power. For small sample counts, the Raspberry Pi
3 offers faster evaluation but the Intel Edison outperforms
the Pi at sample counts beyond 2K. This crossover is im-
portant, as the larger sample counts generally deliver higher
classification accuracy for detection.

Now that we have narrowed down the promising platforms
to two, we try to understand the runtime breakdown across
the different constituent components of the classifier. As
shown in Figure 5 for 8K samples, we see that the FFT
dominates overall runtime on both platforms. This is not
unexpected as the FFT computation scales as N X log(NN)
where N is the number of samples. The data read from
the sensor consumes <10% of the time while the final K-
means and Bayes classification also take up ~10% or less.
As we can see, the total runtime gap between the two boards

Arduino DUE Particle Photon
Intel Edison == Raspberry PI 3
_. 100
0
£
£
[1 —

i

256 512 1K 2K 4K 8K
Number of Audio Samples

Figure 4: Initial Benchmarking of the different Em-
bedded/IoT Hardware Platforms.

[Audio Read [FFT [l Diff. Compute [l Bayes Classify

Raspberry PI 3 I I .

Intel Edison | | | |

1 2 3 4 5 6 7 8 9 10 11
Time (ms)

Figure 5: Performance runtime breakdown of differ-
ent compute stages of the Classifier.

is not large, but when logging a large number of detection
events, this translates into non-trivial energy reduction. The
plot also suggests that we need to first focus our optimiza-
tion efforts on the FFT component of the flow as it is the
most dominant. As we will show subsequently, we can do
this either through software optimizations such as precision
modification or sample pruning, or through acceleration.

5.2 Hardware Optimization

We now investigate the impact of using hardware ac-
celerators and optimization flags that help produce high-
performance code on the two embedded platforms. In par-
ticular, we look at the low-hanging fruits such as compiler
flags, and the use of optimized libraries. The first case we
consider labeled as opt1 simply chooses the -Ofast flag in
GCC when compiling the classifier code. This automatically
enables vectorizing optimizations such as the use of SSE in-
structions on the Intel Edison, and NEON instructions on
the Raspberry Pi’s ARM CPU. The case labeled as opt2
takes into account further optimizations that are possible
through the use of additional coding to use parallelism in
the form of multiple threads on the dual-core Intel Edison
and GPU offload that is possible on the exotic VideoCore
GPUs of the Raspberry Pi 3.

First, in Figure 6, we show the shows the impact of accel-
eration on the overall execution time of the classifier. The
trends show a significant 2-3x reduction in the overall com-
putation time for both devices when various stages of opti-
mizations are applied. The computations are done for 8K
samples of data, (1) in floating point precision on Raspberry
Pi 3, and (2) fixed-point precision on Intel Edison so as to
compare the fastest possible implementations on the respec-
tive platforms. This choice has an impact on accuracy as
we show later in Section 5.3. Without any optimizations,
both platforms are roughly equivalent in their capabilities.
As we start to apply optimizations cumulatively, a perfor-
mance gap opens up between the two platforms. The use of

12
10 Intel Edison
== Raspberry PI 3
w 8
E
o 6
IS
s 4
2
0

Un-Opt Optl Opt2

Figure 6: Impact of Hardware and Software opti-
mizations on performance.

simple SIMD optimizations (-0fast) delivers the first 1.5~
2x reduction in runtime. The next stage of optimization
involves GPU offload (Raspberry Pi 3) and OpenMP (for
Intel Edison). When this optimization combines with the
earlier optimization, we achieve a cumulative 2-3x reduc-
tion over the baseline unoptimized mapping. Thus, simply
through the use of SIMD parallelism, and multi-threading
(OpenMP) or GPU offload, we are able to accelerate our
code by a large margin. Thus, we observe an overall reduc-
tion in wall-clock time from 10-11 ms down to 4-6 ms for the
classifier operating on 8K samples of input.

5.3 Software Optimization

Now that we are able to squeeze 2-3X in performance
through the clever use of embedded hardware, we turn our
attention to understanding the accuracy impact of precision
and sample count pruning on overall accuracy. Ultimately,
we want to classify insects with highest possible accuracy
at a reasonable cost in runtime or energy per classification
event. Thus, we consider two FFT libraries fftw and kiss-
fft that implement the FFTs in floating-point and fixed-
point precision respectively. These are compiled and opti-
mized for embedded platforms. For reference, we also con-
sider a version of FFT that has been hand-coded for the
VideoCore GPU in assembly — we term this gpu-fft.

In Figure 7, and Figure 8, we plot the accuracy trends for
the various libraries when considering the Intel Edison and
Raspberry Pi 3 platforms respectively. The original insect
classification paper [13] used 16K samples for the classifi-
cation processes, but we evaluate shorter lengths here as
well. In both plots, we see an accuracy peak at 8K sam-
ples, and only a slight degradation at 4K samples (mostly
equivalent to the 16K accuracy). This trend could be asso-
ciated with the fact that the 16K samples are mostly zeroes
used for padding. This suggests that there is an opportu-
nity to significantly reduce classification time and energy by
simply using a smaller burst of data. This may correspond
to the periodicity of the wing-beat patterns of various fly-
ing insects and would likely need to be tuned per insect
profile. We also see that fixed-point kiss-fft generally
delivers equivalent accuracy as compared to floating-point
precision thereby helping reduce runtime and energy fur-
ther. However, when using the Raspberry Pi GPU, the use
of sample lengths smaller than 16K results in a monotonic
decrease in classification accuracy. This is likely due the
non-IEEE compliant nature of the floating-point arithmetic
units on the GPU that are optimized for visual accuracy
rather than pure arithmetic accuracy. Finally, the 33% clas-
sification floor is due to the fact that our classifier generates
one of three mosquito classification outputs and is likely to
be correct by sheer luck one out of three times even when
predicting a fixed outcome. For practical purposes that is
equivalent to a null result.

As indicated earlier, the scaling trends of an FFT compu-
tation are N x log(N) which suggests a potential for sub-
stantial reduction in runtime as we reduce N. In Figure 9,
we show the effect of the number of samples of audio data
used for classification on the accuracy of classification and
runtime of the computation. It can be seen that irrespective
of the type of FFT we use, when the number of samples
used for computation increases, the computation time in-
creases as expected. Furthermore, correlating from Figure 7
and Figure 8, we also observe that accuracy is higher for

80
FFTW

—_ s KisSFFT
S 60
>
S 40
>
o
(&)
< 20

0

512 1K 2K 4K 8K 16K
Samples

Figure 7: Effect of FFT size, and FFT precision on
accuracy (on Intel Edison)

80
FFTW
& GPU FFT =
$ 60 KissFFT
Z
& 40
> A A
[&]
Q
< 20
0

512 1K 2K 4K 8K 16K
Samples

Figure 8: Effect of FFT size, FFT precision, and
GPU accelerator on accuracy (on Raspberry Pi 3)

8K samples than 16K. More importantly, we see a 1.2—-1.4x
reduction in runtime for a 5-20% increase in accuracy when
moving from 16K samples to 8K samples. The use of 4K
samples results in only a ~4% reduction in accuracy (to
71%) but a 1.1-1.4x reduction in time.

5.4 Energy Analysis

Finally, we quantify the energy requirements of the dif-
ferent optimized implementations and contrast those with
communication energy. This data should help clarify the
need for embedding intelligence in the edge devices rather
that merely uploading all audio samples directly to a cloud-
based platform. Embedded classification on the board di-
rectly helps us avoid transmitting 16K samples of data for
each event, and potentially pruning and sending a summa-
rized digest at infrequent intervals instead. The energy data
is for the Intel Edison platform when using WiFi to commu-
nicate events.

To understand the extent of improvement from our ap-
proach, we show a comparison of data transfer energy costs
for the different platforms in Figure 10. Here, we clearly see
the Particle Photon outperforming all other platforms by 2—
10x when considering the energy efficiency of transfer. This
is expected, as the Photon board is geared towards better
connectivity. As we see later in Section 6.1, this makes an
integrated platform that includes the Photon board a key
piece of the final solution.

In Figure 11, we compare the cost of transferring the di-

15
FFTW 16k
o KissFFT
» 10
£
g 16k Ak 8k
= 5 8k
4k
0
55 60 65 70 75

Accuracy (%)

Figure 9: Exploring the tradeoffs between accuracy
and runtime (on Intel Edison).

gested results as a function of number of detection events.
If we transmit a detection result after every few classifica-
tions, we see that the cost of compute overwhelms the cost
of data transfer in all cases. For our scenario, we can pe-
riodically send a digested count of the number and type of
insects or mosquitoes detected rather than activate the ra-
dios after every event. Despite this apparent imbalance in
energy costs, we still cannot send all input data to the cloud
for post processing; the energy cost of transferring the 8K
audio samples is 1000 mJ which is 20x larger than the 5mJ
compute cost.

Finally, in Figure 12, we show the energy-time tradeoffs
on the two IoT boards and find a linear relationship between
these quantities. This means that it is possible to accelerate
the computation at the expense of choosing the more capable
board and consuming more energy. A specific board exhibits
a particular linear trend (slope) as we increase the sample
counts. The Intel Edison has a gentler slope and sacrifices
runtime for lower energy use. Specifically, in the extreme
ends of the curve, a doubling in compute time only results
in a 20% increase in energy. In contrast, the Raspberry Pi
3 has a steeper energy-time slope resulting in an approxi-
mate doubling of energy cost for a corresponding doubling
in compute time.

6. DISCUSSION

A closely parallel effort to ours in the insect classifica-
tion space is Microsoft Research’s Project Premonition [10].
It seeks to detect pathogens in flying insects early before

= Intel Edison
£ 1000 == Particle Photon
> Raspberry PI 3
@
c
L
3 100
2]
C
a
=
10

256 512 1K 2K 4K 8K 16K
Number of Samples

Figure 10: Quantifying the effect of data transfer
size on energy of radio (WiFi transfer).

60 Compute Ener

- H Transpfer Energg/y
5
E 40
>
2
(O]
20

0 . I:l_ |:|_ |

1 2 4 8 16

No. of Detection Events

Figure 11: Exploring the tradeoffs between com-
putation energy and communication energy (ra-
dio/WiFi on Intel Edison).

they get a chance to infect human populations. It does
this by treating a mosquito as a device that can find an-
imals and sample their blood. The project uses drones
and robotic mosquito traps to capture mosquitoes from
the environment, and then analyzes their body contents
for pathogens. Pathogens are detected by gene sequenc-
ing the blood collected from mosquitoes and computation-
ally searching for known and unknown pathogens in the se-
quenced genetic material. This approach not only helps find
unknown pathogens but also study the effect of their behav-
ior well in advance before they affect humans. Our approach
described in this paper is a little less clairvoyant in nature.
Our system aims at giving quick and accurate results and
is mainly targeted as a predictive tool for deployment in
various geographic regions to combat vector-borne diseases.
It is easily possible to augment the Microsoft Premonition
drone hardware with our platform to gather a richer set of
wing-beat data prior to pathogen analysis in a lab.

6.1 Deployment Configurations

We tabulate the approximate bill of materials for assem-
bling one sensor and compute block in Table 4. The sensor
unit comprising an optoelectronic sensor (laser pointer -+
custom photo-transistor board) costs under 58 when pro-
duced in bulk. Surprisingly, the embedded/IoT compute
boards require 7-10x higher budget than the low-cost sen-
sor. The communication-centric Photon board is 4 x the cost
of the sensor. This cost imbalance suggests various ways to
organize a network of interconnected sensors and compute
boards which we discuss here.

HES .
aspberry Pi
=10 16k
> 8 16k
g 5 4k =
0

3 4 5 6 7 8 9
Time (ms)

Figure 12: Overall Energy-Time tradeoffs for vari-
ous audio sample counts for the two boards.

Table 4: Bill Of Materials An effective use of

our embedded platform

is in a networked envi-
IS?{(:;;(E'effytufr’)i 3 25 ronment .Wit.h multiple
Intel Edison 53 sensors distributed geo-
Particle Photon 19 graphically over a large
area (swamp, riverside,
pond, construction
site). This form of multi-sensor installation would help
determine the concentration and spatial distribution of
mosquitoes over a vast area. Depending on the engineering
constraints, we may choose between two primary system-
level configurations for deploying this insect classification
platform. If performance and energy and the prime con-
cerns, an Intel Edison platform with a Particle Photon
coupled for radio transfers provides a somewhat expensive
but ideal solution. The Edison with SSE acceleration
can first be used to compute the signal processing and
machine learning computations rapidly. Then we can use
the in-built standby support for powering down the board
and lowering standby energy. The Photon will be used
for efficient radio transfers when required and powered
down when not needed. If cost is the primary concern, a
single-board solution based on the Raspberry Pi 3 (with
inbuilt WiFi radio + antenna) may be ideal. However, we
must still consider WiFi coverage areas to determine overall
system-level costs.

Item USD

WIFi/LAN/WAN
Infrastructure

Particle
Photon ‘

Intel
Edison

Sensor \ Sensor
Sensor Sensor

Figure 13: Energy-efficient tree network for well-
connected environments.

30 == Packet l0oss(%)
== Throughput(KBps)
20
10
0

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30
Distance(m)

Figure 14: Photon WiFi strength from router.

Well-connected environment with energy effi-
ciency target. In this scenario, we consider the case of
well-connected environments such as construction sites or
urban areas. Here, we can integrate multiple optoelectronic
sensors interfaced to one Intel Edison for signal processing
and machine learning tasks. We then provide radio connec-

tivity using a dedicated Particle Photon chip for low energy
transfers. While the Edison does have inbuilt WiFi antenna
and radio chip, it has a significantly higher energy cost. We
can then arrange this system in a tree-like network as shown
in Figure 13. This would be easier to deploy, maintain, and
update as it relies on infrastructure WiFi or LAN/WAN net-
work infrastructure. For instance, Singapore plans to have
island-wide connectivity for such low throughput urban sen-
sor deployments. In this case, the high cost of the hybrid
solution is worth the longer term reductions in energy re-
quirements. Additionally, when considering Figure 14, we
see that it is possible to place Photon nodes at a distance of
up to 35 m with 20% packet loss. With an external antenna,
it may be possible to push this to 100 m. As we see later in
Figure 16, the in-built antenna range for ad-hoc mesh on the
Raspberry Pi 3 yields a third of this range (=14 m). Thus,
from a system-level perspective, the high cost of one hybrid
node amortizes out over a larger physical space.

WiFi Ad-HoC

\

WiFi/LAN/WAN

/ \ Infrastructure

Sensor / \ Sensor

Sensor Sensor

Figure 15: Low-cost ad-hoc mesh in remote areas
with limited connectivity.

60 == Packet l0ss(%)
40 =+ Throughput(KBps)
20

0

012345678 910111213141516
Distance(m)

Figure 16: Raspberry Pi3 WiFi Mesh Network Sig-
nal Strength.

Poorly-connected environments with moderate
budget. In geographical areas with limited network con-
nectivity and cost concerns, it may be useful to design a
simple single-platform solution based on the Raspberry Pi
3. As the performance is on-par with the Intel Edison, we
expect the lower per-unit cost of the Raspberry Pi to be a
key deciding factor. We can then build an ad-hoc mesh be-
tween the Pi units as shown in Figure 15 to allow collecting
the resulting messages in a distributed fashion. This mesh
can be interfaced with a central server or network at just
one node reducing the need to rely on LAN/WAN coverage.

We implement the mesh network using batman-adv [22]
software package, which is an implementation of the
B.A.T.M.A.N. routing protocol [22]. batman-adv operates

entirely on ISO/OSI Layer 2, transporting the routing infor-
mation using raw data frames and handling the data traffic
in kernel space. Processing packets in userland is very ex-
pensive especially on low-end devices. batman-adv is imple-
mented as a kernel driver which introduces only a negligible
packet processing overhead even under a high load. The pro-
tocol encapsulates and forwards all traffic until it reaches the
destination, hence emulating a virtual network switch of all
nodes participating. Therefore all nodes appear to be link
local and are unaware of the network’s topology as well as
unaffected by any network changes or IP to participate.

We deploy an ad-hoc WiFi mesh between Raspberry Pi
3 nodes and characterize signal strength in Figure 16. We
record under 20% packet loss for distances as far apart as
14m. Longer ranges ~30m are possible with USB WiFi
dongles that add cost and energy beyond nominal.

7. CONCLUSIONS

We develop an embedded mosquito species detector us-
ing wing-beat frequency analysis implemented on low-power,
low-cost IoT platforms such as the Intel Edison, Raspberry
Pi 3 and Particle Photon platforms. We are able to deliver
80% classification accuracy while requiring 5 ms per detec-
tion even for 8 K samples of wing-beat audio data in under
5mJ of energy (2 months of AA battery life at 2000 mAh).
This allows us to develop a network of intelligent sensors
that can be deployed in vulnerable areas such as construction
sites, swamps, ponds and lakes, and infestation-prone urban
zones. A network based on the in-built WiFi capability of
the Raspberry Pi 3 IoT board can provide a communication
range of around 14 m between devices while one built using
Photon board provides a coverage of 35m. The network can
collectively help detect mosquito species populations trends
which can be useful to authorities for deployment of preven-
tive resources particularly in developing countries.

8. REFERENCES

[1] WHO. (2016, Feb) Vector-borne diseases. [Online].
Available: http:

/ /www.who.int /mediacentre/factsheets/fs387 /en/

[2] D. S. Shepard, L. Coudeville, Y. A. Halasa,

B. Zambrano, and G. H. Dayan, “Economic impact of
dengue illness in the americas,” The American journal
of tropical medicine and hygiene, vol. 84, no. 2, pp.
200-207, 2011.

[3] J. A. Suaya, D. S. Shepard, J. B. Siqueira, C. T.
Martelli, L. C. Lum, L. H. Tan, S. Kongsin,

S. Jiamton, F. Garrido, R. Montoya et al., “Cost of
dengue cases in eight countries in the americas and
asia: a prospective study,” The American Journal of
Tropical Medicine and Hygiene, vol. 80, no. 5, pp.
846-855, 2009.

[4] healthmap.org. (2016, Feb) Health map. [Online].
Available: http://www.healthmap.org/en/

[6] W. H. Organization. (2016, Feb) Sentinel surveillance.
[Online]. Available: http://www.who.int/
immunization/monitoring surveillance/burden/vpd/
surveillance_type/sentinel/en/

[6] 1. National Vector Borne Disease Control Programme.
(2009, Feb) Govt. of India initiatives for Dengue and
Chikungunya. [Online]. Available:
http://nvbdep.gov.in/dengue-goi-activities.html

[7] K. S. Jayaraman. (2014, Oct) Dengue cases
under-reported in India: study. [Online]. Available:
http://www.natureasia.com/en/nindia/article/10.
1038 /nindia.2014.135

[8] N. E. Agency. (2016, Feb) Dengue clusters. [Online].
Available:
http://www.dengue.gov.sg/subject.asp?id=74

[9] S. M. Lemon, P. F. Sparling, M. A. Hamburg, D. A.
Relman, E. R. Choffnes, A. Mack et al., Vector-borne
diseases: understanding the environmental, human
health, and ecological connections, workshop summary
(forum on microbial threats). National Academies
Press, 2008.

[10] M. Research. (2015, Jun) Microsoft Project
Premonition. [Online]. Available:
http://research.microsoft.com/en-us/um/redmond/
projects/projectpremonition/default.aspx

[11] G. E. Batista, Y. Hao, E. Keogh, and A. Mafra-Neto,
“Towards automatic classification on flying insects
using inexpensive sensors,” in Machine Learning and
Applications and Workshops (ICMLA), 2011 10th
International Conference on, vol. 1. ITEEE, 2011, pp.
364-369.

[12] M. C. Kahn, W. Celestin, W. Offenhauser et al.,
“Recording of sounds produced by certain
disease-carrying mosquitoes.” American Association
for the Advancement of Science. Science, pp. 3356,
1945.

[13] Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and
E. Keogh, “Flying insect classification with
inexpensive sensors,” Journal of insect behavior,
vol. 27, no. 5, pp. 657677, 2014.

[14] I. Potamitis, K. Fysarakis, D. Longueville, and
S. Ntalampiras, “Hardware implementation of a
system classifying the optoacoustic signature of insects
wing-flap.”

[15] L. Devroye, L. Gyérfi, and G. Lugosi, A probabilistic
theory of pattern recognition. Springer Science &
Business Media, 2013, vol. 31.

[16] S. Siewert, “Using Intel streaming SIMD extensions
and Intel integrated performance primitives to
accelerate algorithms,” White Paper, 2009.

[17] R. Chandra, Parallel programming in OpenMP.
Morgan Kaufmann, 2001.

[18] V. G. Reddy, “NEON technology introduction,” ARM
Corporation, 2008.

[19] M. Borgerding, “Kiss FFT,” 2009. [Online]. Available:
https://sourceforge.net /projects/kissflt/

[20] C. Lomont, “Introduction to Intel advanced vector
extensions,” Intel White Paper, 2011.

[21] Y. Chen. (2015, nov) Flying insect classification with
inexpensive sensors. [Online]. Available:
https://sites.google.com/site/insectclassification/

[22] D. Johnson, N. Ntlatlapa, and C. Aichele, “A simple
pragmatic approach to mesh routing using BATMAN,”
in In 2nd IFIP International Symposium on Wireless
Communications and Information Technology in
Developing Countries, Pretoria, South Africa, 2008.

