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Abstract—
Soft vector processors in embedded FPGA platforms such as

the VectorBlox MXP engine can match the performance and ex-
ceed the energy-efficiency of commercial off-the-shelf embedded
SoCs with SIMD or GPU accelerators for OpenCV applications
such as Saliency detection. We are also able to beat spatial
hardware designs built from high-level synthesis while requiring
significantly lower programming effort. These improvements are
possible through careful scheduling of DMA operations to the
vector engine, extensive use of line-buffering to enhance data
reuse on the FPGA and limited use of scalar fallback for non-
vectorizable code. The driving principle is to keep data and
computation on the FPGA for as long as possible to exploit
parallelism, data locality and lower the energy requirements of
communication. Using our approach, we outperform all platforms
in our architecture comparison while needing less energy. At
640⇥480 image resolution, our implementation of MXP soft
vector processor on the Xilinx Zedboard exceeds the performance
of the Jetson TK1-GPU by 1.5⇥ while needing 1.6⇥ less energy,
Beaglebone Black by 4.7⇥ at 2.3⇥ less energy, Raspberry Pi
by 9⇥ at 4⇥ less energy, and Intel Galileo by 28⇥ at 16⇥ less
energy. Our vector implementation also outperforms Vivado HLS
generated OpenCV library implementation by 1.5⇥.

I. INTRODUCTION

The availability of cheap embedded hardware and cheap
cameras are enabling a range of innovative applications in
embedded vision. Novel implementation domains such as
remote monitoring with drones, industrial vision, and home
automation along with medical image processing are a bur-
geoning market for these platforms where cost, power (energy)
and performance are simultaneously critical. Commercial off-
the-shelf embedded platforms are often based on ARM SoCs
but now ship with high-performance NEON SIMD engines
and CUDA-programmable GPU accelerators that can, in prin-
ciple, handle the challenging demands of vision processing.
Computations in computer vision are characterized by data-
parallel operations on image pixels that naturally fit the SIMD
organization of the NEON engines as well as the SIMT style of
GPUs. However, in practice, the limited DRAM bandwidths,
fixed ISA-based CPU organizations, limited cache capaci-
ties and inefficiencies in accelerators prevent these systems
from achieving their raw potential. When latency and power
considerations are strict, FPGA-based heterogeneous SoCs
based on Zynq are an attractive alternative. However, despite
performance and power advantages, FPGA programming is

ARMv7
32b 
CPU

NEON
SIMD

Vector
Scratchpad (64KB)

Offchip DRAM (512MB)

Zynq SoC

MXP Soft Vector Processor

Caches
(512 KB)

Hard
Processor

Fig. 1: High-Level Block Diagram of the Zynq SoC with the
VectorBlox MXP [9] Soft Vector Processor

beyond the capability of most embedded developers. To make
these systems truly viable to the broader embedded developer
community, we need to lower the development cost of spatial
hardware designs.

Recent attention to high-level synthesis (HLS) from Xilinx
(Vivado HLS, SDAccel) and Altera (OpenCL) suggests a
way for FPGA-based designs to bridge the productivity gap
with competing hardware platforms. Vivado HLS flow even
supports OpenCV library [2], [12] (an open-source computer
vision library) for simpler high-level specification of image
processing pipelines. However, this veneer of simplicity masks
the underlying system-level design challenges such as design
partitioning, hardware reuse, and data movement. The devel-
oper must manually select the buffering strategies to optimize
data movement subject to FPGA on-chip memory constraints
and consider limited FPGA logic capacity to carefully parti-
tion the design for maximum performance. The long FPGA
simulation and compilation time slows down the classic edit-
compile-debug design cycle, further discouraging prospective
developers. Additionally, when newer, more capable FPGAs
become available, the system-level design process needs to
be repeated all over again. While this is still preferred to



low-level Verilog-based flows, a productivity gap nevertheless
exists over embedded developers targeting SIMD and GPU-
based platforms.

Soft vector processors such as the VectorBlox MXP [9]
(shown in Figure 1) are a superior alternative to high-level
synthesis for OpenCV-based image processing computations.
Similar to NEON and GPU hardware, OpenCV pixel opera-
tions are a natural match to the data-parallelism available on
soft vector processors. Unlike NEON and GPU accelerators,
soft vector processors can be tailored to economically support
needed operations [6]. Similar to high-level synthesis, the soft
vector processors can be programmed directly in C/C++ albeit
using vector APIs. Unlike high-level synthesis, vector code
written once can run with little modification on other sup-
ported FPGA boards. While performance tuning and memory
optimizations are still needed, the degree of effort required
is substantially lower as all optimizations are possible using
conventional software programming flows.

The key contributions of this paper include:
• Development and functional verification of MXP vector
code for Saliency detection while including optimizations
for DMA memory transfers, line-buffering and compute
optimizations.
• Quantification of performance and power usage of the
MXP soft vector processor against a range of commercial
off-the-shelf SoC platforms for various image resolutions.
• Comparison of HLS-generated OpenCV spatial hardware
against MXP soft vector processor performance on the
Zedboard platform.

II. BACKGROUND

A. Saliency Detection
In this paper, we use Saliency detection as a case study

to compare and contrast different SoC architectures and pro-
gramming flows using high-level synthesis and vector pro-
cessing. Visual Saliency detection is a bottom-up model for
visual attention introduced in [5]. It is used to mimic the
neuromorphic pathways in humans and other primates to
help direct the focus of attention and understand complex
scenes in the natural environment. It is a computationally
demanding, but highly parallelizable application that struggles
to achieve real-time execution on modern hardware. Broadly,
Saliency detection operates on an input image in three compute
pipelines as shown in Figure 2 – (1) intensity, (2) color, and
(3) orientation, before a final saliency map is constructed.
Within each pipeline, the image is processed by a pyramid
filter, a center surround operation followed by a normalization.
A Pyramid Filter is a multi-level multi-resolution operation
that takes an input image, runs a 2D filter on it, subsamples
the resulting image and repeats this process several times
(5 levels in our case). A Center Surround operation com-
bines two input images at different resolutions, upsamples
the lower resolution image to equalize resolution of both
inputs and performs an absolute difference on these images.
Normalization adjusts all pixel values in the image by scaling
them with a factor computed from the largest pixel value
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Fig. 2: Saliency Processing Compute Stack (One
computation consists of 50 FILTER2D, 70 RESIZE, 64

ADDWEIGHTED and 5 NORMALIZE calls)

in that image. For obtaining the saliency map, we need to
compute a single intensity map, two color maps (Red-Green
and Blue-Yellow) and four orientation maps (four angles). This
application is a composition of multiple OpenCV functions
such as FILTER2D, RESIZE, NORMALIZE, ABSDIFF and
ADDWEIGHTED.

B. Zynq Embedded SoCs
We choose the Zynq-based Zedboard platform for our

experiments since we target applicability in the embedded
vision domain. The Zynq Z7020 SoC on the Zedboard contains
a dual-core 667 MHz ARMv7 32b CPU with a NEON SIMD
unit capable of 8-wide processing of 8b data along with
a 53.2 K LUT, 220 DSP-block, 560 kB BlockRAM FPGA
connected over AXI and ACP ports rated at 800 MB/s–2 GB/s.
The system-level power consumption of the Zedboard under
various configurations lies between 4–6 W. Hardware accel-
erators can be integrated with the host ARM CPU through
streaming communication channels mapped to the AXI or ACP
ports. In particular, for OpenCV applications, Xilinx provides
an AXI-VDMA engine which we use to move data rapidly
to/from the host DRAM to FPGA logic.

C. MXP Soft Vector Processor
The MXP soft processor, shown earlier in Figure 1, is

a multi-vendor, multi-platform configurable vector overlay
architecture inheriting from a long line of vector FCCM
designs stretching back to [11]. For the Zedboard, we can
accommodate a 100 MHz 16-lane 32b (or 64-lane 8b) MXP
implementation with a 64 KB scratchpad that interfaces with
the host ARM CPUs over the 880 MB/s AXI ports. MXP runs
a custom vector ISA and comes with an assembler that can
convert vector APIs written in C into appropriate low-level
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Zedboard Jetson TK1 Intel Galileo Raspberry Pi Beaglebone Black
Technology 28nm 28nm 32nm 40nm 45nm
SoC Xilinx NVIDIA Intel Broadcom TI

Zynq 7020 Tegra K1 Quark X1000 BCM2835 AM3359
Processor ARMv7 ARMv7 i586 ARMv6 ARMv7
Accelerator NEON, FPGA NEON, CUDA cores Nil Nil NEON
Clock Freq. 667 MHz CPU 2.3 GHz CPU 400 MHz 700 MHz 1 GHz

250 MHz FPGA 852 MHz GPU
On-chip 32 KB L1 32 KB L1 16 KB L1 16 KB L1 32 KB L1
Memory 512 KB L2 2048 KB L2 128 KB L2 256 KB L2

560 KB FPGA 64 KB L1 + CSM -
Off-chip 512 MB 2048 MB 256 MB 512 MB 512 MB
Memory 32b DDR3-1066 64b DDR3-933 32b DDR3-800 32b DDR2-400 16b DDR3-606
Steady-state Power 5.1 W 3.6 W 3.6 W 2.1 W 2 W

TABLE I: Datasheet specifications of various COTS embedded SoC platforms

vector instrinsics. The scratchpad memory is banked for fast
concurrent access to the various lanes and is fully managed
by software through the vector DMA API. For optimum
performance on image data, line buffers can be copied to the
scratchpad using efficient image row-sized DMA transfers over
the AXI ports. The scratchpad can be additionally tuned by the
programmer to support double-buffered DMA transfers to hide
memory loading costs. Within the context of chained OpenCV
evaluation, it is further possible to carefully pipeline multiple
function calls while keeping data resident in the scratchpad.
Additionally, as most OpenCV operations are on 8b data items
(few are 16b), the type specified in the instruction is decoded
by the soft processor to automatically switch from 16-lane 32b
design to 32-lane 16b design or 64-lane 8b design for higher
throughput pixel operations.

D. Embedded Platforms

Ultimately we are interested in choosing the most power
efficient platform for implementing embedded vision com-
putations. To support this quest, we compare performance
and power measurements across a set of low-power COTS
embedded systems such as the Jetson TK1, Beaglebone Black,
and the Raspberry Pi boards. In particular, we are interested in
comparing the performance and power efficiency of SIMD and
GPU acceleration wherever they are available. We tabulate the
raw operating specifications and micro-benchmarking results
of these platforms in Table I. From these raw specifications,
the faster 4-core ARMv7 CPU on the Jetson TK1 along with
its 192 CUDA cores and faster DRAM interface makes it
a formidable entry into this architecture comparison. While
aimed at applications with floating-point performance needs,
the Jetson TK1 ships with a GPU-optimized OpenCV library
that we use in our comparison. The Intel Galileo with its older-
generation CPU and small caches, low operating frequency
appears weakest in our set. The Beaglebone Black and the
Raspberry Pi and both mid-range platforms that have been pre-
viously deployed in embedded computer vision applications.

III. OPENCV IMPLEMENTATION ON FPGAS

In this section, we outline the computational requirements
of the Saliency stack, identify opportunities for parallelism and
describe our HLS and MXP programming methodologies.

A. Compute Requirements
Embedded vision computations typically operate on a

stream of image frames delivered to the processor from
the camera sensor. Saliency computations are notoriously
challenging due to the sheer complexity of the underlying
computations. A first-cut implementation of Saliency detection
running on the ARMv7 CPU without NEON optimizations
on 640⇥480 VGA frame requires 5.3s to process a single
image (⇡300M 8b integer operations) while consuming 4.6 W
of power on the Xilinx Zedboard. A NEON optimized imple-
mentation of the same code shows a substantial performance
improvement over vanilla CPU version to deliver a compute
time of 0.49s (10⇥ saving) at 5.7 W. This is not unexpected
as bulk of the calculations are arithmetic operations in the
2D filter resulting in high SIMD potential. In Table II, we
list the arithmetic and memory complexity of the various
image processing tasks required to assemble a complete
Saliency stack. While FILTER2D has large arithmetic inten-
sity (several multiply-accumulate operations per memory ac-
cess), NORMALIZE and ABSDIFF are memory bound, while
SUBSAMPLE and INTERPOLATE have irregular, staggered
memory accesses. In the final column of Table II, we show
the relative distribution of runtime for the various OpenCV
functions running on ARMv7 CPU with NEON acceleration.

OpenCV Arithmetic Operations Memory Operations Time
Function + ⇥ / Rd Wr (ms)

FILTER2D 8·W·H 9·W·H W·H 9·W·H W·H 18.2
SUBSAMPLE 2·W·H 9

4 ·W·H 1
4 ·W·H 5

2 ·W·H 1
2 ·W·H 4.8

INTERPOLATE 8·W·H 9·W·H W·H 9 1
4 ·W·H 2·W·H 18.7

ABSDIFF W·H 0 0 2·W·H W·H 1.6
ADDWEIGHTED W·H 0 0 2·W·H W·H 1.6
NORMALIZE 0 W·H W·H 2·W·H W·H 1.4

TABLE II: Arithmetic and memory complexity of leaf-level
OpenCV functions for W⇥H input image resolution along

with NEON runtime for 640⇥480 resolution images
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void cpu_filter2D(uint8_t *in, uint8_t *out)
{

// loop over row/col

for (int row = 0; row < M; row++) {
for (int col = 0; col < N; col++) {
int sop = 0;
// loop over 3x3 filter

for (int krow = 0; krow < 3; krow ++) {
for (int kcol = 0; kcol < 3; kcol++) {

sop += kernel[krow][kcol] *
in[row+krow][col+kcol];

}
}
out[row][col] = sop/scale;

}
}

}

Fig. 3: C implementation of 2D filter

B. Optimizing Soft Vector Performance

We first show a scalar representation of a 2D filter code
snippet in Figure 3 with doubly-nested for loops to process
each pixel and an additional doubly-nested for loops within to
process each kernel coefficient. The vectorized MXP version
of this code using the vector APIs is shown in Figure 4. You
can observe that the outer loop over rows is still retained and
controlled from the scalar CPU core, while the inner loop over
columns has been vectorized. Additionally, we also unroll the
kernel loops into separate vector API calls. This separation
allows a straightforward decoupling of memory and compute
operations, and encourages overlapping of compute and DMA
transfers. Note that it is possible to use an alternative form
of vectorization where the internal 2D kernel operation is
vectorized, but we observed faster performance when using
the row-level parallelization strategy shown in Figure 4.

Based on this example, we can generalize the MXP pro-
gramming strategy as consisting of three key components
which we illustrate in Figure 5:
• The scalar ARMv7 CPU allocates the input image buffer
in the memory for transfer to the MXP.
• The CPU then sends DMA API commands to the MXP
DMA engine to load the scratchpad with appropriate data.
• Finally, the vector instructions are sent to the MXP decoder
based on the vector API calls used in CPU code.

Using this flow, a straight-forward functionally-correct MXP
implementation of saliency can be easily developed. However,
there are opportunities for optimization that can improve
performance by as much as 40–50%. The choice of buffering
strategy is crucial to enable high-performance composition of
multiple OpenCV functions in a sequence. This fact has long
been recognized when designing high-performance streaming
spatial hardware and is not unique to vision applications.
However, choosing which mix of buffering strategies to use
and to what extent is still tricky. While we perform the
obvious double-buffering of inputs and outputs to overlap
vector computation with DMA memory transfers to/from the
DRAM, largest wins come from line buffering [13].

Line Buffering From the perspective of performance and

void vbx_filter2D(uint8_t *in, uint8_t *out)
{

// Allocate scratch pad memory DMA not shown

uint8_t top = vbx_sp_malloc(N);
uint8_t mid = vbx_sp_malloc(N);
uint8_t bot = vbx_sp_malloc(N);
// Allocated 9 buffers for 3x3 temp results

// top_11, top_12, top_13

// top_21, top_22, top_23

// top_31, top_32, top_33

for (row = 1; row < M; row++) // row loop

{
// load new row

vbx_dma_to_vector(bot, in+N*(row+2), N);

// multiply rows in unrolled fashion

vbx(SVBHU, VSHL, top_11, k_11, top);
vbx(SVBHU, VSHL, top_12, k_12, top);
vbx(SVBHU, VSHL, top_13, k_13, top);
// repeat for mid and bot rows

// add rows in unrolled fashion

vbx(SVBHU, VSHL, top_11, k_11, top);
vbx(VVHU, VADD, top_sum, top_11, top_12+1);
vbx(VVHU, VADD, top_sum, top_sum, top_13+2);
// repeat for other rows

// scale result and copy row back

vbx_dma_to_host(out+(N*row), out, N);

// update pointers

temp=top; top=mid; mid=bot; bot=temp;
}
vbx_sync();

}

Fig. 4: MXP implementation of 2D filter
(significantly simplified)

power constrains, keeping data in on-chip memories for as
long as possible is important for performance as well as power.
However, when processing large image frames on limited
hardware, this may not always be possible. This leads to two
strategies (1) limited use of line buffering in on-chip BRAM
wherever possible, and (2) relegation to frame buffering in
off-chip DRAM wherever necessary, for composing OpenCV
compute pipelines in hardware. We show an example OpenCV
function sequence f ! g in Figure 6 such that OpenCV
compute time is dwarfed by DMA transfer time. In this
situation, keeping data on-chip is great for performance as it
permits f and g to be scheduled back-to-back. Line-buffering
enables overlapped evaluation of downstream OpenCV func-
tions that can directly consume data from the scratchpad
thereby avoiding a round-trip to the DRAM. Even if OpenCV
compute times are longer than DMA times, avoiding DRAM
access is good for lowering IO power.

As an example, consider the PYRAMID FILTER calcu-
lation which contains an alternating series of FILTER2D
and SUBSAMPLE stages (up to 5 levels deep in our im-
plementation). When implemented in spatial hardware, these
can be implemented in dataflow streaming style where both
functions operate concurrently. For soft vector processors, this
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opportunity allows us to chain the OpenCV functions at the
granularity of rows (or lines) instead of entire frames by
scheduling consecutive row operations from the dependent
OpenCV functions together. While this form of parallelism is
natural for image processing pipelines, we must analyze func-
tion dependencies and memory access patterns across function
boundaries to enable this global optimization. The careful
reader may observe that this cannot be applied throughout
the compute pipeline – the Normalize operator breaks the
link by requiring a complete frame buffer accumulation before
applying a suitable scaling factor to all pixels. Additionally, the
64KB on-chip scratchpad capacity further limits the number
of rows that can be buffered before we must spill out into the
DRAMs. Line buffering is a critical optimization that helps
MXP performance approach that of fully spatial hardware
designs with streaming on-chip buffers.

Beyond buffering, there are various computation-related
optimizations necessary for efficiency:
• Variable-Resolution Pipelining Saliency is characterized
by variations in image resolutions through the execution
flow due to SUBSAMPLE and INTERPOLATE operations.
This means there is often a mismatch between input and
output data rates to the vector blocks resulting in a potential
for wasted cycles. A naı̈ve approach would offload the data
rearrangement functions back to the CPU, but that would
result in needless round-trip DMA transfers of data. Instead,
we use type conversion vector operations to repack 8b
data into 16b boundaries. While this is admittedly a slight
waste of parallel lanes, (1) this avoids DMA overheads,
by rearranging data in-place, and (2) keeps the hardware
permutation fabric simple by avoiding the need for an
expensive interconnect between the vector lanes that can
reduce operating frequency.
• Dead-pixel Removal: If we analyze certain OpenCV
function sequences, we realize that in some instances pixel
results are unused by the downstream operators. These
pixels are invisible to the rest of the compute stages and

FPGA Logic

ARMv7
32b 
CPU

Offchip DRAM

VDMA Engine
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Fig. 7: HLS Operation

can be considered dead pixels. We can safely remove the
computation associated with these pixels without affecting
correctness. An example of this is the FILTER2D and
SUBSAMPLE sequence where odd rows and columns can
be removed.

C. Optimizing High-Level Synthesis Performance
Traditional high-level synthesis tools compile high-level

C/C++ code blocks, typically organized as for loops, into
pipelined RTL pipelines with suitable streaming interfaces.
While its possible to directly compile the C code shown in
Figure 3 with synthesis directives and compiler hints, Xilinx
provides an alternative method that directly uses an optimized
OpenCV library. In Figure 8, we show the 2D filter being
described using the Vivado HLS OpenCV library approach.
The HLS compiler translates this description into pipelined
OpenCV RTL datapaths from their internal pre-synthesized
library. When integrating with the Zynq SoC, VDMA engines
are needed for connecting the AXI streaming interfaces of the
OpenCV datapaths to the DRAM where the frame buffers are
allocated. Such a streaming design where multiple OpenCV
datapaths are chained together with adequate internal buffering
is the key source of performance benefits of the FPGA fabric.

void hls_filter2D(AXI_STREAM& in,
AXI_STREAM& out)

{
GRAY_IMAGE in_img(ROWS, COLS);
GRAY_IMAGE out_img(ROWS, COLS);
// Convert in image stream to Mat

hls::AXIvideo2Mat(in, in_img);
hls::GaussianBlur<3,3>(in_img, out_img);
hls::Mat2AXIvideo(out_img, out);

}

Fig. 8: HLS implementation of 2D filter

For spatial pipelines generated by high-level synthesis, a
key consideration is whether the design will fit the intended
FPGA platform. In our case, preliminary experiments for a
640⇥480 design suggests that, for the Zedboard, we may be
able to barely fit an Intensity Map calculation on the FPGA
fabric. A fully spatial implementation of the complete design
is estimated to require ⇡11 Zedboards worth of logic. For
our application scenario, we are forced to perform logic reuse
within the allocated resource constraints. HLS-based directives
for resource sharing can help generate smaller footprints for
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Platform OS gcc Total Power (W)
g++ Active �

Zedboard Xillinux 1.3, MXP is bare
metal

4.6.3 5.7 (NEON)
6.4 (MXP)

1.3

Jetson TK1 Ubuntu 14.04 LTS v3.10.24 4.8.2 6.5 (NEON)
6.6 (GPU)

3

Beaglebone Ubuntu 14.04 LTS v3.8.13 4.8.2 3.2 1.2
Raspberry Pi Raspbian Wheezy v3.12.28 4.6.3 2.9 0.8
Intel Galileo Debian Wheezy v3.8.7 4.7.2 3.7 0.1

TABLE III: Platform Configurations across embedded
platorms, � is additional power over steady state power

reported in Table I.

the C/C++-based operators, but they sacrifice performance by
keeping large portions of hardware inactive taking away the
fundamental benefits of streaming spatial processing. In any
case, these pragmas have no effect on the OpenCV Vivado
HLS libraries as they come with pre-bundled synthesizable
cores that do not expose these optimization hooks. Yet another
acknowledged limitation of the OpenCV Vivado HLS design
flow, at present, is the need to instantiate multiple VDMA
blocks (or to multiplex the different streams carefully while
avoiding deadlock) to allow frame-buffering of intermediate
image frames when on-chip streaming implementation is not
possible. This limitation is particularly severe in the Saliency
compute stack as any partitioning of the flow shown in
Figure 2 produces dozens of streams that must be buffered
in the DRAM. Constrained by these limitations, we (1) in-
stantiate one copy of each of the leaf-level OpenCV functions
in hardware, (2) compose the larger application by frame-
buffering through the off-chip DRAM, and (3) instantiating
multiple VDMA engines for each image stream. We show a
high-level picture of our composition flow in Figure 7 where
the CPU helps load the input and intermediate images in the
DRAM through low-level control of the VDMA engine.

IV. METHODOLOGY

The goal of our experiments is to perform an architec-
ture comparison across various embedded SoC platforms and
quantify the gap between MXP and HLS-based FPGA pro-
gramming flows. For our OpenCV experiments, we install
and configure OpenCV v3.0.0 alpha across all the embedded
SoC platforms as it includes optimizations for NEON SIMD
parallelism. The OpenCV library is multi-platform and con-
tains various special cases and checks that often slow down
performance especially for small problem sizes. We also write
our own functionally equivalent but vanilla C implementations
in cases where better performance can be achieved. We rigor-
ously stress test the various platforms at multiple resolutions
from 240⇥160 upto 1920⇥1080 to identify trends and isolate
bandwidth bottlenecks. We compile Saliency OpenCV code
across all CPU/GPU platforms with the -O3 switch that
enables NEON vectorization. For the GPU implementation
of Saliency, we rewrite our reference implementation with
slight modifications to use GpuMat structures for holding
the 2D images and invoking the GPU-accelerated versions of
the OpenCV functions. For FPGA setup, we use the MXP
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soft vector processor release v0.0.6 (Xilinx Zedboard). When
using high-level synthesis, we use Vivado HLS 2013.4 along
with Vivado 2013.4 to run backend CAD. We execute MXP
vector processor while running the ARM CPU in bare metal
mode without any host operating system. For the ARMv7
experiments on the Zedboard, we use Xillinux-1.3 OS. We
tabulate the OS and compiler versions along with power usage
information across our experiments in Table III.

V. RESULTS

In this section, we describe our experimental results across
various embedded SoC platforms, provide a performance
comparison of MXP and HLS hardware while finally showing
the benefit of MXP tuning on overall MXP performance.

A. Comparison of Embedded SoC Platforms
We are primarily interested in uncovering the energy effi-

ciency for the FPGA implementation when compared to other
commodity SoCs. In Figure 9, we report the overall runtime vs.
energy per input frame required by the various SoC platforms
for an identical processing of a VGA 640⇥480 image. At this
resolution, the MXP and Jetson (NEON) outperform all other
systems requiring 176 ms of runtime (5.6fps) with the MXP
needing a marginally lower energy requirement of 1.12 J over
Jetson NEON’s 1.16 J. However, the Jetson GPU implemen-
tation is not only slower, running at 263 ms (3.8fps), but also

Zedboard NEON    

Jetson NEON      

Jetson GPU       

Zedboard MXP     

0.00 0.25 0.50 0.75 1.00
Energy Efficiency
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Fig. 10: Measuring FPS/Watt for Jetson and Zedboard
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less energy efficient consuming 1.8 J of energy. The rest of
the platforms are neither fast nor energy efficient compared to
the Zedboard MXP and Jetson NEON/GPU implementations.
We also show a breakdown total and dynamic power usage
of the different platforms in Table III. We plot the FPS/Watt
figures for the Jetson and Zedboard platforms in Figure 10
and observe that the MXP (FPGA) has better energy efficiency
compared to all other platforms at ⇡0.8 FPS/W.

We further quantify performance scaling trends at vari-
ous image resolutions in Figure 11 for the high-performing
Zedboard and Jetson TK1 platforms. At resolutions below
640⇥480, the 2.3 GHz Jetson ARMv7 CPU easily outperforms
all other platforms by a wide margin. And at the largest
1920⇥1080 resolution, the Jetson 192-CUDA core GPU beats
the MXP implementation by 40%. Across all resolutions, the
MXP is either second best or the best running implementation
(at 640⇥480 and 1080⇥720).

B. Optimizing MXP Performance
We consider various optimizations for improving the perfor-

mance and efficiency of MXP-based processing as quantified
in Figure 12 for the 640⇥480 case. We show constituent,
leaf-level OpenCV functions as well as a select few com-
posed higher-order OpenCV operations. Double buffering pro-
vides the first 10–12% improvements in performance for the
ADDWEIGHTED, NORMALIZE and FILTER2D stages. Our
initial implementation of SUBSAMPLE, and INTERPOLATE
would fall back to the scalar CPU due to the complexity of data
shuffling, but we rewrote the scalar code in a vector form that
admittedly underutilized the vector lanes. However, this still
allowed us to avoid the larger penalty of needless DMA traffic
yielding a significant additional 20% reduction in runtime.
When composing multiple higher-order OpenCV functions
such as PYRAMID FILTER, and CENTER SURROUND, we
are able to exploit data reuse and function overlap to reduce
runtime by an additional 20–25%. Finally, for the complete
Saliency computation, when combining all these optimizations
together, we observe a 40% reduction (almost 2⇥) in runtime.

Filter2D        

Subsample       

Interpolate     

Center Surround 

Pyramid Filter  

Saliency Map    

0 25 50 75 100
Relative Time

Line Buffering
Compress+Stretch

Double Buffering
Unoptimized

Fig. 12: Quantifying the impact of MXP Optimizations

OpenCV LUTs FFs DSPs BRAMs Time (ms)
Function (18kB) 640⇥480

FILTER2D 812 533 4 3 3.18
(% of FPGA) 1.5% 0.5% 1.8% 1%
RESIZE 6K 6.8K 16 2 3.331

11.5% 6.5% 7.2% 0.7% 6.42

NORMALIZE 2.2K 1.9K 4 3 3.12
4.3% 1.8% 1.8% 1%

ADDWEIGHTED 3.9K 2.6K 28 0 4.4
7.5% 2.5% 12.7% 0%

ABSDIFF 361 302 0 0 4.5
0.7% 0.3% 0% 0%

PYRAMID 26.3K 28.6K 68 11 8.9
FILTER 50% 27% 31% 4%
CENTER 5.9K 6.9K 16 2 1.7–6.43

SURROUND 11% 6.5% 7.2% 0.7%
INTENSITY 72.6K 70.2K 232 21 36.8
MAP 136% 66% 105% 7.5%
COLOR 100K 98.8K 300 32 87.5
MAP 189% 93% 136% 11.5%
ORIENTATION 406K 331K 1.1K 104 140
MAP 763% 311% 525% 37%

SALIENCY 578K 500K 1.6K 107 270
MAP 1088% 470% 766% 56%

TABLE IV: OpenCV HLS Utilization and Performance
(% values reflect utilization of the Zedboard capacity)

1subsampling 2interpolation 3depends on resolution

C. Comparison of MXP with High-Level Synthesis

Finally, we compare the performance of fully-optimized
MXP implementation against an HLS-based approach that is
forced to rely on frame-buffering to compose larger compu-
tations. Due to their frame-buffered implementation, overall
frame processing time for a 640⇥480 frame is 270 ms for the
HLS-based flow as compared to the 176 ms runtime of the line-
buffered MXP design. This performance is 1.5⇥ slower and
ultimately limited by DRAM access bandwidth. We show a
complete breakdown of resource utilization and runtime across
constituent OpenCV functions in Table IV. Resource numbers
are obtained from post place-and-route reports when design
fits the chip, and post-synthesis estimates otherwise.

7



VI. DISCUSSION

A. Related Work

FPGA accelerators for saliency detection have previously
been demonstrated in [7] (Berkeley Calinx board) and [1]
(ML605 board). In these designs, the complete compute stack
fits on the FPGAs through manual time-multiplexing of stencil
hardware with intermediate results stored on offchip DRAM
when needed. The ML605 implementation runs at 4Mpixels/s
for a modified implementation of Saliency while the Calinx
version reports no results. In [3], the authors make a case for
FPGAs in mobile vision processing applications using Haar
detection as a case study. Oddly, they choose to compare a
Google Nexus One with an FPGA implementation on a large
Stratix IV GX EP4SGX530 chip (DE4-530 board) instead
of using a lower-power Cyclone series. With the large chip,
an array of SIMD units were used to implement the entire
cascade of Haar classifiers, with each SIMD unit configured
as a streaming hardware block. They were able to classify
320⇥240 images in 20 ms on the large FPGA which is 60⇥
faster than the mobile SoC. An embedded implementation of
vision processing tasks on the Zynq platform is presented
in [4], where multiple pre-compiled Acadia Vision IP cores
are mapped to the FPGA fabric and interface with the ARMv7
host via VDMA blocks. For certain vision tasks like contrast
normalization, image stabilization and moving target indi-
cation, they report processing rates of 15fps for 640⇥480
resolutions on the ZC702 and ZC706 boards . IPPro [10] is
a soft processor core optimized for image processing on the
Zedboard platform and has been demonstrated to deliver 2.3fps
for traffic sign detection algorithm on images of 600⇥400
resolution when using a 32 core design. Only color filtering
and morphological operations ran on the soft cores with the
rest running on the ARMv7 CPU. Our MXP implementation
targets a far more complex vision task than the ones reported in
[4], [10] on the Zedboard while running at 5fps for 640⇥480
images. An alternative to Vivado HLS OpenCV library is pre-
sented in [8], where few OpenCV functions such as Gaussian
Filter and Sobel Filter are implemented as optimizable nested
loops. While they deliver slightly faster performance compared
to Vivado OpenCV, their key contribution is that they enable
design space exploration by exposing optimization hooks
(HLS directives) unlike the black-box approach taken by the
Vivado OpenCV library. Compared to MXP implementations,
these still need a full place-and-route flow.

B. Notes on Soft Vector Portability

A key advantage of the MXP is ease of design portabil-
ity across platforms from the perspective of the embedded
developer. We effortlessly setup the DE2-115 board with a
16-lane 100 MHz 64KB scratchpad design that ran as fast
the the Zedboard NEON implementation. Similarly, we also
recompiled exact same saliency vector code to target a 32-lane,
185 MHz, 128 KB scratchpad design on the DE4-230 to run
about 3-4⇥ faster. Despite all the advantages, there are several
areas for improvement to the soft vector processor design for

pixel processing. To efficiently support variations in resolution
and data movement within the image frame, the vector lanes
should support a configurable routing pattern. Another key
constraint that limits the filtering operations is the absence of
fused multiply-accumulation support (3 reads, 1 write).

VII. CONCLUSIONS

Soft-vector processors such as the MXP deliver a competi-
tive energy-efficient solution for embedded vision applications
such as Saliency detection. For moderate image resolutions
such as 640⇥480 and 1280⇥1024, the Zedboard-MXP imple-
mentation is the fastest and the most energy-efficient solution
compared to the Jetson TK1, Beaglebone Black, Raspberry
Pi and the Intel Galileo platforms. We are able to deliver
these improvements by careful scheduling of DMA opera-
tions and exploiting line-buffering techniques to enhance data
reuse. In capacity-constrained systems for embedded visions
application, we expect soft vector processors to offer a high-
performance, low-energy solution for demanding applications.
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