Survey of Domain-Specific Languages
for FPGA Computing

Nachiket Kapre
School of Computer Science and Engineering
Nanyang Technological University
Singapore, 639798

nachiket@ieee.org

Abstract—

High-performance FPGA programming has typically been
the exclusive domain of a small band of specialized hardware
developers. They are capable of reasoning about implementation
concerns at the register-transfer level (RTL) which is analogous
to assembly-level programming in software. Sometimes these
developers are required to push further down to manage even
lower levels of abstraction closer to physical aspects of the design
such as detailed layout to meet critical design constraints. In
contrast, software programmers have long since moved away
from textual assembly-level programming towards relying on
graphical integrated development environments (IDEs), high-
level compilers, smart static analysis tools and runtime systems
that optimize, manage and assist the program development tasks.
Domain-specific languages (DSLs) can bridge this productivity
gap by providing higher levels of abstraction in environments
close to the domain of application expert. DSLs carefully limit the
set of programming constructs to minimize programmer mistakes
while also enabling a rich set of domain-specific optimizations
and program transformations. With a large number of DSLs
to choose from, an inexperienced FPGA user may be confused
about how to select an appropriate one for the intended domain.
In this paper, we review a combination of legacy and state-of-
the-art DSLs available for FPGA development and provide a
taxonomy and classification to guide selection and correct use of
the framework.

I. INTRODUCTION

In operation, all practical computers execute a series of state
transitions to realize user intent. Computer programming lan-
guages allow users to unambiguously and compactly declare
their design intent in a way that, through the intermediary
action of a compilation tool, can give rise to the required se-
quence of state transitions on a computing machine. Executed
on a typical processor, each of these software components has
sole use of the compute resources of the machine as a temporal
sequence, handing off control, in-turn to the next compute unit.

By contrast, programming and configuring spatial hardware
systems such as FPGAs, which support millions of lightweight
concurrent operations at the gate-level, is a harder parallel
programming challenge. Computation in such machines is
typically realized by programming the contents of lookup
tables and the fixed topology of a switching-fabric connecting
those lookup-tables with hardware registers. In the com-
mon programming abstraction for designing spatial hardware,
register-transfer languages, users specify concurrent processes

Samuel Bayliss
Department of Electrical and Electronic Engineering
Imperial College London
London SW7 2BT

samuel.bayliss @imperial.ac.uk

which manipulate subsets of program state as a sequence of
state transitions. These processes can communicate a subset
of that state through wires, with data exchange synchronized
using a common clock signal. Designs produced using this
abstraction can be extremely difficult to reason about due to the
complexity of interactions possible between these concurrent
processes. The design and verification problem requires the
programmer to have the correct mental models of absolute
timing relationships between millions of concurrent digital
components.

To further compound this problem, long compile-flows
for FPGA implementations limit the number of compile-test
cycles a developer may complete in a working day. The
production of a configuration bitstream for a FPGA device
requires a series of compilation stages, each of which is a
NP-complete optimization problem. By contrast, compilation
for processors is comparatively quick; compilers can rapidly
synthesize binary executables for a target ISA specification
from a high-level description of a computation thread such as
those found in C/C++ programs. High-level program descrip-
tions hide low-level ISA details such as specific instruction
selection, instruction scheduling, register allocation and mem-
ory management within a single abstract datastore.

Yet despite all these significant drawbacks in designer pro-
ductivity, computation using spatial FPGA hardware remains
attractive because it can often deliver significantly better per-
formance, power and area efficiency than computation using
processors. The increasing mismatch between the achievable
bandwidth and latency of computer memory and the capabil-
ities of the logic devices they are connected to, means that
computer processors devote ever larger proportions of their
area to preserving the illusion of uniformly fast access to
random data in memory.

The goal of this paper is to explore domain-specific lan-
guages (DSLs) that map to parallel FPGA-based hardware
systems. An ideal DSL allows you to specify what you want
to compute while relegating how you need to implement to
automated tools. We consider languages that achieve high-
programmer productivity by specializing for specific com-
puting applications as well as languages that achieve high-
compute efficiency by closely matching the underlying target
machine. Unlike general-purpose parallel programming lan-

specification

[L]
Design Space
| Exploration
!
High-level | __ | HW/SW
Verification Partitioning
| [—
l«p | High-Level
Synthesis
functional
—— — 3%

RTL Design or |z
J Code-Gen.
| S
RTL . 3
Verification SFX;tQSS,l,S <§
[IFrrwil
Place & Route Q
FPGA CAD Tool 8
Q
%"_
3
System System -
Verification Integration

Fig. 1: FPGA Design and Development Flow

guages, domain-specific languages allow the programmer to
describe computation in a manner that is natural to the domain.
Such descriptions hide the scope and kind of parallelism in
the computation from the programmer while still enabling
the DSL compilers to exploit domain-specific concurrency for
spatial acceleration.

In Section II, we review the low-level FPGA design flow
and myriad of decisions that must be made by developers
to deliver a complete FPGA design. We then highlight the
expressiveness gap between Verilog and C-based descriptions
through a simple example in Section III. Section IV introduces
our high-level taxonomy for classifying the different DSLs for
FPGA design. We then describe a selection of prominent DSLs
in greater detail in Section V. We evaluate the productivity and
solution quality of a range of DSLs in Section VI (for a small
illustrative example). Finally, we provides and wrapup with
conclusions and concrete recommendations in Section VII.

II. FPGA DESIGN FLOwW

Industrial surveys [38] have found software programmer
productivity to average 10-100 lines of code/developer day
while hardware productivity lags behind at roughly 100s
LUTs (or 1000s of equivalent gates) per developer day
which correspond to dozens of line of code. We also know
that there are 10 times as many software programmers as
there are hardware programmers. The net result is that the
implementation of an algorithm in an FPGA takes more

time and is more costly than a software implementation
with equivalent functionality. In this section, we briefly
describe the steps in a typical FPGA design process and
consider how each contributes to the wide productivity
gap between software and hardware design flows. Figure 1
illustrates the development stages in producing an FPGA
design. The diagram shows an iterative cycle in which several
design iterations are required to ensure that the design meets
specifications, satisfies functional correctness, meets timing
constraints (i.e. to meet the required clock-frequency) while
operating correctly in the final deployed system. Briefly, the
design stages are:

e Design Space Exploration: Preliminary design space
exploration is typically conducted with high-level models
using high-level programming languages such as C/C++,
Java or even Python. Here, we first establish a case for
spatial FPGA hardware implementation and bound achiev-
able performance and energy limits. These functional de-
scriptions are not usually synthesizable to high-performance
hardware but serve as a rich source of ideas for developing
automation and DSLs for hardware generation e.g. Simulink
flow diagrams for signal-processing computations can first
help establish functional correctness and permit algorithm
prototyping but then can even be synthesized to FPGA cir-
cuits using Xilinx System Generator (subset). Increasingly,
high-level synthesis tools such as Vivado HLS can play
an important role in this phase where preliminary resource
and performance estimates can be extracted even when the
design is not fully mature. For accelerator-oriented designs,
profiling tools can help identify performance bottlenecks
and hotspots.

o Hardware-Software Partitioning: Once we identify the
scope of the problem, we must pick an architecture orga-
nization that will drive the design optimization process. It
is not unusual to expect the designer to focus on FPGA
hardware implementation of parallelizable bottleneck com-
putations while relegating the control-oriented sequential
tasks to a control processor in software. This hardware-
software partitioning is performed through a profile-guided
manual process [13] or automated tools such as e.g. VLIW-
SCORE [32]. Lack of automated hardware-software parti-
tioning tools has long been perceived as a key weakness
of FPGA-based computing. However, the recent emergence
of Xilinx SDSoC environment, and OpenCL-based devel-
opment flows paves the way for commercial solutions that
assist with partitioning or provision of accelerator systems.

e Hardware/RTL Design: FPGA hardware is well-suited
for fully spatial circuit-style mapping, streaming pipe-and-
filter compositions, data-parallel operations and hard-to-
parallelize irregular dataflow problems. Good FPGA de-
signs are deeply pipelined circuits coupled to local on-
chip memories capable of processing an item of data in a
cycle. The design of the datapath requires careful attention
to timing, manual packing of logic into register stages and
reasoning about dataflow through the datapath circuitry. The

effectiveness of the datapath design is tied closely to the
engineering of the memory subsystem. FPGAs permit the
design and development of custom caches and managed
memory structures that can be tailored to application re-
quirements. While this freedom is great, it is an additional
burden on developer to make choices that tune and optimize
memory performance. Most DSLs aim to address the design
challenge posed in the RTL design stage. By eliminating
the strict timing discipline of low-level HDL descriptions,
most DSLs capture dataflow parallelism in the purest form.
Certain DSLs such as FX-SCORE [37] use C-to-gates
compiler in the inner-loop of the compilation phase riding
the improvements in HLS toolflows. These C-to-gates HLS
toolflows have mastered the art of compiling regular loops to
hardware with automatic scheduling and generation of loop-
level control flow and handshaking interfaces. Some DSLs
even automate the inference of suitable memory interfaces
(e.g. Maxeler streams), and we also see automation in
memory re-ordering and buffering for improving memory
subsystem performance.

e Verification: Design verification is typically handled
through a combination of RTL simulation tools and formal
verification tools that can statically prove properties and
equivalence of circuit designs. Specialist languages such as
Specman E [28] or SystemVerilog [1] are often used to
describe valid stimulus and expected results from a design.
Random stimulus, generated to meet these constraint is used
to exercise an discrete-event simulator such as Modelsim or
VCS to produce outputs, which are checked against the ex-
pected result. These tools operate in an event-driven fashion
by tracking changes to signals at the bit-level requiring large
amounts of RAM and exceptionally long runtimes for large
industrial circuits. In many cases, it becomes infeasible to
completely verify the full system prior to deployment and
additional time needs to be set aside during physical system
deployment. Mistakes and bugs discovered at this late stage
can still be rectified due to the reconfigurable nature of the
FPGA fabric but are extremely hard to diagnose and require
long CAD times. These long simulation and in-system
verification times represent a significant challenge to the
classic edit-compile-debug loop in software development.

e FPGA Execution: The generation of the physical exe-
cutable bitstream from RTL proceeding through the various
stages of synthesis, technology mapping, placement, routing
can require hours-to-days of runtime for large FPGAs.
Stability of the brittle FPGA-to-host interface is yet another
challenge that further complicates the design flow. The lack
of binary compatibility across different device families and
generations, and lack of API uniformity across host-side 10
interfaces means the complete design flow must be redone
each time a new platform is selected. Thus, each new FPGA
board and new host system represents a new device driver
engineering challenge that is a sink of developer time and
effort. OpenCL certified design of next-generation FPGA
boards aims to bridge this gap.

III. MOTIVATION

Most hardware developers may have used some subset of
Verilog, VHDL, System Verilog, or System C as an input to a
hardware synthesis tool. These traditional languages continue
to enjoy widespread use even as an intermediate backend to
the various DSLs we classify in this paper. Expressiveness
in languages like Verilog and VHDL is limited to structural
composition of digital primitives or limited behavioral speci-
fications that are inferred during synthesis. For example, the
Verilog code below in Figure 2 shows how we may describe a
simple polynomial a-22+b-z+c using Verilog. The complexity
of this description should be apparent from the need to
specify operation within clock cycles boundaries, bit-level type
specification requirements and the need to select an appropri-
ate event to trigger code evaluation. More significantly, the
interface does not abstract away the implementation details
of this design. The interface does not capture the fact that
polynomial results are valid one clock-cycle after the inputs
are presented. Therefore when this block is implemented in
a larger design, that information needs to be communicated
explicitly to ensure that the data-flow pipelines correctly
balance the delays of their individual components. The model
of parallelism using concurrent assignment and concurrent
processes appears powerful but is poorly supported during
synthesis and provides confusing and conflicting semantics for
simulation and synthesis.

module poly (

input clk, rst,
input [31:0] x,
output reg [31:0] y);

reg[31:0] a=3,b=2,c=1;

always @ (posedge clk)
begin
if (rst)
y = 327b0;
else
y = a*x*x + bxx + c;
end
endmodule

Fig. 2: Verilog code listing

void poly (int x, intx y) {
int a=3,b=2,c=1;
*y = a*x*x + bxx + c;

Fig. 3: C code listing

A large range of tools have sought to use traditional
imperative-languages with a single thread of control as input
languages for hardware synthesis. Tools for high-level synthe-
sis from subsets of imperative languages (such as C or C++)

typically achieve some parallelism in their implementations.
Some of these tools allow extraction of parallelism from
single-threaded designs using a combination of automated
analysis (e.g. loop-analysis in Synopsys Symphony-C), and
user-supplied attributes communicated through language ex-
tensions (e.g. dataflow-directives in Vivado-HLS [17], or ‘par’
blocks in Handel-C). Compare the Verilog code block in
Figure 2 to the C function shown in Figure 3. The C function
is significantly smaller and easier to understand. It can be
compiled by any modern HLS tool to generate Verilog behind
the scenes for targeting hardware. These languages offer
freedom from reasoning about timing and clocking discipline
and can perform a limited set of optimization on loops and
interface handshake control generation. C-based design tools
can allow users to more quickly consider alternative hardware-
software partitioning and to use meta-programming through
constant propagation to explore a range of different area-
performance trade-offs.

Traditional Languages

./High—Level\
Synthesis Synthesis Data-Parallel
VHDL
Verilog %pl?]l)iL

System Verilog

Academic Commercial

CIC++ ClCes TOLC/CH

LeaU Vivado HLS

R(;%J CPC Impulse C MyHDL

Catapult C

Fig. 4: Traditional Languages

We highlight a simple classification of traditional Verilog-
like or C-like languages in Figure 4. It is worth noting
that beyond Verilog and C, both Altera and Xilinx provide
compilation flows for OpenCL which allow users to specify the
behaviour of one thread of execution, and then instantiate that
thread many times with different parameters to realize a data-
parallel design. While CUDA and OpenCL share syntactical
similarity with C/C++, they impose architectural restrictions
in terms of the model of parallelism (i.e. data-parallelism) and
concept of memory hierarchy (i.e. co-processor address space).
Prospective developers of new FPGA-oriented DSLs are ad-
vised to consult Figure 4 to seek existing well-established and
popular languages for embedding functionality. In Section IV
that follows, we explore the salient features of modern DSLs
with an emphasis on design choices that influence FPGA
compatibility.

IV. FPGA DSL CLASSIFICATION

A practical survey of different DSLs, even within the
specialized field of FPGA computing, brings with it the need
to establish a framework within which to discuss different
languages. In this section we develop a high-level classification
of FPGA DSLs that we can use to discuss specific DSLs in
more detail in Section V. To begin this process, we consider
existing work which seeks to classify and compare domain
specific languages. The problem has been approached in [50]
where the author identifies common software design patterns
used to create or consume DSLs. The paper describes ‘struc-
tural’ design patterns which utilize DSLs, while ‘creational’
design patterns which describe common approaches to creating
a DSL. In both cases, the focus is on the language and tool
implementation, rather than domain specialization.

When considering FPGA-specific DSLs, we must consider
various axes along which we can classify languages; consid-
ering the level of abstraction of the language, i.e. the distance
from its eventual embodiment as an interconnected network
of LUTs and registers. At each level of abstraction, there is
a need to capture knowledge that is relevant to that specific
abstraction level. For this reason, FPGA development flows
often involve chains of language processors, each consum-
ing an abstract language and lowering to a more concrete
implementation expressed in another language. Classification
of domain specific languages along this axis is based on
sub-dividing languages according to what domain-specific
knowledge the language designer intended to capture. As
shown in Figure 5, we classify language in this way, separating
them into those that try to capture (1) Application-based
knowledge (2) Knowledge about Specific Compute Models
and (3) Knowledge specific to FPGA Implementation. These
three classes represent a gradual lowering of the abstraction
level from high-level application-oriented concepts to low-
level bit-manipulations.

The Application Domain categorization is the classic inter-
pretation of how and where DSLs are used. These languages
are tightly coupled to the computational patterns and terminol-
ogy of the user application. Such languages are characterized
by syntactical familiarity between the keywords and parallel
patterns used in the language and well-understood concepts
within the target domain. By staying close to the application
domain, the primary consumers are domain experts who may
not necessarily be hardware architects capable of identifying
the best possible implementation for their algorithms. Some
applications must model domains that include interactions
with people, or interfacing with sensors and actuators in the
physical world (IoT platforms). This can bring with them ap-
plication specific constraints on those interactions, especially
latency of response, required data throughput and accept-
able jitter of computing hardware. Some application domains
must capture these ’real-time’ constraints either explicitly,
or through an implied relationship of real-time constraints
with domain concepts. The language provides an unambigu-
ous method of describing the application without forcing

Domain-Specific

Languages
Application Compute Model
Domain Domain
Networking Databases Numerics Streaming Graphs
/ \ Machine Verilog GraphStep Data
SNORT Click Learning AMS GraphGen Parallel
Signal Maxeler / \
p . G SQL OptiML SCORE Dataflow MapReduce FCUDA
rocessing Lime
/N ! / \
HDLCoder SPIRAL .
OpenDF OpenSpatial
LabView VSIPL pen pen>patia Accelerator

Fig. 5: DSL Taxonomy focussing on the Application and Compute Domains. Caveat: Not an exhaustive list, but highlighted
to select a few prominent DSLs.

the designer to specialize that application for a particular
architecture. An ecosystem of analysis and debugging tools
can develop around the application domain and permit the
application developer to focus on correctness and validation
of the computation that would otherwise be challenging to
pursue at the circuit level. Tools which synthesize an appli-
cation description into spatial hardware can be developed by
experts and pursue goals such as portability between different
devices, efficient implementation within a target fabric, and
performance scaling from small to large spatial fabrics.

The second classification category contains DSLs whose
principle purpose is to express a formal compute model. This
Compute-Model Domain of languages capture computation
and communication patterns using formal semantics but do
not target a specific application domain. These languages
enable language developers and compiler writers to target
multiple computational fabrics, ensuring a design expressed
in a particular way is portable to FPGA, GPU and multi-core
platforms equally well. These models do not exist as mere
academic curiosities but are also the foundation of commercial
tools. Under this classification, the languages are organized in
terms of the model of computations being used which enforce
restrictions on the kinds of computations that may be correctly
described e.g. streaming, dataflow, among others. These frame-
works restrict programmer freedom to specific unambiguous
compute semantics and regular communication patterns which
can be practically targeted for parallel implementation.

The final classification category, the Design Domain, shown
separately in Figure 6, is our interpretation of the languages
that are tightly coupled to existing stages in a classic FPGA
design flow itself. The compilation of circuits can be man-
aged effectively through specialized languages devoted to per-
mitting description and automated optimization of functions
required to implement a circuit e.g. layout, parametric gen-
eration. This view of computation is particularly valuable for

Design
Domain

Layout

Circuit / \

Rub
Generators woy Lava

JHDL Flopoco Chisel
PAMDC P 18¢

Fig. 6: Taxonomy of Design Domain

system developers that build libraries and tools for particular
FPGA platforms as part of a packaged offering to prospective
consumers of the FPGA platform. Sometimes more obscure
features of FPGA design such as partial reconfiguration may
also need support in the language (e.g. JBits). This catego-
rization also includes the generator-based model of building
circuits where pre-compiled layout recipes are provided for
constructing circuits tailored for particular FPGA families.
This flow captures and saves circuit designer effort and makes
it available to developers and consumers who may not be
intimately familiar with the underlying features of the FPGA
platform. By eliminating the FPGA CAD process we not only
speedup the design mapping process, we also directly generate
close-to-optimal solutions inspired from good layout practices.

V. REVIEW OF DSLSs

In this section we briefly describe the salient features of a
few key DSLs available for FPGA programming. The selection
of languages presented here are promising and representative
candidates and are chosen to highlight the fundamental trends
and patterns.

A. Application Domain

MATLAB [29], [25], [26]: MATLAB is used widely in
the scientific and engineering community for analysis and
simulations that use matrices and vectors. With its extensive
support for toolboxes that target various domains, it has
adopted a library-view towards domain specialization within
the same design environment. The MATLAB HDL Coder
toolbox from Mathworks is an extension that automatically
generates hardware from simple MATLAB functions. It also
provides support for floating-point to fixed-point conversion
through automated range and error analysis routines. In Fig-
ure 7, we see an example HDL Coder function that looks like
ordinary MATLAB function. A key difference is the ability
to automatically infer fixed-point precision of the variables
through range and error analysis without having to explicitly
specify type. Simulink-based inputs allow graphical design
entry through drag-and-drop functionality with the same un-
derlying hardware generation capability for signal flow graphs.
Pipeline control, clocking and reset, and handshaking are all
automatically inferred in the generated HDL code. AccelDSP
(no longer supported) and Vivado System Generator (previ-
ously called Xilinx System Generator) are alternate MATLAB-
based programming frameworks for FPGA design that are
somewhat less general than HDL Coder. These are aimed
primarily at a DSP-oriented signal processing audience and
provides optimized building blocks (graphical and textual)
for FPGA substrates. MATLAB is an ideal first DSL that
scientists, engineers and non-specialists should choose when
designing FPGA accelerators.

function [y] = poly (x)
a=3; b=2; c=1;
y=a*x*xtbxx+tc;

Fig. 7: Matlab HDL Coder code listing

LabVIEW [43]: LabVIEW is a graphical design environ-
ment for describing circuits for data acquisition, automation
and control applications. It ships with deep integration with
LabVIEW hardware that includes a compiler, libraries and
driver support for some FPGA-based platforms. LabVIEW
programs are essentially dataflow graphs that connect sensors
inputs and actuator outputs to control elements. The FPGA
backend support compilation of signal processing, streaming
computations described using dataflow semantics. LabVIEW
is a mature FPGA development environment with and empha-
sis on simplicity of use and out-of-the-box hardware integra-
tion. This makes it ideal for consumers who are interested
in fast time to solution and are willing to invest in a closed
software and hardware environment.

SPIRAL [45]: Instantiation of libraries of components has
long-been a feature of FPGA-design flow, both using structural
composition (e.g. the creation of FPGA netlists) and automatic
inference (e.g. instantiation of Synopsys DesignWare compo-
nents). SPIRAL provides libraries for various DSP and signal-
processing applications such as FFTs, DCTs, Filters, Multi-
pliers, and Sorting Networks through an automated program

generation system. The SPIRAL system even offers optimized
libraries for multi-core targets in addition to FPGAs. SPIRAL
is aimed at developers with prior exposure to the FPGA
development flow, but still provides a useful application-
oriented perspective in synthesizing signal processing blocks.

VSIPL [30]: VSIPL is an industry standard for supporting
vectorized signal and image processing functions on different
processing platforms including x86 CPUs, PowerPC, Cell,
GPUs and FPGAs. Computations are described as VSIPL
functions operating on VSIPL data objects with data commu-
nication with the FPGA cards handled transparently behind
the scenes. VSIPL hardware support is limited to dated FPGA
boards such as the Annapolis Microsystems Wildcard II, and
the Cray XD1 and development seems to have ceased beyond
2006. The recent OpenCL and OpenVL standardization efforts
by the Khronos consortium have superseded VSIPL in the
modern day.

SNORT [40]: A classic example of a DSL aimed at an
application-domain is the SNORT rule description language.
SNORT is a network intrusion detection and prevention
system that performs real-time deep-packet inspection and
analysis of network traffic to identify malicious intrusion
attempts. SNORT rules are a way of compactly specifying
regular expression patterns on the network data to detect
intrusions. Originally developed for supporting the software
implementation of SNORT, the language was repurposed
by the FPGA community without modification to compile
hardware-accelerated parallel state-machines to process and
analyze a stream of network packets at line rates [27]. A
compilation flow for SNORT rules using a Perl-Compatible
Regular Expressions (PCRE) to VHDL generation [24] is
available online.

Click: Click [33] is a software architecture for describing
and configuring network routers and other packet process-
ing hardware. More generally, it is an DSL for networking
applications which are built by composing elements through
ports. Chimpp [48] is a Click-based development environment
that can program packet-processing systems on network-ready
FPGA boards such as the NetFPGA card with an emphasis
on ease of use rather than hardware optimization and without
automated hardware generation of Chimpp elements. Cliff [34]
is a Click-derived DSL for automatically generating packet
processing hardware but was discovered to be of limited appeal
due to poor quality of generated hardware. A recent Xilinx-
Bell labs collaboration has produced a language called G [11],
[12] that generated high-quality, highly-pipelined hardware
capable of supporting modern telecommunication networks
bandwidths [2]. While neither Chimpp nor CIiff are presently
available online, the Xilinx G language (superseded by the
PX language) is supported via NetFPGA [44] through the
PacketXpress toolsuite and is meant to be used in collaboration
with Xilinx Labs. More recently, Xilinx announced the SDNet
framework for generating packet processing hardware while
also providing preliminary support for P4 [10].

SQL [41]: SQL is a language used for manipulating and
managing relational databases. SQL queries are data retrieval

operations subject to conditional filtering and structured sort-
ing in the simplest case. The Glacier compiler [42] translates
SQL queries into streaming circuits. Netezza and Xtreme
Data sell FPGA-based SQL accelerators for their commercial
database appliances. More recent studies [21] exploit FPGA
partial reconfigurability to compose SQL queries on-the-fly as
required. Neither of these tools are available online.

OptiML [22],[52]: OptiML is a DSL designed to map
parallel machine-learning computations to FPGAs using the
streaming compute model. It leverages the Delite framework
for embedding the DSL in Scala and target multi-cores,
GPUs as well as FPGAs. The FPGA backend exploits domain
knowledge to generate and optimize FPGA kernels, implement
control and co-ordination logic as well as manage data move-
ment and allocation simultaneously. The language is designed
for machine learning experts with little exposure to FPGA
programming and are supported on Xilinx VC709 board. The
DSL is an active research platform but the latest v0.3.4-alpha
release does not have an operational FPGA backend.

Verilog-AMS [31]: Verilog-AMS is a DSL for high-level
descriptions of compact device models in SPICE. Verilog-
AMS compilers translate this code into optimized implemen-
tations for different circuit simulators used in industry with
appropriate interface APIs. This same frontend can be also
enable generation of parallel FPGA hardware for fast circuit
simulation. The ADMS compiler [36] for integration with
ngspice is available online but the FPGA code generator
is not freely available online.

B. Compute-Model Domain

Maxeler [47]: The Maxeler framework is a combination of
Java-based DSL frontend, a compiler associated runtime and a
tight coupling with their own custom FPGA boards. Programs
written in Maxeler Java are essentially RTL representations
embedded in Java with certain language features enabling
simpler and easier programming. Java can also be used to
write functional test benches and perform fast verification
without resorting to Modelsim-based flows. OpenSPL [53] is
an open specification for spatial dataflow languages based on
the Maxeler dataflow. In Figure 8, we again see a simple
Java-based representation of the polynomial example. Here,
we need to use specifically declare IO ports as well as use
special Java types that are tied to the FPGA compilation flow.
The actual dataflow description of the polynomial calculation
is simple without the need to specify or reason about clock
cycles. A companion Manager kernel (not shown) specifies
the linkages to external memory or PCle bus for the IOs.
The Maxeler framework is ideal for developers with little
background in FPGA design and many non-experts have been
able to use the Maxeler environment in domains such as
scientific computing, data analytics and financial modeling.

Lime [4]: Lime is a multi-platform parallel programming
language for heterogeneous architectures. In common with
JHDL and OpenSPL, it embeds a throughput-oriented DSL in
Java. Lime supports both a stream-based computation model
and a dynamic runtime that can compile code as and when it

class Poly extends Kernel {
Poly (KernelParameters parameters) {
super (parameters) ;

DFEVar x = io.input ("x", dfeUInt (32));
int a = 3, b =2, ¢ 1;

DFEVar y = a*x*x + bxc + c;

io.output ("y", vy, dfeUInt (32));

Fig. 8: Maxeler code listing

is needed. With the exception of the non-deterministic match
operator, Lime has similar semantics to the computation-
model-based SCORE framework also discussed next. The
Lime Development Kit is available for public use through
the Eclipse Java IDE and is relatively new. To setup a
complete working environment with real FPGA boards will
need interaction and guidance from the IBM support team.
As shown in Listing 9, the poly function is practically no
different from how you may describe it on an FPGA. There is,
however, a need to use the Task construct to express thread-
level concurrency more explicitly.

public class Poly {

public static void main(string[[]] args) {
int x = 1;
Task poly_t = Tasks.single (x)
=> ([task poly 1)

=> task System.out.print (int);

poly_t.finish();
}

static local int poly(int x) {
int y=0, a=1, b=2, c=3;
y = (ax»x*x) + (b*x) + c;
return y;

Fig. 9: IBM Lime code listing

SCORE [14], [37]: SCORE is a high-level system archi-
tecture for supporting stream computation on reconfigurable
platforms like FPGAs and HSRAs. Computations described in
SCORE obey the dynamic dataflow paradigm where variable
data-rate operators are supported but execution is completely
deterministic. As a consequence, FIFO capacities are un-
bounded. The paged SCORE model allows circuits to be bro-
ken down into virtual pages that are managed by a lightweight
runtime. The FPGA backend automatically synthesizes stream-
ing handshake interfaces and buffering FIFOs between stream-
ing operators which are managed using internal state machines.
SCORE supports a variety of backends with custom runtimes
such as multi-core CPUs, GPUs, Microblaze soft-processors

as well as fully spatial FPGA circuits. In Figure 10, we show
the polynomial code example expressed a SCORE operator in
TDF (Task Description Format). Apart from clearly indication
port directions, we must pack the polynomial evaluation into
a state of a state machine. SCORE TDF aims to be an
intermediate-level DSL between a higher-level DSL and low-
level Verilog. It is freely available online for research use but
lacks integration with real FPGA toolflows.

poly (input unsigned[32] x,
output unsigned([32] vy)
{
unsigned[32] a=3,b=2,c=1;
state always (x):
y = a*x*x + bxx + c;

Fig. 10: SCORE code listing

OpenDF [7]: Inspired by the CAL actor language, OpenDF
is a dataflow programming framework and toolset for FPGAs.
Dataflow languages support description of computation on a
graph of dataflow actors with firing rules that trigger only
when all inputs are ready. Actors allow strong encapsulation
of state and actions, allow concurrent evaluation of ready
actors, allow asynchronous scheduling freedom for ordering
their evaluation and permit decoupling of scheduling and
communication. The OpenDF sourceforge repository hosts
the Eclipse IDE frontend, and the VHDL/C code-generation
backends but has had no updates since 2012. In Listing 11, we
show a representative example where the actor encapsulates
the compute expression within an action that is triggered
when data is available on the input x. A structural wrapper
is required for generation of VHDL.

network Top () X, ==>
entities
poly=Poly ();

structure

X-—> poly.X;
poly.Out ——> Out;

end

actor Poly ()

int (size=32) X ==>
int (size=32)
action [x] ==> [a*x*x+tbx*x+c] end

end

Fig. 11: OpenDF code listing

GraphStep [19], [20]: FPGAs are quite suitable for ac-
celerating parallel, iterative sparse graph computations. In
this scenario, we load portions of the graph into on-chip

memories and process multiples nodes in parallel while routing
edges as point-to-point messages over an FPGA overlay NoC
(network-on-chip). Unlike streaming and dataflow techniques,
the nodes and edges here are represented in memory and the
computations performed on the nodes and edges are imple-
mented in hardware. The GraphStep framework supports Bulk-
Synchronous parallel graph workloads with a global barrier
separating iterations on the graph. Grapal [19] is an OCaml-
based concrete embodiment of GraphStep semantics within
a DSL for sparse graph computations. The DSL provides
fundamental types for graphs, nodes and edges and imposes
a timing discipline on their evaluation. Partitioning and load-
balancing of the parallelism is also supported.

GraphGen [46]: GraphGen is a vertex-centric graph com-
puting framework that assembles hardware through a tem-
plated specification. Users are still required to write the
pipelined RTL computations themselves in a tool or language
of their choosing. GraphGen is part of the CoRAM [15], [16]
framework that supports the Xilinx ML605 and the Altera DE4
FPGA boards. Code generation is only supported through a
web portal that directly generates low-level Verilog for use
with the respective FPGA vendor flows. Some experience with
the FPGA design flow is expected for final system assembly.

Accelerator [9]: Accelerator is a high-level data-parallel
library for multi-core CPUs, GPUs (Microsoft DirectX and
CUDA) and FPGAs. Data-parallel operations are available as
.NET and C++ functions operating on ParallelArrays objects.
The Accelerator runtime captures the expression graph of
operations scheduled on these objects and generates code
at runtime on demand for evaluation on parallel hardware.
Accelerator v2.2 supports VHDL generation of high-level
Accelerator constructs. The project has not seen development
since 2011 but the Preview SDK is available for download
and non-commercial use (as of publication FPGATarget.h is
missing from the release). In Listing 12, we show a C# code
fragment that computes the polynomial. The computations are
performed over a Microsoft.Parallel Arrays object and executed
using lazy evaluation. VHDL generation is performed only
when the result is copied back from the ParallelArray to an
regular array yArr (i.e. lazy).

C. Design Domain

The following languages are DSLs which fall into the
’Design Domain’ classification of our taxonomy because they
target particular stages in the hardware design flow. These are
not aimed at FPGA programmers but rather towards FPGA
experts who want to design or generate FPGA-optimized
libraries. Other surveys [54], [39] have similar classifications
for DSLs like YACC that are used to generate code for
compact grammars.

JHDL [5]: JHDL embeds the specification of a register
transfer description language into Java. It is an early example
of the use metaprogramming environments, that allowed easy
generation and layout of spatial accelerators in hardware sup-
porting partial-reconfiguration and generation of the generic
software interfaces needed to communicate with a host system.

using PA=Microsoft.ParallelArrays.ParallelArrays;public class Poly extends Logic {

namespace Poly

{

class Program

{
static void Main (string(]

{
int N
int a

args)

1024;
3, b=2, c=1;

int[]
int[]

xArr = new int[N];
yArr = new int[N];

FPGATarget t = new FPGATarget ();

PA x = new PA (xXArr);

PA tl = PA.Multiply(a,

PA t2 = PA.Multiply(tl,
PA t3 = PA.Multiply (b,

PA t4 = PA.Add(t3, t2);

PA t5 = PA.Add(t4, c);

X) ;
X) ;
X) ;

yArr = t.ToArraylD(t5);

Fig. 12: Accelerator C# code listing

The direct low-level generation of circuit form and layout in
EDIF form bypasses the synthesis process thereby exposing
low-level control of the FPGA fabric directly at a higher
level of abstraction. JHDL is unsupported on the latest FPGA
platforms and has not seen updates since 2010. The spiritual
successors of JHDL today that exploit partial reconfiguration
on modern FPGAs are HMFlow [35] and Torc [51] but their
state of development is at the mercy of the FPGA vendors
and the brittle interfaces they provide. PAMDC [6] is another
C++ module generator for algorithmically constructing gate-
level FPGA netlists. In Listing 13, we see how the polynomial
evaluation is composed structurally using FPGA primitives
such asmult18x18 and adder. This allows the programmer
to exploit the high-level features in Java at compile-time
to construct or generate these structural netlists for EDIF
generation in a manner that is easier and more powerful than
VHDL generation constructs.

Flopoco [18]: As FPGAs get larger, it becomes possible
to accommodate large floating-point compute graphs inside
a single chip. When these computations involve exotic ele-
mentary functions like square root, exponential and logarithm,
it is possible to get highly-pipelined operation through the
use of suitable IP cores. Flopoco provides a simple Linux
command-line tool for generating a variety of these operators.
Flopoco is actively developed and supported on most modern
FPGA device families. While not strictly a DSL from the
point of view of FPGA users, Flopoco provides a library
of state-of-the-art floating-point operators customized across
various FPGA families in a parameterizable manner. From the
perspective of an FPGA library developer, Flopoco supports a

// Interface

public static CellInterface[] cif = {
in("x", 18), out("y", 36),

i

// Constructor

public Poly (Node parent, Wire y, Wire x) {

// Connect wires
connect ("y", v);
connect ("x", x);

// Build our logic

new multl8x18 (this, x, x, tl);

new multl8x18(this, tl, a, t2);

new multl8x18 (this, b, x, t3);

new adder (this, t2, t3, cin, t4, cout);
new adder (this, t4, ¢, cin, y, cout);

Fig. 13: JHDL code listing

DSL for specifying dataflow graphs of the internal arithmetic
computations of a higher-level function we wish to provide
to an FPGA user. The developer also provides a separate
specification of pipelining constraints along with directives
for constraining usage of FPGA-specific DSP blocks. Flopoco
then provides a C++ compiler with a VHDL interface to
automatically convert the input graph into optimized, retimed
and pipelined VHDL. Flopoco also provides a lightweight
DSL for generation of floating-point datapaths of arbitrary
polynomials based on a Python-like syntax.

Chisel [3]: Chisel is an embedded DSL based on Scala
that supports hardware construction using highly parameter-
ized generators, object-orientation, functional programming,
parameterized types and inference. Chisel compiles code into
fast, cycle-accurate C++ simulation binaries as well as Verilog
code for synthesis. It can exploit Scala language features
for further layer of additional DSLs if the programmer de-
sires. Designs using Chisel can leverage IDEs, debuggers and
other support tools from the wider Scala user community.
It is actively developed and supported and has an interest
from multiple users. In Figure 14, we show how a Chisel
component (analogous to a Verilog module) is defined in
terms of operations on directional wires in a Chisel io bundle
(analogous to a combination of C structs and Java interfaces).

Functional Languages [49], [8]: Languages such as Ruby
and Lava describe hardware using composition of functional
blocks and allow explicit description of the spatial relationship
between hardware blocks. They are embedded in Haskell and
embody functional programming principles for composition of
digital logic. Lava is still supported for VHDL generation of
bit-level operations and can be downloaded as a Haskell pack-
age chalmers-1lava2000. A modern, functional approach
towards hardware design is explored in Verity [23]. This
language and associated compiler supports both higher-order

class Poly extends Component {

val io = new Bundle {
val a = Bits (32, INPUT)
val b = Bits (32, INPUT)
val ¢ = Bits (32, INPUT)
val x = Bits (32, INPUT)
val y = Bits (32, OUTPUT)

}

io.y := io.a % io.x * io.x +

io.b * io.x + io.c

Fig. 14: Chisel listing

programming (passing functions as arguments) and affine
recursion generating VHDL descriptions. The foreign-function
interfaces and library support in Verity allows for integration of
existing RTL models and portable abstractions for low-level
board support. Verity is actively developed but is aimed at
expert functional programmers to develop libraries or FPGA
middleware rather than entire applications.

VI. EVALUATING DSLS

We evaluate a subset of the DSLs from our taxonomy by
compiling a simple a2+ b- 2+ c polynomial expression (32b
operands) in these different languages. Our goal is to record
the development time as well as the conciseness of the code.
The assignment was a classroom exercise for NTU Embedded
Systems Master’s students, class of 2014-15, where each team
of 3-4 students was assigned a particular DSL. While we
recognize that the different teams operating here have varying
capabilities, it nevertheless provides an idea of the range of
development times to expect for those with a limited FPGA
background. For this small example, we initially noticed that
a majority of the time and effort was spent configuring and
setting up the tools rather than development. Hence we only
considered the time required to program and develop the code.
The DSLs were installed and configured on Ubuntu 14.04
64b platform for most cases (except CentOS 5 for Maxeler,
and Windows 7 for Microsoft Accelerator). We were able to
execute the code on the FPGA in two instances; (1) with the
Maxeler framework on the MaxWorkstation platform, and (2)
with the Altera OpenCL framework on the Terasic DES-NET
FPGA card. In Table I, we report the results of this exer-
cise by recording programming time, lines of code, resource
utilization and clock frequency of the resulting designs. For
certain DSLs like the Maxeler Java framework, IBM Lime
and Altera OpenCL, the high resource utilization includes
the FPGA driver costs that enables immediate evaluation on
a physical FPGA device (we report these separately under
baseline for completeness). Overall, the lines of code for
the different DSLs are quite low except in the case of JHDL
where a verbose structural description was required. Across
all DSLs, we observe that the short DSL code fragments
were expanded into RTL codes that were 10-100x longer
(ignoring driver code). Most of the DSLs are thus concise
and the associated DSL compilers unfold control circuits and
other supporting hardware automatically to generate longer

10

TABLE I: Comparing DSLs with az? + bx + ¢ mapping

DSL Dev. Lines of Code Resources Freq.
Time DSL RTL LUTs FFs DSPs MHz

Flopoco! 30m 2 1702 1679 1288 0 91

Maxeler 30m 15 NA? 6036 5391 3 120

(baseline) 30m 5837 5364 0O

Vivado 1h 4 92 53 71 3 117

HLS

Lime 2h30m 22 111 245 284 2 160

(baseline) 2h30m 189 209 1

OpenCL? 2h30m 4 1262 3281 4443 2 267

(baseline) 2h30m 3230 4192 0

Chisel 3h 25 39 129 64 10 66

OpenDF 3h30m 26 689 171 305 9 120

JHDL 4h 40 2529* 41 90 3 84

SCORE 4h 7 111 139 245 2 74

Flopoco only provides floating-point support for these expressions
2MaxCompiler does not produce any intermediate RTL, directly generates
executable bitstreams 3 Altera resources measured in LEs instead of LUTs,

Altera 18 x 18 DSPs are also different from Xilinx 25x 18 DSPs JHDL
directly generates a circuit netlist in EDIF format instead of generating RTL

high-performance descriptions in RTL. We then mapped the
generated RTL blocks to a Xilinx Zedboard FPGA in most
cases wherever possible. The Maxeler framework uses a Xilinx
Virtex6 SX475T (MaxWorkstation), Altera OpenCL config-
ures a Stratix V SSGXEA7N2F45C2 FPGA (DES-NET card)
while JHDL only supports Virtex-6 series devices with 18x 18
DSPs. We observe differing resource utilizations (again ignor-
ing driver harness infrastructure) and variations in performance
mostly attributed to differences in the use of DSP blocks, and
the extent of pipelining.

VII. CONCLUSIONS

In this paper, we show how to broadly classify FPGA-based
DSLs using three key properties of the hardware mapping
(1) application domain, (2) compute model domain, and (3)
FPGA design domain. Using these high-level categories, we
summarize a set of DSLs for readers interested in exploring
the historical roots of FPGA-focused DSL development and
the sheer breadth of ideas and domains that have been explored
by the FPGA community. We hope this survey helps guide the
reader through our curated list of few noteworthy languages
from the large space of DSLs developed for various design
goals. Based on our survey, we have some recommendations
for FPGA users: (1) Novice developers should consider the
mature and well-supported Maxeler, LabVIEW DSL frame-
works or even non-DSL frameworks such as OpenCL/SDSoC.
Developers with some prior FPGA experience may want
to consider MATLAB HDL coder as a starting point for
optimizations. (2) Academics and researchers with a broader
willingness to try nascent frameworks should consider Chisel,
CoRAM, GraphGen, OptiML, or Verity for their requirements.
(3) FPGA experts interested in building optimized, low-level
FPGA libraries for specific application domains should explore
SPIRAL, SDNet and Flopoco for their needs.

[1

—

[2

—

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

Accellera. IEEE Standard for SystemVerilog - Unified Hardware Design,
Specification and Verification Language. IEEE Std. 1800-2012, 2012.
M. Attig and G. Brebner. 400 Gb/s Programmable Packet Parsing on
a Single FPGA. Architectures for Networking and Communications
Systems (ANCS), 2011 Seventh ACM/IEEE Symposium on, pages 12—
23, 2011.

J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis,
J. Wawrzynek, and K. Asanovic. Chisel: constructing hardware in a
Scala embedded language. In DAC ’12: Proceedings of the 49th Annual
Design Automation Conference. ACM Request Permissions, June 2012.
D. F. Bacon, R. Rabbah, and S. Shukla. FPGA programming for the
masses. Communications of the ACM, 2013.

P. Bellows and B. Hutchings. JHDL-an HDL for reconfigurable systems.
In FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE
Symposium on, pages 175-184, 1998.

P. Bertin and H. Touati. PAM programming environments: practice
and experience. In FPGAs for Custom Computing Machines, 1994.
Proceedings. IEEE Workshop on, pages 133—138, Apr. 1994.

S. S. Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker, C. von Platen,
M. Mattavelli, and M. Raulet. OpenDF. ACM SIGARCH Computer
Architecture News, 36(5):29, June 2009.

P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: hardware design
in Haskell. In ICFP ’98: Proceedings of the third ACM SIGPLAN
international conference on Functional programming. ACM Request
Permissions, Jan. 1999.

B. Bond, K. Hammil, L. Litchev, and S. Singh. FPGA circuit synthesis
of accelerator data-parallel programs. In Field-Programmable Custom
Computing Machines (FCCM), 2010 18th IEEE Annual International
Symposium on, pages 167-170. IEEE, 2010.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4:
Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review, 44(3):87-95, 2014.

G. Brebner. Domain-Specific Programming of Very High Speed Packet
Processing. Technical report.

G. Brebner. Packets everywhere: The great opportunity for field
programmable technology. In Field-Programmable Technology, 2009.
FPT 2009. International Conference on, pages 1-10, Dec 2009.

A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson. LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems. Transac-
tions on Embedded Computing Systems (TECS, 13(2), Sept. 2013.

E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. DeHon.
Stream computations organized for reconfigurable execution (SCORE).
Field-Programmable Logic and Applications: The Roadmap to Recon-
figurable Computing, 2000.

E. S. Chung, J. C. Hoe, and K. Mai. CoRAM: an in-fabric memory
architecture for FPGA-based computing. In FPGA ’11: Proceedings of
the 19th ACM/SIGDA international symposium on Field programmable
gate arrays. ACM Request Permissions, Feb. 2011.

E. S. Chung, M. K. Papamichael, G. Weisz, and J. C. Hoe. Cross-
platform FPGA accelerator development using CoORAM and CONNECT.
In FPGA ’13: Proceedings of the ACM/SIGDA international symposium
on Field Programmable Gate Arrays. ACM, Feb. 2013.

J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang.
High-Level Synthesis for FPGAs: From Prototyping to Deployment.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 30(4):473-491, Apr. 2011.

F. de Dinechin, C. Klein, and B. Pasca. Generating high-performance
custom floating-point pipelines. In International Conference on Field
Programmable Logic and Applications, pages 59-64. IEEE, 2009.

M. deLorimier, N. Kapre, N. Mehta, and A. DeHon. Spatial hardware
implementation for sparse graph algorithms in GraphStep. ACM Trans-
actions on Autonomous and Adaptive Systems, 6(3):1-20, Sept. 2011.
M. deLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin, T. E.
Uribe, T. F. J. Knight, and A. DeHon. GraphStep: A system architecture
for sparse-graph algorithms. In Field-Programmable Custom Computing
Machines, 2006. FCCM’06. 14th Annual IEEE Symposium on. 1EEE,
IEEE Computer Society, 2006.

C. Dennl, D. Ziener, and J. Teich. On-the-fly Composition of FPGA-
Based SQL Query Accelerators Using a Partially Reconfigurable Module

11

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]
(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]
[42]
[43]

[44]
[45]

Library. In FCCM’12 : 20th IEEE International Symposium on Field-
Programmable Custom Computing Machines, pages 45-52, Apr. 2012.
N. George, H. Lee, D. Novo, T. Rompf, K. J. Brown, A. K. Sujeeth,
M. Odersky, K. Olukotun, and P. Ienne. Hardware system synthesis
from Domain-Specific Languages. In Field Programmable Logic and
Applications (FPL), 2014 24th International Conference on, pages 1-8,
2014.

D. R. Ghica. Geometry of Synthesis: A Structured Approach to VLSI
Design. SIGPLAN Notices, 42(1):363-375, 2007.

C. L. Hayes and Y. Luo. DPICO: a high speed deep packet inspection
engine using compact finite automata. In Proceedings of the 3rd
ACM/IEEE Symposium on Architecture for networking and communi-
cations systems, pages 195-203. ACM, 2007.

T. Hill. AccelDSP IP Explorer. Technical report, Xilinx Inc., Jan. 2006.
T. Hill. Using MATLAB to Create IP for System Generator for DSP.
Technical report, Xilinx Inc., Jan. 2006.

B. L. Hutchings, R. Franklin, and D. Carver. Assisting network intrusion
detection with reconfigurable hardware. In Field-Programmable Custom
Computing Machines, 2002. Proceedings. 10th Annual IEEE Symposium
on, pages 111-120, 2002.

S. Iman and S. Joshi. The e-Hardware Verification Language. Springer
Science & Business Media, May 2004.

M. Inc. MATLAB HDL Coder.

R. Janka, R. Judd, J. Lebak, M. Richards, and D. Campbell. VSIPL: an
object-based open standard API for vector, signal, and image process-
ing. In Acoustics, Speech, and Signal Processing, 2001. Proceedings.
(ICASSP ’01). 2001 IEEE International Conference on, pages 949-952,
2001.

N. Kapre and A. DeHon. Accelerating SPICE Model-Evaluation using
FPGAs. In FCCM °09: Proceedings of the 2009 17th IEEE Symposium
on Field Programmable Custom Computing Machines, pages 1-8. IEEE
Computer Society, Mar. 2009.

N. Kapre and A. DeHon. VLIW-SCORE: Beyond C for Sequential Con-
trol of SPICE FPGA Acceleration. In Field-Programmable Technology
(FPT), 2011 International Conference on, pages 1-9, Dec. 2011.

E. Kohler, R. Morris, B. Chen, J. Jannoti, and F. Kaashoek. The Click
Modular Router. ACM Transactions on Computer Systems, 18(3):263—
297, Nov. 2000.

C. Kulkarni, G. Brebner, and G. Schelle. Mapping a domain specific
language to a platform FPGA. In Design Automation Conference, 2004.
Proceedings. 41st, pages 924-927, 2004.

C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings. HMFlow: Accelerating FPGA Compilation with Hard
Macros for Rapid Prototyping. Field-Programmable Custom Computing
Machines (FCCM), 2011 IEEE 19th Annual International Symposium
on, pages 117-124, 2011.

L. Lemaitre, C. McAndrew, and S. Hamm. ADMS-automatic device
model synthesizer. In Custom Integrated Circuits Conference, 2002.
Proceedings of the IEEE 2002, pages 27-30. IEEE, 2002.

H. Martorell and N. Kapre. FX-SCORE: A Framework for Fixed-
Point Compilation of SPICE Device Models using Gappa++. In [EEE
International Symposium on Field-Programmable Custom Computing
Machines, pages 77-84, Mar. 2012.

M. Meredith and S. Svoboda. The Next IC Design Methodology
Transition Is Long Overdue. Accellera Systems Initiative, Feb. 2010.
M. Mernick, J. Heering, and A. Sloane. When and How to Develop
Domain-Specific Languages . ACM Computing Surveys, 37:1-29, Jan.
2005.

A. Mitra, W. Najjar, and L. Bhuyan. Compiling PCRE to FPGA for ac-
celerating SNORT IDS. In ANCS '07: Proceedings of the 3rd ACM/IEEE
Symposium on Architecture for networking and communications systems.
ACM Request Permissions, Dec. 2007.

R. Mueller, J. Teubner, and G. Alonso. Streams on wires. Proceedings
of the VLDB Endowment, 2(1):229-240, Aug. 2009.

R. Miiller, J. Teubner, and G. Alonso. Glacier: a query-to-hardware
compiler. In SIGMOD Conference, pages 1159-1162, 2010.

National Instruments. NI LabVIEW.

NetFPGA Wiki. G — https://github.com/netfpga/netfpga/wiki/g.

G. Nordin, P. A. Milder, J. C. Hoe, and M. Puschel. Automatic
generation of customized discrete fourier transform IPs. In DAC ’'05:
Proceedings of the 42nd annual Design Automation Conference. ACM
Request Permissions, June 2005.

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe, J. F.
Martinez, and C. Guestrin. GraphGen: An FPGA Framework for Vertex-
Centric Graph Computation. In Field-Programmable Custom Computing
Machines (FCCM), 2014 IEEE 22nd Annual International Symposium
on, May 2014.

O. Pell and O. Mencer. Surviving the end of frequency scaling with
reconfigurable dataflow computing. SIGARCH Computer Architecture
News, 39(4), Dec. 2011.

E. Rubow, R. McGeer, J. Mogul, and A. Vahdat. Chimpp: A Click-based
programming and simulation environment for reconfigurable networking
hardware. Architectures for Networking and Communications Systems
(ANCS), 2010 ACM/IEEE Symposium on, pages 1-10, 2010.

M. Sheeran and S. Singh. Ruby as a basis for hardware/software
codesign. Verification of Hardware Software Codesign, IEE Colloquium
on, page 5, 1995.

D. Spinellis. Notable design patterns for domain-specic languages.
Journal of Systems and Software, 56:91-99, Jan. 2001.

N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French.
Torc: towards an open-source tool flow. In FPGA ’11: Proceedings of
the 19th ACM/SIGDA international symposium on Field programmable
gate arrays. ACM Request Permissions, Feb. 2011.

A. Sujeeth, H. Lee, K. Brown, T. Rompf, H. Chafi, M. Wu, A. Atreya,
M. Odersky, and K. Olukotun. OptiML: an implicitly parallel domain-
specific language for machine learning. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pages 609—
616, May 2011.

The OpenSPL Consortium. OpenSPL : Revealing the Power of Spatial
Computing. Technical report, Dec. 2013.

A. Van Deursen, P. Klint, and J. Visser. Domain-Specific Languages:
An Annotated Bibliography. SIGPLAN Notices, 35(6):26-36, Feb. 2000.

12

