
SPICE2: Spatial Processors Interconnected
for Concurrent Execution for accelerating the

SPICE Circuit Simulator using an FPGA
Nachiket Kapre

Imperial College London
London, SW7 2AZ

nachiket@imperial.ac.uk

André DeHon
University of Pennsylvania

Philadelphia, PA 19104
andre@acm.org

Abstract—Spatial processing of sparse, irregular floating-point
computation using a single FPGA enables up to an order of
magnitude speedup (mean 2.8× speedup) over a conventional
microprocessor for the SPICE circuit simulator. We decompose
SPICE into its three constituent phases: Model-Evaluation,
Sparse Matrix-Solve, and Iteration Control and parallelize each
phase independently. We exploit data-parallel device evaluations
in the Model-Evaluation phase, sparse dataflow parallelism
in the Sparse Matrix-Solve phase and compose the complete
design including the Iteration Control phase in a streaming
fashion. We program the parallel architecture with a high-level,
domain-specific framework that identifies, exposes and exploits
parallelism available in the SPICE circuit simulator. Our design
is optimized with an auto-tuner that can scale the design to
use larger FPGA capacities without expert intervention and can
even target other parallel architectures with the assistance of
automated code-generation. This FPGA architecture is able to
outperform conventional processors due to a combination of fac-
tors including high utilization of statically-scheduled resources,
low-overhead dataflow scheduling of fine-grained tasks, and
overlapped processing of the control algorithms. We demonstrate
that we can independently accelerate Model-Evaluation by a
mean factor of 6.5×(1.4–23×) across a range of non-linear
device models and Matrix-Solve by 2.4×(0.6–13×) across various
benchmark matrices while delivering a mean combined speedup
of 2.8×(0.2–11×) for the composite design when comparing a
Xilinx Virtex-6 LX760 (40nm) with an Intel Core i7 965 (45nm).
With our high-level framework, we can also accelerate Single-
Precision Model-Evaluation on NVIDIA GPUs, ATI GPUs, IBM
Cell, and Sun Niagara 2 architectures. This paper summarizes
work from our previous publications in [3]–[6].

I. INTRODUCTION

SPICE (Simulation Program with Integrated Circuit Em-
phasis) is an analog circuit simulator that can take days or
weeks of runtime on real-world problems. It models the analog
behavior of semiconductor circuits using a compute-intensive
non-linear differential equation solver. SPICE is notoriously
difficult to parallelize due to its irregular, unpredictable com-
pute structure, and a sloppy sequential description. It has been
observed that less than 7% of the floating-point operations
in SPICE are automatically vectorizable [1]. SPICE is part
of the SPEC92-FP [2] benchmark collection which is a set
of challenge problems for microprocessors. Modern FPGAs
can efficiently support SPICE by exploiting spatial parallelism

Matrix A[i], Vector b [i]

Vector x [i]

Vector x [i-1]

Model
Evaluation

SPICE
Iteration

NR Converged?

Update timestep?

Transient Iterations

Newton-Raphson
Iterations

Matrix Solver
A[i].x[i]=b[i]

Matrix A[i], Vector b[i]

SPICE Deck:
Circuit, Options

Voltage, Current
Waveforms

2

3

1

Fig. 1: Flowchart of a SPICE Simulator

effectively using multiple floating-point operators coupled to
hundreds of distributed, on-chip memories and interconnected
by a flexible routing network. Our parallel SPICE solver
exploits the distinct forms of parallelism when considering
both phases of its operation as well as their integration.

As shown in Figure 1, a SPICE simulation is an iterative
computation that consists of two key computationally-intensive
phases per iteration: Model Evaluation (2© in Figure 1)
followed by Matrix Solve (3© in Figure 1). The iterations
themselves are managed in the third phase of SPICE which
is the Iteration Controller (1© in Figure 1). In Figure 2,
we show performance scaling trends for the sequential im-
plementation of the open-source spice3f5 package on an
Intel Core i7 965 across a range of benchmark circuits. We
observe that runtime scales as O(N1.2) as we increase circuit
size N . What contributes to this runtime? To understand this,
we break down the contribution to total runtime from the
different phases of SPICE in Figure 3. We observe that Model-
Evaluation and Sparse Matrix-Solve phases account for over
90% of total SPICE runtime across the entire benchmark

10
-4

10
-3

10
-2

10
-1

10
0

10
2

10
3

10
4

10
5

R
u

n
ti
m

e
/I

te
ra

ti
o

n
 (

s
)

Circuit Size

N
1.2

Fig. 2: Sequential Runtime Scaling of SPICE Simulator

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
2

10
3

10
4

10
5

P
e

rc
e

n
t

o
f

T
o

ta
l
R

u
n

ti
m

e

Circuit Size

55%

38%

7%

modeleval

matsolve

ctrl

Fig. 3: Sequential Runtime Distribution of SPICE Simulator

set. For circuits dominated by non-linear devices, Model-
Evaluation phase accounts for as much as 90% (55% average)
of total runtime as Model Evaluation runtime scales linearly
with the number of non-linear devices in the circuit. Simula-
tions of circuits with a large number of resistors and capacitors
(i.e. linear elements) generate large matrices and consequently
the Sparse Matrix-Solve phase accounts for as much as 70%
of runtime (38% average). This phase empirically scales as
O(N1.2) which explains the super-linear scaling of overall
SPICE runtime. Finally, the Iteration Controller phase of
SPICE take a small fraction (≈7%) of total runtime. To avoid
Amdahl’s law limits, we must parallelize all three phases.

This paper reviews the key results from our previous re-
search [3]–[6]:
• Design and demonstration of a statically-scheduled VLIW

(Very Large Instruction Word) architecture for accelerating
Model-Evaluation of device models on FPGAs. [4]
• Design and demonstration of a dynamically-scheduled
token dataflow architecture for accelerating Matrix-Solve on
FPGAs when using the KLU Solver. [5]
• Design and demonstration of a hybrid VLIW FPGA ar-
chitecture that combines static and dynamic scheduling for
implementing the Iteration Controller phase of SPICE.
• Code-Generation and Auto-Tuning tools to map static,
data-parallel, feed-forward, compute graphs to FPGAs,
Multi-Core, Cell, GPUs, etc. [6]
• Composition of the SPICE simulator using a high-level,
domain-specific framework that combines parallel descrip-
tions in Verilog-AMS and SCORE [7] while extracting static
dataflow graph from the KLU Matrix-Solve package.
• Quantitative empirical comparison of Model-Evaluation on
a Xilinx V5LX330T, NVIDIA GT9600 and GT285 GPUs,
ATI FireGL 5700 and Firestream 9270 GPUs, IBM PS3

Cell, Sun Niagara 2, and Intel Xeon 5160 across a variety of
open-source Verilog-AMS models (single precision, 90nm
technology). [6]

• Quantitative empirical comparison of Matrix-Solve on a
Xilinx V6LX760 and an Intel Core i7 965 on a variety of
benchmark matrices (45nm and 40nm process). [5]

II. BACKGROUND

A. Summary of SPICE Algorithms

SPICE simulates the dynamic analog behavior of a circuit
described by non-linear differential equations. SPICE circuit
equations model the linear (e.g. resistors, capacitors, inductors)
and non-linear (e.g. diodes, transistors) behavior of devices and
the Kirchoff’s Current Law at the different nodes and branches
of the circuit. SPICE solves the non-linear differential circuit
equations by computing small-signal linear operating-point
approximations for the non-linear elements and discretizing
continuous time behavior of time-varying elements until ter-
mination (1© in Figure 1). The linearized system of equations
is represented as a solution of A~x = ~b, where A is the matrix
of circuit conductances, ~b is the vector of known currents and
voltage quantities and ~x is the vector of unknown voltages
and branch currents. The simulator calculates entries in A
and ~b from the device model equations that describe device
transconductance (e.g., Ohm’s law for resistors, transistor I-
V characteristics) in the Model-Evaluation phase (2© in
Figure 1). It then solves for ~x using a sparse linear matrix
solver in the Matrix-Solve phase (3© in Figure 1).

B. SPICE Model-Evaluation

In the Model-Evaluation phase, the simulator computes
conductances and currents through different elements of the
circuit and updates corresponding entries in the matrix with
those values. For resistors this needs to be done only once
at the start of the simulation. For non-linear elements, the
simulator must search for an operating-point using Newton-
Raphson iterations that requires repeated evaluation of the
model equations and matrix-solve multiple times per time-
step as shown by the innermost loop in step 1© of Figure 1.
For time-varying components, the simulator must recalculate
their contributions at each timestep based on voltages at
several previous timesteps in the outer loop in step 1© of
Figure 1. We compile the device equations from a high-
level domain-specific language called Verilog-AMS [8] which
is more amenable to parallelization and optimization than
existing C description in spice3f5. The compilation allows
us to capture the device equations in an intermediate form
suitable for performance optimizations and parallel mapping
to potentially many target architectures.

C. SPICE Matrix Solve (A~x = ~b)

Modern SPICE simulators use Modified Nodal Analysis
(MNA) [9] to assemble circuit equations into the matrix
A. We use the state-of-the-art sparse, direct KLU matrix
solver [10] optimized for SPICE circuit simulation. The solver
reorders the matrix A to minimize fillin using Block Triangular

2

Model
Evaluation

Device parameters
and state

Sparse
Matrix
Solve

Dataflow Graph
Structure

Iteration Controller

2 3

1Options

Off-chip DRAM

FPGA

Fig. 4: FPGA Organization

Factorization (BTF) and Column Approximate Minimum De-
gree (COLAMD) techniques. The solver uses the left-looking
Gilbert-Peierls [11] algorithm to compute the LU factors of the
matrix such that A = LU . It calculates the unknown ~x using
Front-Solve L~y = ~b and Back-Solve U~x = ~y operations. We
use the refactorization operation in the KLU solver to further
reduce the factorization runtimes for subsequent iterations.
The approach uses the partial pivoting technique to generate
a fixed non-zero structure in the LU factors at the start of
the simulation (during first factorization). The preordering and
symbolic analysis step computes the non-zero positions of the
factors at the start while the refactorization and solve steps to
solve the system of equations in each iteration.

D. SPICE Iteration Controller

The SPICE iteration controller is responsible for two kinds
of iterative loops shown in Figure 1: (1) inner loop: lin-
earization iterations for non-linear devices and (2) outer loop:
adaptive time-stepping for time-varying devices. The Newton-
Raphson algorithm is responsible for computing the linear
operating-point for the non-linear devices like diodes and
transistors. Additionally, an adaptive time-stepping algorithm
based on truncation error calculation (Trapezoidal approxi-
mation, Gear approximation) is used for handling the time-
varying devices like capacitors and inductors. The controller
also implements the loops in a data-dependent manner using
customized convergence conditions and local truncation error
estimations.

E. Parallel Potential

Each phase of SPICE is characterized by a general paral-
lel pattern that captures the structural characteristics of the
underlying computation. Our parallel implementation exploits
the characteristics using a compute organization tailored for
each pattern.

The SPICE Model-Evaluation phase has high data paral-
lelism consisting of thousands of independent device evalu-
ations each requiring hundreds of floating-point operations.
The simulator evaluates all devices in each iteration thereby
generating a fixed-sized workload. There is a limited diversity

in the number of non-linear device types in a simulation
(e.g. typically only diode and transistors models).
There is high pipeline parallelism within each device eval-
uation as operations can be represented as an acyclic feed-
forward dataflow graph (DAG) with nodes representing op-
erations and edges representing dependencies between the
operations. These DAGs are static graphs that are known
entirely in advance and do not change during the simulation
enabling efficient offline scheduling of instructions. Individual
device instances are predominantly characterized by constant
parameters (e.g. Vth, Temperature, Tox) that are determined
by the CMOS process leaving only a handful of parameters
that vary from device to device (e.g. W, L of device).

The Matrix-Solve phase of the KLU Gilbert-Peierls algo-
rithm has irregular, fine-grained task parallelism during LU
factorization. Since circuit elements tend to be connected to
only a few other elements, the MNA circuit matrix is highly
sparse (except high-fanout nets like power lines, etc). The
underlying non-zero structure of the matrix is defined by the
topology of the circuit and consequently remains unchanged
throughout the duration of the simulation. We extract the
static dataflow graph at the beginning of the simulation and
exploit parallelism within the branches of the dataflow graph.
We observe there are two forms of parallel structure in the
Matrix-Solve dataflow graph that we can exploit in our parallel
design: (1) factorization of independent columns organized
into parallel subtrees and (2) fine-grained dataflow parallelism
within the column. We empirically observe for our benchmark
set of matrices that the number of floating-point operations
in the Matrix-Solve computation scale as O(N1.4) while the
latency of the critical path through the compute graph scales
as O(N0.7). This suggests a parallel potential of O(N0.7).

The Iteration Control phase of SPICE is dominated by
data-parallel operations in convergence detection and trun-
cation error-estimation which can be described effectively
in a streaming fashion. The loop management logic for
the Newton-Raphson and Timestepping iterations is control-
intensive and highly irregular. While the Iteration Control
phase only accounts for ≈7% of total sequential runtime, our
parallel implementation takes care to efficiently implement this
portion to avoid an Amdahl’s Law bottleneck.

III. FPGA ARCHITECTURE

As discussed earlier, we must parallelize all three phases
of SPICE to get balanced total speedup. At a high-level we
organize our parallel FPGA architecture into three blocks as
shown in Figure 4. We develop a custom processing archi-
tecture for each phase of SPICE tailored to match the nature
of parallelism in that phase. We integrate this heterogeneous
architecture that combines VLIW, Dataflow and Streaming
organizations to implement the complete design.

A. VLIW Architecture for Model-Evaluation [4]

The device equations can be represented as static, feed-
forward dataflow graphs (see Section II-E). Fully-spatial
implementations (circuit-style implementation of dataflow

3

graphs) are too large to fit on current FPGAs and com-
putation must be virtualized over limited resources. These
graphs contain a diverse set of floating-point operators such
as adds, multiplies, divides, square-roots, exponentials and
logarithms. We map these graphs to custom VLIW “process-
ing tiles”. We statically schedule these resources offline in
VLIW [13] fashion and perform loop-unrolling, tiling and
software pipelining optimizations to improve performance.
Each tile in the virtualized architecture consists of a heteroge-
neous set of floating-point operators coupled to local, high-
bandwidth memories and interconnected to other operators
through a communication network. We also include spatial
implementations of elementary functions like log, exp that
may require multiple cycles on a processor. We build pipelined
datapaths customized for Model Evaluation which is not pos-
sible with CPUs or GPUs. In each tile, we choose an operator
mix per tile proportional to the frequency of occurrence of
those floating-point operations in the graph. Since we use a
statically-scheduled fat tree [12] to connect these operators, we
also tune the interconnect bandwidth to reflect communication
requirements between the operators.

B. Token-Dataflow Architecture for Matrix-Solve [5]

The Sparse Matrix-Solve computation can be represented
as a sparse, irregular dataflow graph that is fixed at the
beginning of the simulation. We recognize that static online
scheduling of this parallel structure may be infeasible due to
the prohibitively large size of these sparse matrix factorization
graphs (millions of nodes and edges where nodes are floating-
point operations and edges are dependencies). Hence, we
organize our architecture as a dynamically-scheduled Token
Dataflow [14] machine. The architecture consists of multiple
interconnected “Processing Elements” (PEs) each holding hun-
dreds to thousands of graph nodes. Each PE can fire a node
dynamically based on a fine-grained dataflow triggering rule.
The Dataflow Trigger in the PE keeps track of ready nodes
and issues operations when the nodes have received all inputs.
Tokens of data representing dataflow dependencies are routed
between the PEs over a packet-switched network. For very
large graphs, we partition the graph and perform static prefetch
of the subgraphs from external DRAM. This is possible since
the graph is completely feed forward.

C. Hybrid VLIW Architecture for Iteration Control

[3] The Iteration Control implementation is a hybrid VLIW
architecture that is mostly similar to the Model-Evaluation
design. The data-parallel convergence detection and truncation
error estimation operations are statically scheduled in VLIW
fashion. In contrast, the loop control state machine transition
operations are evaluated dynamically making this a hybrid
VLIW design that combines static and dynamic scheduling.

IV. METHODOLOGY

We now explain the methodology and framework setup for
mapping SPICE simulations to FPGAs. We show the complete
FPGA mapping flow in Figure 5. At a high level, our FPGA

SCORE
TDF

Verilog
AMS

SCORE
Compiler

Symbolic Matrix
Analysis

Verilog-AMS
Compiler

Static
Scheduler

Placement

Static
Scheduler

FPGA
Config.

Architecture
Config.

Logic
Generator

3

2

1

Circuit
Netlist

Memory
Builder

Input Compilation and CAD Hardware

R
u

n
ti

m
e

O
ff

li
n

e

Simulation
Options

Fig. 5: FPGA SPICE Toolflow

flow is organized into different paths that are customized
for the specific SPICE phase. Our mapping flow is further
broken down into three key stages: Input, Compilation/CAD
and Hardware. Additionally, we separate the steps into offline
and runtime operations depending on the binding time of input.

We map this parallelism to the FPGA fabric using cus-
tomized compute organizations described in Section III. In-
stead of recompiling the entire FPGA configuration for each
circuit, we statically generate a hardware logic configuration
for the parallel SPICE simulator that is shared across all
circuits. We must only build customized memory images for
each circuit dynamically at runtime.

Offline Logic Configuration: We generate the logic for
implementing the VLIW, Dataflow and Streaming architec-
tures by choosing an appropriate balance of area and memory
resources through an area-time tradeoff analysis. We use an
auto-tuner to select this balance and tune implementation
parameters through an exhaustive exploration of the design
space. The FPGA configuration includes the VLIW program-
ming information for the PEs and switches of the Model-
Evaluation and Iteration Control processing elements (output
of the “Static Scheduler” blocks shown in Figure 5).

Runtime Memory Configuration: For each circuit, we
must program memory resources to store the circuit-specific
variables and data-structures relevant for the simulation. For
the non-linear devices and independent sources, we store the
device-specific constant parameters from the circuit netlist in
FPGA onchip memory or offchip DRAM memory if necessary.
We generate and distribute the sparse dataflow graph across the
Matrix-Solve processing elements (shown by the “Placement”
block in Figure 5) and store the graph in offchip DRAM
memory when it does not fit onchip capacity. Finally, we load
a few simulation control parameters (e.g. abstol, reltol,
final_time) to help the Iteration Control phase declare
convergence and termination of the simulation.

We use spatial implementations of individual floating-point
add, multiply, divide and square-root operators from the Xilinx
Floating-Point library in CoreGen [15]. For the exp and log
operators we use FPLibrary from Arénaire [16] group. For
the Model-Evaluation and Iteration Control architectures, we
interconnect the operators using a time-multiplexed butterfly-
fat-tree (BFT) network that routes 64-bit doubles or 32-bit

4

floats using time-multiplexed switches. For the Matrix-Solve
architecture, we interconnect the floating-point operators using
a bidirectional mesh packet-switched network that routes 84-
bit 1-flit packets (64-bit double and 20-bit node address).
We synthesize and implement a sample double-precision 8-
operator design for the bsim3 model (250 MHz) and a
double-precision 4-PE Matrix-Solve design (250 MHz) on a
Xilinx Virtex-5 device using Synplify Pro 9.6.1 and Xilinx
ISE 10.1. We report cycle counts from time-multiplexed sched-
ule (Model-Evaluation and Iteration Controller) and a cycle-
accurate simulation (Matrix-Solve). We use CPU runtimes for
the open-source spice3f5 package coupled with the KLU
Solver running on an Intel Core i7 965.

V. EVALUATION

We now report the achieved performance and energy re-
quirements of our parallel SPICE implementation. We show
total speedups for the SPICE solver when comparing an Intel
Core i7 965 with a Virtex-6 LX760 FPGA in Figure 6a. We
observe a mean speedup of 2.8× across our benchmark set
with a peak speedup of 11× for the largest benchmark. We
also show the ratio of energy consumption between the two
architectures in Figure 6b. We estimate power consumption of
the FPGA using the Xilinx XPower tool assuming 20% activity
on the Flip-Flops, Onchip-Memory ports and external IO ports.
When comparing energy consumption, the FPGA is able to
deliver these speedups while consuming much less energy. We
observe that the FPGA consumes up to 40.9×(geomean 8.9×)
lower energy than the microprocessor implementation.

A. Model-Evaluation

In Figure 7a, we compare the performance achieved for
a double-precision implementation of Model-Evaluation on a
quad-core Intel Core i7 965 (loop-unrolled and multi-threaded)
with that achieved on a single Virtex-6 LX760T (loop-
unrolled, tiled and statically scheduled). We observe speedups
between 1.4×–23× (mean 6.5×) across our non-linear device
model benchmarks. We are able to deliver these speedups
due to higher utilization of statically-scheduled floating-point
resources, explicit routing of graph dependencies over phys-
ical interconnect and spatial implementation of elementary
floating-point functions (e.g. exp, log). The FPGA is able
to achieve higher speedups for smaller, simpler devices than
larger, complex ones. Smaller compute graphs have fewer
edges requiring smaller interconnect context and a lower
memory footprint per unroll. We compare single-precision
implementations on 65nm generation devices in Figure 7b and
observe much higher speedups of 4.5–123× for a Virtex-5
LX330, 10–64× for an NVIDIA 9600GT GPU, 0.4–6× for
an ATI FireGL 5700 GPU, 3.8–16× for an IBM Cell and 0.4–
1.4× for a Sun Niagara 2. The increased FPGA speedups are
due to higher floating-point processing capacity made possible
by smaller single-precision FPGA operators, smaller network
and lower storage requirements. This additional speedup is
only possible if we relax the SPICE convergence conditions
by reducing tolerances (acceptable for many scenarios).

B. Matrix-Solve

In Figure 8, we compare double-precision performance of
our FPGA architecture implemented on a Virtex-6 LX760 with
an Intel Core i7 965. We observe speedups of 0.6–13.4×
(geomean 2.4×) for the 25-PE Virtex-6 LX760 mapping over
a range of benchmark matrices. Our FPGA implementation
allow efficient processing of the fine-grained factorization
operations which can be synchronized at the granularity of
individual floating-point operations. Additional placement for
locality is vital for delivering high speedups for irregular
sparse matrix graphs.

C. Iteration Control

Our spatial FPGA implementation of the Iteration-Control
phase delivers modest speedups of 1.07–3.3× (mean 2.1×).
This allows us to improve overall mean SPICE speedups from
2.4× (sequential Iteration Control on CPU) to 2.6× (parallel
Iteration Control on FPGA).

VI. FUTURE WORK

We now identify additional opportunities for parallelizing
SPICE further and improving the FPGA design. The key
performance bottleneck of the current design is the Dataflow
implementation of the Sparse Matrix-Solve phase of SPICE.
We will explore newer domain-decomposition approaches
for exposing more coarse-grained parallelism and associative
reformulation for improved scalability. We can redesign the
Model-Evaluation datapaths with lower precision while satis-
fying accuracy requirements to obtain additional acceleration
at lower cost. Finally, with larger FPGAs, we can achieve
scalable speedups by converting additional resources into
performance far more effectively than competing architectures.

VII. CONCLUSIONS

We show how to use FPGAs to accelerate the SPICE
circuit simulator up to an order of magnitude (mean 2.8×)
when comparing a Xilinx Virtex-6 LX760 with an Intel
Core i7 965. We were able to deliver these speedups by
exposing available parallelism in all phases of SPICE using a
high-level, domain-specific framework and customizing FPGA
hardware to match the nature of parallelism in each phase.
The tools and techniques we develop for mapping SPICE
to FPGAs are general and applicable to a broader range of
designs. We believe these ideas are applicable where compu-
tation is characterized by static, data-parallel processing and
in cases where the algorithm operates on sparse, irregular
data structures. We expect such high-level approaches based
on exploiting spatial parallelism to become important for
improving performance and energy-efficiency for a variety of
important, computationally-intensive problems.

REFERENCES

[1] J. Hennesey and D. Patterson, Computer Architecture A Quantitative
Approach, 2nd ed. Morgan Kauffman, 1996. I

[2] S. P. E. Corporation, “SPEC CFP92 Benchmarks,” 1992. I
[3] N. Kapre, “SPICE2 - A Spatial Parallel Architecture for Accelerating

the SPICE Circuit Simulator,” PhD Thesis, California Institute of Tech-
nology, 2010. (document), I, III-C

5

 1

 3

 5

 7

 9

 11

 13

s
2
7

m
u
x
8

rin
g
o
s
c

s
2
9
8

s
3
4
4

s
3
4
9

s
3
8
2

d
a
c

s
4
4
4

s
3
8
6

s
5
1
0

s
5
2
6

1
0
s
ta

g
e
s

s
6
4
1

s
7
1
3

s
9
5
3

s
8
2
0

s
8
3
2

s
1
1
9
6

s
1
2
3
8

s
1
4
2
3

2
0
s
ta

g
e
s

s
1
4
9
4

3
0
s
ta

g
e
s

4
0
s
ta

g
e
s

5
0
s
ta

g
e
s

r4
k

S
p
e
e
d
u
p

2.8x mean

(a) Total Speedup

 0

 10

 20

 30

 40

 50

s
2
7

m
u
x
8

rin
g
o
s
c

s
2
9
8

s
3
4
4

s
3
4
9

s
3
8
2

d
a
c

s
4
4
4

s
3
8
6

s
5
1
0

s
5
2
6

1
0
s
ta

g
e
s

s
6
4
1

s
7
1
3

s
9
5
3

s
8
2
0

s
8
3
2

s
1
1
9
6

s
1
2
3
8

s
1
4
2
3

2
0
s
ta

g
e
s

s
1
4
9
4

3
0
s
ta

g
e
s

4
0
s
ta

g
e
s

5
0
s
ta

g
e
s

r4
k

E
n
e
rg

y
 S

a
v
in

g
s

8.9x mean

(b) Energy Ratio

Fig. 6: Comparing Xilinx Virtex-6 LX760 FPGA (40nm) and Intel Core i7 965 (45nm) Implementations

5 x

10 x

15 x

20 x

25 x

bjt
diode

jfet
m

os1

vbic
m

os3

hbt
bsim

4

bsim
3

m
extram

psp

S
p
e
e
d
u
p

Devices

Virtex-5 vs. Intel Xeon 5160
Virtex-6 vs Intel Core i7

(a) Double-Precision (CPU vs. FPGA)

1 x

10 x

100 x

bjt
diode

jfet
m

os1

vbic
m

os3

hbt
bsim

4

bsim
3

m
extram

psp

S
p
e
e
d
u
p

Devices

Virtex-5 LX330
NVIDIA 9600GT

Cell PS3

ATI FireGL 5700
Sun Niagara2

(b) Single-Precision (vs. Xeon 5160)

Fig. 7: Speedups for Model-Evaluation

0 x

1 x

10 x

bcspw
r01

m
ux8

ringosc

s27
psadm

it1

dac
psadm

it2

sandia01

sandia02

s208
bcspw

r09

s298
s344

s349
s444

s386
s510

circuit1

s526
s641

10stages

s713
circuit2

s820
s832

s953
s1196

s1238

s1423

s1494

20stages

circuit3

30stages

m
em

plus

40stages

50stages

r4k

S
p

e
e

d
u

p

3.8x

Fig. 8: Speedups for Double-Precision Matrix-Solve (vs. Core i7 965)

[4] N. Kapre and A. DeHon, “Accelerating SPICE Model-Evaluation
using FPGAs,” in IEEE Symposium on Field Programmable Custom
Computing Machines. IEEE, 2009, pp. 37–44. I, III-A

[5] ——, “Parallelizing Sparse Matrix Solve for SPICE Circuit Simulation
using FPGAs,” in International Conference on Field-Programmable
Technology, 2009, pp. 190–198. (document), I, III-B

[6] ——, “Performance comparison of single-precision SPICE Model-
Evaluation on FPGA, GPU, Cell, and multi-core processors,”
in International Conference on Field Programmable Logic and
Applications, 2009, pp. 65–72. (document), I

[7] E. Caspi, “Design Automation for Streaming Systems,” PhD Thesis,
University of California, Berkeley, 2005. I

[8] L. Lemaitre, G. Coram, C. McAndrew, K. Kundert, M. Inc, and
S. Geneva, “Extensions to Verilog-A to support compact device
modeling,” in Proceedings of the Behavioral Modeling and Simulation
Conference, 2003, pp. 7–8. II-B

[9] Chung-Wen Ho, A. Ruehli, and P. Brennan, “The modified nodal
approach to network analysis,” IEEE Transactions on Circuits and
Systems, vol. 22, no. 6, pp. 504–509, 1975. II-C

[10] E. Natarajan, “KLU A high performance sparse linear solver for

circuit simulation problems,” Master’s Thesis, University of Florida
Gainesville, 2005. II-C

[11] J. Gilbert and T. Peierls, “Sparse Partial Pivoting in Time Proportional
to Arithmetic Operations,” SIAM Journal on Scientific and Statistical
Computing, vol. 9, no. 5, pp. 862–874, 1988. II-C

[12] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. Wilson,
M. Wrighton, and A. DeHon, “Packet switched vs. time multiplexed
FPGA overlay networks,” in IEEE Symposium on Field-Programmable
Custom Computing Machines, 2006, pp. 205–216. III-A

[13] J. A. Fisher, “The VLIW Machine: A Multiprocessor for Compiling
Scientific Code,” IEEE Computer, vol. 17, no. 7, pp. 45–53, 1984. III-A

[14] G. Papadopoulos and D. Culler, “Monsoon: an explicit token-store
architecture,” Proceedings of the Annual International Symposium on
Computer Architecture, vol. 18, no. 3a, pp. 82–91, 1990. III-B

[15] Xilinx, “Floating-Point Operator v5.0,” pp. 1–31, 2009. IV
[16] F. de Dinechin, J. Detrey, O. Cret, and R. Tudoran, “When FPGAs

are better at floating-point than microprocessors,” Proceedings of the
International ACM/SIGDA Symposium on Field-Programmable Gate
Arrays, p. 260, 2008. IV

6

