Measuring Timing Errors in FPGA-based Circuits

Joshua Levine, Edward Stott
Imperial College London
London, United Kingdom

{joshua.levine05,edward.stott07 } @imperial.ac.uk

Abstract

FPGA-based platforms offer a unique and challenging
platform for implementation of circuit-level timing-error
detection and correction logic. If we operate FPGA de-
signs beyond the conservative margins identified by the
CAD tools, we can deliver substantial energy and perfor-
mance improvements. In this paper we develop a strategy
for monitoring timing errors in streaming FPGA circuits
based on Razor-like shadow register insertion. Through
a combination of careful calibration, hold timing control,
critical path sampling and adaptation of the CAD flow, we
design a robust, trustworthy error detection methodology
for FPGA-based circuits. Our scheme can detect timing
errors to deliver 39% energy reductions and 62% through-
put improvements for the floating-point single-precision
multiplier circuit with negligible overhead.

1 Introduction

FPGA architectures are reconfigurable, fully pro-
grammable architectures that allow the designer to im-
plement any feasible circuit by configuring lookup tables
(LUTs) and routing between these LUTs. The FPGA ar-
chitecture community is broadly interested in understand-
ing and exploiting the limits of modern VLSI technolo-
gies under the assumption that the resulting logic is reli-
able and fully deterministic. FPGA CAD tools use tim-
ing models that must respect these requirements and this
means that substantial margins are built in to guarantee
safe operation across all manufacturing, configuration and
operating circumstances. This prevent us from using in-
dividual chips at their optimum performance and a batch

Nachiket Kapre
Nanyang Technological University
Singapore
nachiket@ntu.edu.sg

of chips at its mean performance. For example, in our ex-
periments, we implemented a single-precision multiplier
on a DEO-Nano board and found that we can run the de-
sign error-free until 208MHz on gaussian-distributed in-
put data while the CAD tool only certifies correct opera-
tion up to 136 MHz.

In software systems (e.g. operating system kernels),
we can use checksumming techniques or cheap pre-
condition/post-condition checks to effectively detect fail-
ures. DRAMs have used forward error correction (FEC)
schemes with scrubbing support to manage a limited num-
ber of upsets and corruption events. Algorithms may
even provide cheap application-specific self-testing mech-
anism e.g. correctness of factorizing a number a = p - ¢
can be checked by multiplying the factors, correctness of
a solver for linear system of equations Az = b can be
judged through a cheap residue calculation |b — Az|. For
circuits implemented on traditional ASIC (or CPU) plat-
forms can implement device-specific error detection using
techniques such as Razor [3]]. In this paper, we exclusively
focus on designing a timing error detection strategy for
FPGA logic circuits that borrows some ideas and inspira-
tion from the broader reliability systems stack.

What makes timing error detection in arbitrary FPGA
circuits hard?

Error detection is only worthwhile if its area, timing and

power overhead is outweighed by the benefits of operating

beyond normal operating limits. For it to be successful we

must address the following challenges:

e How do we build a timing error detector using the re-
sources of the existing FPGA logic fabric?

e Which circuit paths from a given arbitrary circuit
should we monitor to achieve the required timing fault
coverage?

e How do we implement error detection while preserving
the timing of the original design?

e Can we make the system robust to manufacturing and
operating variations?

e [sit possible to automate the insertion of error detection
logic to the FPGA compilation flow?

What architectural opportunities do FPGAs offer that
can be used to design efficient error correction infrastruc-
ture?

FPGA architectures are highly configurable and a single

chip can be reconfigured to support countless applica-

tions. This, plus the need for tractable automated place
and route means that virtually all real-world FPGA de-
signs contain significant amounts of unallocated logic,
routing and clock resources. Using these spare resources,
we can modify a circuit post-placement to insert shadow
registers for monitoring critical paths post-compilation.

FPGAs also offer superb clock network support with ad-

justable frequencies and tunable phases. FPGA circuit

size, critical path distribution, input data correlations, and
parametric variation will dictate the extent and nature of
error susceptibility and error recovery opportunities.

The key contributions of this paper include:

e Design of a timing-error detection scheme (CAD flow)
for arbitrary streaming FPGA circuits using a Razor-
like shadow register insertion.

e Development of an in-situ demonstration platform that
allows us to overclock and undervolt the FPGA circuit
implemented on a Terasic DEO Nano FPGA board.

o Empirical model for understanding error susceptibility
and potential for recovery using our approach.

e Validation of out technique on the floating-point single-
precision multiplier benchmark delivers a potential
39% energy reduction and 62% throughput improve-
ment in the resulting design.

2 Background

2.1 Reducing operating margins

Operating margins of a typical FPGA circuit are affected
by a combination of environmental conditions such as
temperature, noise, statistical manufacturing variation,
lifetime effects such as degradation as well as operational
characteristics of input data.

Table 1: Performance optimization methods and the
operating margins that they can reduce

(v'=strongly, ~'=weakly)

Method Var. Deg. Temp. Noise Data

Statistical Timing

Analysis (SSTA)

Offline Character- v v

ization

Tunable Replica v

Circuits (TRC)

Online Slack v v v

Measure. (OSM)

Shadow registers! v v v

Asynchronous v v v v v
!"This work

e Variation: Manufacturing inconsistency means that
timing and energy characteristics vary between dice
and between components on a single die.

e Degradation: Phenomena such as NBTI can cause cir-
cuits to slow down over time.

o Temperature: Circuit performance varies with temper-
ature — typically it deteriorates as temperature rises.

e Noise: Several stochastic effects influence circuit tim-
ing on a cycle-to-cycle basis, including thermal noise,
crosstalk, power supply ripple and clock jitter.

e Data: The data arrival time at a particular register de-
pends on the transitions that occur on all its input nodes.
Usually, only the slowest case is considered: the critical
path. However, the critical path may not be exercised
frequently and the average delay may be significantly
faster.

We can reduce the margins induced from these physical
effects through a combination of a variety of techniques.
We summarize the effectiveness and applicability of some
of these techniques in Table[I] Our approach in this paper
is derived from Razor but adapted to the FPGA fabric. In
the Razor approach, shadow registers are inserted into the
design and are used to detect timing errors. Multiplexers
and stall circuitry are used to correct timing errors in a
single clock cycle. By tolerating timing errors, Razor can
reduce margins for stochastic timing variations such as
noise and data.

2.2 Shadow Registers

We use shadow registers in our FPGA compilation flow
to enable timing error detection in arbitrary circuits. The
concept of shadow registers was originally introduced to
tolerate timing errors in feed-forward processor pipelines
due to dynamic voltage-frequency scaling (DVFS using
Razor). DVFS for commercial FPGA platforms was stud-
ied in [1]. Timing errors are simply detected by inserting
a shadow register for a datapath register with a suitably
phase-shifted clock and comparing the stabilized values
captured in the shadow register with the datapath register.
We show this error detection circuit in Figure[I] The error
signal generated from this comparison can be used in mul-
tiple ways as part of the error correction infrastructure: (1)
stall, (2) bubble/counterflow, and (3) rollback. However,
in this paper, we focus on the design and engineering of
timing-error detection.

3 Vision

Ultimately, we want to design circuits that can operate
reliably in presence of sub-micron manufacturing limita-
tions as well as environmental operating conditions. A
cross-layer solution [2] that distributes the reliability costs
across different levels of the computation stack e.g. gates,
operators, blocks, runtimes, operating systems, etc al-
lows us to deliver a robust, reliable system with modest
overheads. Timing error detection and recovery mecha-
nisms have fundamental engineering constraints that must
be considered to deliver efficient reliability solution for
FPGA designs.

Detection: Cheap detection of errors in the design is
critical to designing scalable reliability frameworks. Cir-
cuit errors that manifest as timing faults can be detected
using strategic insertion of shadow registers. We can
choose to monitor a certain fraction of paths in the cir-
cuit based on criticality and activation rates. We can also
choose to rely on higher-level application-specific checks
as discussed earlier. Other errors and faults such as SEUs
in memory could be detected with checksumming and
scrubbing techniques.

Correction: While not the focus of this paper, we
briefly review correction and mitigation strategies that are
available at our disposal. When we detect errors in the

shadow registers, we can discard the results in the pipeline
and restart/rollback the computation from a checkpoint.
Unlike CPU pipelines with inbuilt mechanisms to support
instruction reordering (out-of-order), we have to support
rollback FIFOs [5]] and state checkpointing to enable cor-
rect resumption of the circuit. Shadow registers in Ra-
zor can be used to hold the correct value and reinsert-
ing them in the datapath through a counterflow pipeline.
On traditional FPGA fabrics implementing the reinsertion
logic may be tricky due to limited availability of spare re-
sources. We intend to investigate these issues in subse-
quent work.

4 FPGA Timing Error Detection

Our method for detecting timing errors is based on the
strategic addition of shadow registers. A shadow regis-
ter is added to the design for every circuit register (RUM)
that may experience timing errors — a timing diagram
illustrating the principle is given in Fig. [2| The shadow
registers latch the same input as their associated RUMs
but are controlled by a separate shadow clock, which has
a fixed phase offset ¢ with respect to the main clock. Dur-
ing operation, the setup latency at a RUM input may occa-
sionally be so great that the RUM does not correctly latch
the data. However, by setting the shadow clock to lag
the main clock we ensure that the shadow register always
latches the correct data. Following a rising edge of the
shadow clock the value stored in the shadow register can
be compared to the RUM to establish whether the RUM
experienced a timing error.

Shadow register insertion Shadow registers must be
inserted to monitor all registers where timing errors may
occur. This depends on the arrival time distribution of the
registers in the design and the desired overclocking factor.

Shadow register insertion is carried out with an auto-
mated flow based on [4]]. Here, the placement and routing
of the original circuit is preserved while shadow registers
are added. This means that the timing characteristics of
the application circuit are not significantly impacted by
the process. This is important because timing changes
could change the criticality ordering of registers with the
result that the wrong parts of the circuit are monitored
for errors. A side-effect of this is that the data arrival
time at the shadow registers can vary significantly from

the RUMs.

The timing slack measurement application of [4] can
tolerate large variation in the shadow register timing off-
sets due to its phase sweeping technique. However, for er-
ror detection we require that all the shadow registers have
similar delay offsets as they are triggered from a com-
mon, fixed-phase clock. We achieve this by adding min-
imum and maximum timing constraints for the shadow
register offset. Fortunately, modern FPGAs are adept at
meeting complex timing constraints as they are frequently
required in systems with multiple clock domains and off-
chip synchronous communication. The flexible and over-
provisioned routing resources can be adapted to insert de-
lay into circuit nets as required and the CAD tools have
proficient algorithms for automating the process.

Hold timing The first challenge to be resolved in mak-
ing this scheme practical is associated with hold delays.
Since the shadow clock rises after the main clock there
is a danger that fast propagation from the RUM reach
the shadow register before it latches. This would cause
the shadow register to sample early activity from cycle
n + 1 rather than late activity from cycle n as intended.
To prevent this, we must enforce a minimum delay be-
tween a RUM and all its fan-in registers. As with the con-
straints for shadow register insertion, the FPGA tool flow
can readily meet these requirements and insert delay into
fast paths without impacting slow paths.

Calibration To use error detection safely it is important
to know the minimum hold delay at each shadow registers
— these determine the maximum allowable shadow clock
lag ¢ — and the shadow path delay offsets — these, with
the selected ¢, govern the maximum overclocking factor.
However, timing models are not accurate enough to con-
trol operation of the error detection system. Typically,
upper-bound and lower-bound timing models (used re-
spectively by the tool to check setup and hold constraints)
differ by a factor of around 2x. Fortunately, the shadow
register hardware is capable of measuring the necessary
timing parameters in an offline calibration process based
on frequency and phase sweeps.

S Experiments

We run our experiments on the Terasic DEO Nano FPGA
board supported by a programmable TTi PL303QMD-P

Data In

Clock In

Figure 1: Timing Error Detection using Shadow
Registers

main clock

data (K)

shadow clock

data (S) -:_.:E-

Data (K) Data ()
unstable at stable at
main clock shadow clock

Figure 2: Error detection timing

PSU. We show our experimental setup in Figure 3]

Error detection capability

To test the effectiveness and utility of timing error de-
tection we conducted experiments with widely-used com-
plex logic operators. First, we compared errors detected
by shadow registers with traces recorded from the circuit
outputs by a block RAM. Analysis of the circuit netlist
provides the pipeline latency between each RUM and the
output, and this allows us to align detected errors with
output discrepancies. A frequency sweep is conducted to
overclock the circuit to beyond the point of timing failure.

The results for this in the fpmult32 (single-precision
multiplier) benchmark are shown in Fig. @ With an
8kword input vector set taken randomly from a gaussian
distribution, no errors at all occur below 208MHz — the
fmax given by the timing tool is 136MHz. From there,
the detected error rate increases almost exponentially with
frequency. These are errors detected by the shadow regis-
ters which correspond with errors in the output trace. At
higher frequencies, missed errors are recorded — these
are errors in the output trace that were not picked up by

Figure 3: Experimental Platform with the Terasic DEQ
Nano FPGA Board and TTi PL303QMD-P PSU
controlled using a an Ubuntu 12.04 64-bit VM

the shadow registers. These can occur if timing faults are
introduced at registers which are not monitored, or if the
clock period becomes so short that timing faults occur at
the shadow registers.

Another possibility for the missed errors is metastabil-
ity. When timing faults occur there is the potential for
registers to enter a metastable state. If the metastable state
persists long enough then downstream registers can sam-
ple non-deterministic data values and errors can be intro-
duced. Such errors may not be observed by the timing
error detection circuitry because either (a) the metastable
state resolves to a correct data value before the error signal
is latched, (b) the metastable state appears as correct data
to the error detector due to biasing conditions, or (c) the
metastable state propagates to the error detection regis-
ter. Metastability could be addressed by adding additional
shadow registers to downstream logic. These would de-
tect the resulting late transitions. As with synchronizers,
once metastability is introduced it is impossible to elim-
inate entirely — it can only be mitigated to achieve an
acceptable failure rate.

The final class of errors recorded are false errors. These
are detected timing faults with no corresponding output
error. They can occur simply because the fault is masked
by downstream logic and does not propagate to the out-
puts. Other causes include insufficient shadow register

hold delay and metastability. False errors do not affect the
correctness of the circuit output, but where error correc-
tion is employed they will incur an unnecessary overhead.

Performance gains We quantified the potential gains
of using error detection by modeling throughput and en-
ergy consumption in a error correction system. Fig.]
shows the throughput relative to the timing model guar-
antee as clock frequency is increased. We consider two
systems, one where error correction is achieved in a sin-
gle clock cycle (like stall-based Razor) and one where it
takes ten clock cycles (for example a rollback system).
A substantial improvement, around 50%, could be made
without incurring any errors (and 62% with error recovery
support). However, that does not mean that it would be
safe to operate at this point without error detection. The
experiment did not test an exhaustive set of input vectors
and even if certain operating parameters are monitored
margins would have to be allowed for noise, crosstalk and
jitter effects. Error detection and correction offers protec-
tion from these effects and allows throughput to be pushed
further. A 10-cycle correction penalty soon outweighs the
gains of overclocking much beyond the point of timing
fault introduction but a single-cycle system could offer
significant throughput gains.

We also looked at the implications for computation en-
ergy and these are shown in Fig.[6] Here, voltage is re-
duced and the corresponding computation energy is cal-
culated in a similar way by assuming that errors incur an
energy penalty equivalent to either one or ten extra clock
cycles. Energy can be reduced by around 35% before the
first timing faults occur. Here too a further improvement
up to 39% can be made by pushing further and relying on
error correction to make a net saving.

6 Conclusions

In this paper, we highlight our preliminary design of a
compilation flow for automatically inserting timing error
detection logic in arbitrary circuits. As our framework
matures, we expect to characterize a wider range of cir-
cuits and IP cores. This will be part of a cross-layer re-
liability stack with a strong desire to integrate with stal-
I/rollback logic. We are currently investigating the feasi-
bility of supporting automated insertion of stall/rollback
logic using the FPGA substrate. We estimate 39% en-

m—— Detected errors
False errors
10 — \lissed errors

Error rate
=
S

L oW

205 210 215 220 225 230 235
Clock frequency (MHz)

Figure 4: Errors detected, falsely detected and missed,
versus clock frequency

18

1.7] clock cycle correction
10 clock cycle correction

16
15
14
13
12

Relative throughput

11
1

0.9 N N N N N N
120 140 160 180 200 220 240

Clock freauency(MHz)

Figure 5: Throughput relative to timing model versus
clock frequency

] clock correction

11 10 clock correction

1

0.9

0.8

0.7

0.6

Mean relative computation energy

0.5
1.25 12 115 11 1.05 1 0.95 0.9

Core voltage

Figure 6: Mean energy per computation versus core
voltage

ergy savings and 62% throughput improvements in the
FPGA mapped implementation of a floating-point single-
precision multiplier when using our approach. These
early results show the potential for large improvements in
performance and efficiency by responding to timing faults
as they occur.

References

(1]

(3]

[4]

(5]

C. T. Chow, L. Tsui, and P. Leong. Dynamic volt-
age scaling for commercial FPGAs. Proceedings of
the International Conference on Field-Programmable
Technology (ICFPT), 2005.

A. DeHon, H. M. Quinn, and N. P. Carter. Vision
for cross-layer optimization to address the dual chal-
lenges of energy and reliability. In Proceedings of
Design Automation and Test Europe, 2010.

D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and
T. Mudge. Razor: a low-power pipeline based on
circuit-level timing speculation. In 36th International
Symposium on Microarchitecture, pages 7-18. IEEE
Comput. Soc, 2003.

J.M. Levine, E. Stott, G.A. Constantinides, and P.Y.K.
Cheung. SMI: Slack Measurement Insertion for On-
line Timing Monitoring in FPGAs. In Proc. Int.
Conf. on Field Programmable Logic and Applications
(FPL), 2013.

H. Naeimi and A. DeHon. Fault-tolerant sub-
lithographic design with rollback recovery. Nan-
otechnology, 2008.

