
Cocotb-Pynq: Co-simulating Python+RTL
applications targeting Pynq platforms with Cocotb

Gavin Lusby
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Canada

gdplusby@uwaterloo.ca

Nachiket Kapre
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Canada

nachiket@uwaterloo.ca

Abstract—The AMD Pynq ecosystem fails to provide a seamless
way to easily validate functional correctness of RTL designs when
part of the application logic runs in Python on the ARM (or
x86) host CPU. Application developers must wait for the entire
FPGA bitstream generation flow and deploy their code to the
FPGA before they confirm the correctness of the Python host
code working with the RTL design implemented on the FPGA.
In contrast, Cocotb offers a Pythonic framework to test and
simulate RTL designs in a variety of cycle-accurate simulators,
but lacks easy integration with the Pynq ecosystem. In this
paper, we propose Cocotb-Pynq, a framework for co-simulating
Python ARM (or x86) host code and RTL/Verilog programs in
a single environment. This eliminates the need for bitstream
generation prior to co-simulation of Python and RTL components
and significantly speeds up design iterations. We rewrite key
components of the Pynq ecosystem to be cocotb-compatible
and offer drop-in solutions for Pynq APIs in Cocotb. Specifically,
we rewrite the MMIO and AXI DMA blocks using the Python
asyncio library to be compatible with Cocotb emulation. We
evaluate our framework on a suite of benchmark programs and
quantify their performance. In contrast to bitstream generation
times of 10 minutes needed for Pynq devices such as Pynq-
Z1 for our small benchmarks with modest frequency targets, a
Cocotb-Pynq co-simulation takes 1–2 minutes of runtime even
for large designs using the entire chip. The framework will be
open-sourced and made available for community contributions
and evolution.

Index Terms—Digital Simulation, Verification, HDL

I. INTRODUCTION

Since its introduction to the world in 2017, Pynq [1] has rev-
olutionized the deployment and design of FPGA-accelerated
embedded applications. Although originally closely tied to
the Jupyter environment, the underlying Pythonic framework
is valuable on its own merit and has been widely used in
research and development. Before Pynq, embedded developers
had to write low-level FPGA device drivers for FPGA pro-
gramming and data movement while also wrangling custom
operating system configurations and compilations before they
could deploy application split across hardware and software.
Pynq abstracted away a lot of this developer tedium in a
standardized way across a range of embedded FPGA boards
starting with the Pynq-Z1, and growing to include a range of
AMD MPSoCs. They expanded range to even include Alveo
datacenter cards like the U280 with x86 host CPUs, and have
continued to support and evolve the framework.

Block Design

Verilog

Cocotb-Pynq

Verilog

.hwh file

.bit file

Pynq Overlay class

DMA

sendchannel

recvchannel

AXI
Stream

AXI
Stream

MMIO AXI Lite

DMA
streams

Memory
mapped

Bitstream

.hwh file

Cocotb-Pynq's
Overlay class

DMA

sendchannel

recvchannel

AXI
Stream

AXI
Stream

MMIO AXI Lite

Processing System FPGA

x86/any system x86/any system

Memory
mapped

DMA
streams

Fig. 1. System-level runtime view of Pynq and Cocotb-Pynq framedworks

What are some specific problems with Pynq? Despite all
the obvious benefits of standardized interfaces and abstraction,
Pynq requires developers to co-develop applications in RTL
(or HLS) and Python. While it is possible to write careful
testbenches to rigorously evaluate and analyze your RTL
behavior, Pynq wraps your RTL in a Block Design before
deploying to the board. A system-level simulation including
the processing system (CPU) and the FPGA may be possible,
but it would be much too slow to be useful. Furthermore,
this will require modeling complex interactions between the
ARM CPUs, the DRAM subsystem, the FPGA interfaces for
embedded SoCs, and PCIe interfaces for Alveo boards. An
alternative simulation approach that models your RTL and the

Python host code together would be desirable. Cocotb [2] may
be the answer.
cocotb [2] is a coroutine-based Pythonic testing envi-

ronment for RTL designs. Unlike traditional RTL simulators,
cocotb uses Python’s asyncio support to implement test-
benches as Python coroutines that interact with your RTL
code in complex, realistic ways. This gives programmers the
ability to describe their tests using high-level Python language
without sacrificing the cycle-by-cycle interactivity necessary
for RTL abstraction of hardware designs. The RTL itself can
be compiled using existing simulators like iverilog [3],
verilator [4] among others, although notably lacks support
for xsim due to lack of VPI support in Vivado.

Can we combine the benefits of Pynq for FPGA
deployment with those of cocotb for fast, expressive
simulations? Cocotb-Pynq, shown in Figure 1, answers this
question affirmatively. With minimal cosmetic modifications to
the Pynq scripts, we can reuse the same Pynq host code as a
cocotb coroutine and model MMIO and DMA operations in
a simple manner. We rewrite the key Pynq libraries necessary
for canonical application use-cases to show how to make
asyncio coroutines interoperate with Pynq Python code.

In the absence of such an environment, Pynq users are
forced to wait until bitstream generation and in-system de-
ployment to test whether their Python host code and FPGA
RTL logic interoperates correctly as intended. This has often
led to wasted developer time due to bugs at the boundary of
software and hardware interfaces. Specifically, in the author’s
experience, bugs related to data packing, data alignment, and
incorrect clock configuration in the Pynq board tcl files has
required complex debugging methods. Often, developers are
forced to reason about correctness through expensive, and
time-consuming ILA (integrated logic analyzer) approach only
to realize the bugs were merely in the Python code. Cocotb-
Pynq hopes to avoid these wasted development times.

In this paper, we make the following contributions:

• Design and engineering of Cocotb-Pynq framework to
allow Pynq Python host code to be co-simulated with
RTL designs.

• Demonstration of correct, and fast operation of repre-
sentative examples such as simple polynomial evalua-
tion, and matrix multiplication involving the use of both
MMIO and AXI DMA operations.

• Performance evaluation and characterization of the frame-
work to quantify the benefits of the co-simulation envi-
ronment over existing approaches on Pynq-Z1 board.

II. COCOTB-PYNQ FRAMEWORK

The Cocotb-Pynq framework consists of a few components,
best understood by looking at Figure 1. In the conventional
Pynq-based flow (shown in the upper-half of the figure),
the Pynq runtime executes on the embedded ARM CPU (or
x86 for Alveo), and is responsible for (1) configuring the
FPGA bitstream, (2) managing memory-mapped IO (MMIO)
and DMA operations, and (3) providing a way for users to

Verilog/RTL

Block Design

.hwh

.bit

Vivado

Synth+P&R

Verilator

Pynq Runtime
FPGA

Execution
Python+RTL+BD

Cyc-accurate
Simulation
Verilog-only

Python
host code

Verilog/RTL

Block Design

.hwhVivado

generate_target

Verilator

Cocotb-Pynq
Runtime

Cyc-accurate
Simulation
Python+RTL

Python
host code

Cocotb-Pynq
Runner

Fig. 2. Compile/Runtime flow of Pynq and Cocotb-Pynq frameworks

express application software logic in Python. The Cocotb-
Pynq framework (shown in the lower-half of the figure) looks
remarkably similar, yet substantially different.

• Cocotb-Pynq does not require you to generate a bitstream.
If you had to generate an entire FPGA bitstream, there
would no longer be any speedup in the simulation flow.

• In fact, Cocotb-Pynq does not even require you to have
silicon to do any co-simulation! Cocotb-Pynq can run on
any system (x86 or ARM) that can install cocotb, and
does not require access to any FPGA device.

• Cocotb-Pynq provides Cocotb-compatible implementa-
tion of the MMIO and DMA APIs. These are identical to
Pynq APIs so Pynq programmers will note no difference
in expression and expected execution.

The compilation and runtime flow is also significantly
different as shown in Figure 2. As you can see, the traditional
Pynq flow (shown in the upper-half of the figure) has a
simulation path that takes the Verilog/RTL code and executes
it through a simulator such as Verilator to confirm cycle-
accurate correctness of the digital design. To deploy the code
to an FPGA, you have to wrap it in a block design so
the processing system can interface with the RTL as part
of an embedded system-on-chip (for ARM CPUs) or PCIe-
connected accelerator interface (for x86 CPUs). Regardless of
the target, we must use Vivado to generate a bitstream .bit
and hardware description file .hwh. The .bit bitstream
is downloaded to the FPGA using appropriate configuration
drivers for the target. The .hwh file is read by the Pynq
runtime to determine AXI DMA and MMIO mappings for
runtime interaction with the configured FPGA. Thus, the only
way to verify the host Python code with the RTL is directly
on the FPGA, unless you want to do a much slower cycle-
accurate Processing System + Programmable Logic simulation
using qemu or some other exotic technique.

In contrast, the Cocotb-Pynq flow does not run Vivado
compilation. We only run the generate_target command
that takes the Block design file that specifies connectivity
between the CPU and FPGA components. This is enough
to generate the .hwh file which is essential for mapping
the AXI DMA and MMIO operations in the Pynq host code

Cocotb Code Pynq Code Cocotb-Pynq Code

import cocotb
from cocotb.triggers import RisingEdge
import random

@cocotb.test
async def main(dut):

Reset the DUT
dut.rst.value = 1
await RisingEdge(dut.clk)
dut.rst.value = 0

await axi_lite_write(0x10, 1) # write a
await axi_lite_write(0x18, 2) # write b
await axi_lite_write(0x20, 3) # write c

in_buff = [random.randint(0, 100)
for _ in range(5)]

out_buff = []

await cocotb.start(
axi_stream_write(dut, in_buff))

await axi_stream_read(dut, out_buff)

print("Answer:")
print(out_buff)

async def axi_lite_write(addr, data):
... #manual implementation by user

async def axi_stream_write(addr, in_buff):
... #manual implementation by user

async def axi_stream_read(addr, out_buff):
... #manual implementation by user

from pynq import Overlay
from pynq import MMIO
from pynq import allocate
from pynq import PL

def main():
program FPGA
overlay = Overlay('./fpga.bit')

write a, b, c
mmio = MMIO(0x43C10000, 0x1000)
mmio.write(0x10, 1) # write a
mmio.write(0x18, 2) # write b
mmio.write(0x20, 3) # write c

stream inputs/outputs over DMA
in_buff = allocate(shape=(5,),

dtype=np.uint32)
out_buff = allocate(shape=(5,),

dtype=np.uint32)

in_buff[:] = np.random.randint(0, 100,
size=in_buff.shape, dtype=np.uint32)

recv=overlay.poly.axi_dma.recvchannel;
send=overlay.poly.axi_dma.sendchannel;

recv.transfer(out_buff)
send.transfer(in_buff)
send.wait()
recv.wait()

print("Answer:")
print(out_buff)

if __name__ == "__main__":
main()

import cocotbpynq
from cocotbpynq import Overlay
from cocotbpynq import MMIO
from cocotbpynq import allocate
from cocotbpynq import PL

@cocotbpynq.synctest
def main(dut):

program FPGA
overlay = Overlay('./fpga.bit')

write a, b, c
mmio = MMIO(0x43C10000, 0x1000)
mmio.write(0x10, 1) # write a
mmio.write(0x18, 2) # write b
mmio.write(0x20, 3) # write c

stream inputs/outputs over DMA
in_buff = allocate(shape=(5,),

dtype=np.uint32)
out_buff = allocate(shape=(5,),

dtype=np.uint32)

in_buff[:] = np.random.randint(0, 100,
size=in_buff.shape, dtype=np.uint32)

recv=overlay.poly.axi_dma.recvchannel;
send=overlay.poly.axi_dma.sendchannel;

recv.transfer(out_buff)
send.transfer(in_buff)
send.wait()
recv.wait()

print("Answer:")
print(out_buff)

TABLE I
COMPARISON OF COCOTB, PYNQ, AND COCOTB-PYNQ.

with the FPGA AXI ports. We still need to supply a Cocotb
runner like any Cocotb simulation but that is a generic wrapper
that can be reused across other projects with minimal if any
modifications. Thus, the Cocotb-Pynq runtime will combine
the AXI DMA and MMIO information from .hwh with the
Verilator-compiled cycle-accurate simulation executable for
the RTL and the Pynq Python host code .py running as a
testbench coroutine. This strategic assembly of components
lies at the heart of Cocotb-Pynq and is what makes it fast as
well as accurate.

Dealing with asynchronous waits: The Cocotb-Pynq
MMIO and DMA APIs were reasonably easy to re-implement
for functional correctness as they naturally match the asyn-
chronous computing model of cocotb. However, our initial
implementations required the Pynq host code to have await
statements (asynchronous waits) to ensure compatibility. This
forced the host code to deviate too different from its natural
expression. Luckily, this was resolved when we discovered
how to wrap synchronous functions as @cocotb.function
to remove the asynchronous waits.

MMIO and AXI DMA Timing Model: When imple-
menting AXI handshakes, we had to carefully order the AXI
transactions to ensure full throughput operation. Any bubbles
or stalls should be purely from the DUT and not the software
wrapper. The adjacent recurring code fragment was essential to
ensuring the timing behavior models AXI operation ordering.

The key here is the insertion of ReadOnly() guard to force
values to stabilize before further operations are performed.
This results in MMIO writes taking 3 cycles, reads taking
2 cycles, and DMA operations running back-to-back at full
throughput. A custom implementation for AXI handshakes
was chosen over cocotbext-axi [5] to keep the package
lightweight.
await ReadOnly()
rdy = self.cpbus.AWREADY.value
while(periph_addr_ready == 0b0):

await RisingEdge(self.cpdut.clk)
await ReadOnly()
rdy = self.cpbus.AWREADY.value

await RisingEdge(self.cpdut.clk)

A. Code Snippets
To better understand how we unify cocotb and Pynq,

we show how to create test harnesses for a simple Verilog
1-cycle implementation of a polynomial a · x2 + b · x + c
in Table I. The assumption is that a, b, and c are scalar
constants that are loaded at start of execution. The input x
is then streamed continuously while output y is available
a cycle later. The interactions are mapped to MMIO (for
scalars) and AXI DMA for the streams. As you can see,
the three code blocks looks very similar. cocotb tests
interact with the design on a cycle-by-cycle basis dealing
with reset and then handling the AXI protocol interactions

Design Verilator (Ryzen 9) Pynq (Pynq-Z1) Cocotb-Pynq (Ryzen 9)

Verilator
Compile
tcompile

Testcase
Runtime
tswexec

Bitstream
Gen. Time
tvivado

Pynq
Overhead
tpynqoh

Testcase
Runtime
tfpgaexec

.hwh
generation
thwh

Verilator
compile
tcompile

Cocotb
Overhead
trunner

Testcase
Runtime
tswexec

polynomial 6.1 s 0.006 s 435 s 9.1 s 3.01 s 31.8 s 8 s 1.4 s 0.02 s
mat mul 4x4 8.4 s 0.23 s 356 s 8.8 s 3.07 s 31.8 s 11.7 s 1.4 s 0.08 s
mat mul 12x12 34.7 s 0.24 s 570 s 9.6 s 3.97 s 31.8 s 30.2 s 1.4 s 0.56 s
mat mul 16x16 37.4 s 0.33 s 698 s 9.0 s 4.75 s 31.8 s 52.5 s 1.6 s 1.19 s

Fig. 3. Comparing execution times of the various simulations and FPGA executions.

for x and y. Both Pynq and Cocotb-Pynq explicitly support
MMIO transactions and DMA transfers. They do not make
the programmer reason about cycle-by-cycle operation of the
MMIO and AXI DMA interfaces. Specifically, the Pynq FPGA
execution behaves exactly the same way by abstracting the
AXI protocol handling, and DMA IP management logic.
The key takeaway is that the Cocotb-Pynq code looks pretty
much identical to the Pynq code, barring the imports and
the function decoration @cocotbpynq.synctest. This
decorator, which is supplied by the Cocotb-Pynq framework,
wraps a synchronous function as a cocotb test. This allows the
code to call asynchronous cocotb functions that are wrapped
with decorates @cocotb.function such as DMA wait and
MMIO read/write.

III. EXPERIMENTAL EVALUATION

We now evaluate the performance (runtime) of the Cocotb-
Pynq framework compared to the traditional Pynq develop-
ment flow. Our tcl currently targets the Pynq-Z1 FPGA board
but can support other Pynq-compatible boards as long as it
uses compatible AXI-DMA IP and MMIO logic. We consider
the simple polynomial example as a small microbenchmark
and then consider an int8 systolic array with varying sizes
as a scaling study to evaluate time trends as a function of RTL
complexity. All runtime measurements of tests are done across
100 experimental runs and the average runtime is reported.
We use a Ryzen9-5900X 12-core Ubuntu server with 128GB
RAM for our mapping and testing experiments with Verilator
and Cocotb-Pynq. We use the Pynq-Z1 board for our Pynq
experiments.

We consider three experiments:
• Verilator: We will evaluate the runtime of software sim-

ulation of RTL code using verilator simulator. We
expect runtime here to be tverilator = tcompile + tswexec

where the compile time (tcompile) is a one-time cost while
software execution (tswexec) scales with test complexity.

• Pynq: For the traditional Pynq flow, we will measure
the runtime of FPGA bitstream generation (tvivado) and
FPGA execution. The runtime expression is tpynq =
tvivado + tpynqoh + tfpgaexec. FPGA execution involves
some constant overhead (tpynqoh) from setting up the
script (e.g. import statements) as well as time from
actual execution in silicon (tfpgaexec).

• Cocotb-Pynq: Finally, we will measure the runtime of
the Cocotb-Pynq framework, using Vivado to generate

.hwh file (thwh) and verilator to compile (tcompile)
a software model of the RTL for evaluation. Here, we
expect the runtime to be more complicated tcocotbpynq =
thwh + tcompile + trunner + tswexec. Cocotb runner’s
overhead, trunner, is similar to Pynq’s overheads.

In Table 3, we compare the execution runtime profiles
of different benchmarks and different conditions. For the
simple polynomial example, we note that the Verilator simu-
lation takes ≈6 s while traditional Pynq FPGA execution took
≈446 s. The Cocotb-Pynq flow took ≈40 s with the bulk of
the overhead due to .hwh file generation needs. Note that
this only needs to be done once for a given design, and
rerun when the CPU-FPGA interface changes (e.g. a new
DMA channel is added) which is very infrequent if at all.
If the system-level interface is stable, the execution runtime
is then similar to the Verilator runtime barring a 1.4 s Cocotb
runner overhead. When we scale the design to larger systolic
array design, we mainly see the verilator compile time
increase significantly, while the testcase runtime is negligible
in comparison. However, the FPGA bitstream generation time
increases dramatically to ≈700 s with design complexity and
will be the key stumbling block for testing. Unsurprisingly
.hwh file generation time stays stable ≈30 s as the block
design complexity is stable.

IV. CONCLUSIONS

We present Cocotb-Pynq, a simulation framework that al-
lows embedded FPGA developers to co-simulate their RTL
digital designs with the Python host code in a single, fast
environment. This can replace the traditional Pynq design flow
that requires deployment to the FPGA to test the digital circuit
with the Python host code to verify their overall application
correctness. This leads to wasteful design iterations as the lack
of software simulation visibility hampers the bug discovery
flow. We show how to make Pynq code compatible with
cocotb’s asynchronous coroutines framework by avoiding
bitstream generation and speeding up the simulation flow.
In our runtime characterization experiments, we note that
barring one-time 30 s .hwh file generation runtime and modest
1 s cocotb runner overheads, Cocotb-Pynq performance is
similar to Verilator software execution.

REFERENCES

[1] Benjamin John Rosser. 2018. Cocotb: a Python-based digital logic
verification framework. In Micro-electronics Section seminar. CERN,
Geneva, Switzerland.

[2] Xilinx. 2017. PYNQ: Python productivity for Zynq. In International
conference on Field Programmable Logic.

[3] Stephen Williams and Michael Baxter. 2002. Icarus verilog: open-source
verilog more than a year later. Linux Journal 2002, 99 (2002), 3.

[4] Wilson Snyder. 2004. Verilator and systemperl. In North American
SystemC Users’ Group, Design Automation Conference, 122–148.’

[5] Alex Forencich. 2020. cocotbext-axi. Github, Available:
https://github.com/alexforencich/cocotbext-axi/

