
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013 1

Communication Optimization of Iterative
Sparse Matrix-Vector Multiply on GPUs and

FPGAs
Abid Rafique, George A. Constantinides, Senior Member, IEEE Nachiket Kapre, Member, IEEE

Abstract—Trading communication with redundant computation can increase the silicon efficiency of FPGAs and GPU in
accelerating communication-bound sparse iterative solvers. While k iterations of the iterative solver can be unrolled to provide
O(k) reduction in communication cost, the extent of this unrolling depends on the underlying architecture, its memory model and
the growth in redundant computation. This paper presents a systematic procedure to select this algorithmic parameter k, which
provides communication-computation tradeoff on hardware accelerators like FPGA and GPU. We provide predictive models to
understand this tradeoff and show how careful selection of k can lead to performance improvement that otherwise demands
significant increase in memory bandwidth. On an Nvidia C2050 GPU, we demonstrate a 1.9×−42.6× speedup over standard
iterative solver for a range of benchmarks and that this speedup is limited by the growth in redundant computation. In contrast,
for FPGAs, we present an architecture-aware algorithm that limits off-chip communication but allows communication between
the processing cores. This reduces redundant computation and allows large k and hence higher speedups. Our approach for
FPGA provides a 0.3×−4.4× speedup over same generation GPU device where k is picked carefully for both architectures for
a range of benchmarks.

Index Terms—Iterative Numerical Methods; Spare Matrix−Vector Multiply; Matrix Powers Kernel; Field Programmable Gate
Arrays (FPGAs); Graphics Processing Units (GPUs)

F

1 INTRODUCTION

The cost of a high performance scientific compu-
tation operating on large datasets consists of two
factors (1) computation cost of performing floating-
point operations (2) communication cost (both latency
and bandwidth) of moving data within the memory
hierarchy in sequential case or between processors
in parallel case. One of the communication-intensive
scientific computations is an iterative solver used for
solving large-scale sparse linear system of equations
(Ax = b) and eigenvalue problems (Ax = λx) [1].
The solution of these problems is computed from a
Krylov subspace span(x, Ax, A2x,, Arx) [1], where
a new vector is generated in each iteration. Iterative
solvers are challenging to accelerate as they spend
most of the time in communication-bound computa-
tions, like sparse matrix-vector multiply (SpMV) and
vector-vector operations (dot products and vector ad-
ditions). Additionally, the data dependency between
these operations hinder overlapping communication
with computation. For large-scale problems where the
matrix A does no fit on-chip, no matter how much
parallelism can be exploited to accelerate SpMV, the
performance of the iterative solver is bounded by

• Abid Rafique and George A. Constantinides are with the Department
of Electrical and Electronic Engineering, Imperial College London, UK.

• Nachiket Kapre is with School of Computer Engineering, Nanyang
Technological University, Singapore.

the available off-chip memory bandwidth, e.g. with
2 flops per 4 bytes (single-precision) in SpMV, the
maximum theoretical performance is 71 GFLOPs on
an Nvidia C2050 GPU and 17 GFLOPs on a Virtex6
FPGA. This results in less than 7% and 4% efficiency
of GPU and FPGA respectively (See Table 1 for peak
single-precision GFLOPs and off-chip memory band-
width).

The communication problem is connected to the
memory wall problem [2]. Due to technology scaling,
computation performance is increasing at a dramatic
rate (flops/sec improves by 59% each year) whereas
communication performance is improving but at a
much lower rate (DRAM latency improves by 5.5%
and bandwidth improves by 23% each year) [3]. It is
a well-known idea to formulate algorithmic innova-
tions that hide memory latency and optimize memory
bandwidth [4] [5] [6]. For iterative solvers, Demmel et
al. [7] trade communication with redundant compu-
tation by replacing k SpMVs with the matrix powers
kernel. The key idea is to partition the matrix into
blocks and performs k SpMVs on blocks without
fetching the block again in the sequential case and per-
forming redundant computation to avoid communica-
tion with other processors in the parallel case. In this
way the communication cost is reduced by O(k) at the
expense of increase in redundant computation. They
show that such an approach can minimize latency in a
grid [7] and both latency and bandwidth on a multi-
core CPUs [8] to give up to 4× and 4.3× speedup
respectively over k SpMVs for banded matrices. While

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013 2

TABLE 1
Architectural Features of FPGA and GPU (On-Chip memory of GPU refers to shared memory).

Memory Memory BW Memory BW
Device Tech. Peak GFLOPs (On-Chip) (On-Chip) (Off-Chip) Freq.

(nm) (single-precision) Total. RAM Registers RAM Registers MHz

Virtex6-SX475T 40 450 [18] 4 MB 74 KB 5.4 TB/s 36 TB/s 34 GB/s [18] 258

Nvidia C2050 Fermi 40 1030 672 KB 1.7 MB 1.3 TB/s [19] 8 TB/s [19] 144 GB/s 1150

the communication-avoiding approach is promising,
there are two main challenges associated with this
communication-avoiding approach on parallel archi-
tectures (1) how to keep the redundant computation
as low as possible to minimize the computation cost
and (2) how to select the optimal value of the algo-
rithmic parameter k, which minimizes overall runtime
by providing a tradeoff between computation and
communication cost.

In this paper, we show how we can increase the
silicon efficiency of FPGAs and GPUs in accelerating
communication-bound sparse iterative solver. As a
motivation, we show a tradeoff between computa-
tion and communication cost for FPGA and GPU to
minimize overall runtime as shown in Figure 1. We
observe that in standard iterative solver (k equal to
1), the communication cost is higher on FPGA as
compared to GPU due to marked difference in off-chip
memory bandwidth as shown in Table 1. However, we
see a unique value of k, which trades communication
with redundant computation to reduce overall cost
and that this value needs to be selected carefully for
each architecture. Additionally, we observe that unlike
GPU, the computation cost does not grow in FPGAs
allowing larger values of k, which leads to higher
performance.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64

T
im

e/
F

lo
p

 (
p

s)

k

TComp - FPGA
TComm- FPGA
TTotal - FPGA
TComp - GPU
TComm- GPU
TTotal - GPU

Fig. 1. Computation-communication tradeoff for a
banded matrix with band size 27 and n = 1M on a
Virtex6-SX475T FPGA and C2050 Fermi GPU.

The main contributions of this paper are:
1) Communication optimization within the mem-

ory hierarchy of a single stream multiprocessor

(SM) as well as between different SMs while
mapping the matrix powers kernel to a GPU.
As a result of these optimizations, we show
1.9×−42.6× speedup over k SpMVs from CUSP
library [15] for a range of randomly generated
banded matrices.

2) An architecture-aware matrix powers kernel
that matches the strength of the FPGAs to
avoid redundant computation and a resource-
constrained methodology to pick k for a partic-
ular FPGA.

3) A unified predictive model of the matrix pow-
ers kernel for GPU and FPGA, which helps
us understanding communication-computation
tradeoffs in selecting the algorithmic parameter
k. Using the steepest ascent approach, we also
show which aspect of future GPU and FPGA
architectures need to be improved to achieve
higher performance.

4) For a range of problem sizes, a quantitative com-
parison of the matrix powers kernel on FPGA
shows 0.3×−3.2× and 1.7×−4.4× speedup over
GPU for largest and smallest band sizes respec-
tively.

The paper is organized as follows. Section 2 pro-
vides the necessary background about the structurally
sparse matrices used in this work. It also summarizes
the matrix powers kernel based on [7] (See Section
1 of supplementary file for details). Section 3 shows
how we map the parallel matrix powers kernel on
GPUs along with discussion about the predictive
model. Section 4 presents the proposed matrix pow-
ers kernel specifically targeting FPGAs. It also dis-
cusses custom architecture on FPGA and a resource-
constrained methodology to select an optimal value
of k. Section 5 introduces the evaluation methodology
and performance of FPGA and GPU is compared in
Section 6. Section 7 provides architectural insight and
final conclusion is in Section 8.

2 BACKGROUND

2.1 Matrix Structure
In this work, we target very large (n ∼ 106) structured
sparse banded matrices. The banded matrices are
stored in band storage format where an n×n matrix
of band size b is stored as an n×b matrix [13]. We
choose this band structure for two main reasons. First,
computations on such matrices have been used as

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013 3

Block1

Block2

Block3

A x(0)

(a) Banded matrix with band size
b =3 and n = 12.

Block 1 Block 3Block 2Block 1 Block 3Block 2

 Locally computable vertices Vertices which communicate

 Vertices with remote dependencies Redundant vertices

i) k SpMVs ii) Parallel Matrix Powers

A3x(0)

A2x(0)

 Ax(0)

 x(0)

n

k

b
R

(b) k SpMVs vs. Matrix Powers Kernel

Fig. 2. k SpMVs vs. parallel matrix powers kernel for a matrix with size n = 12, band size b = 3, number of levels
k = 3 and number of blocks Nq = 3.

an architectural evaluation benchmark due to high
parallelism and low computational intensity, offer-
ing opportunities to exploit on-chip parallelism and
challenges with associated memory systems [14]. Sec-
ondly, they naturally arise in numerous scientific com-
putations like stencils in partial differential equation
(PDE) solvers [10], semi-definite optimization prob-
lems [11] and model predictive control [12]. Although
stencil computation in PDE solvers may not explicitly
store data in band storage form but in the other two
applications, the banded matrix A is explicitly formed.

2.2 Matrix Powers Kernel
Given an n×n sparse matrix A, a dense vector x(0) of
length n, the matrix powers kernel is computed as

x(i) = Ax(i−1) 1 ≤ i ≤ k (1)

The computation in Equation (1) can be unrolled for
k iterations as a graph as shown in Figure 2(b) for
an example tri-diagonal matrix A (See details of the
graph notation in Section 1 of the supplementary file).
Each vertex of the graph represents vector entry x

(i)
j

and there are n vertices for j = 0, 1,. . . , n−1 entries for
each level i = 0, 1,. . . , k. The vertices of new vector
x(i) = Ax(i−1) can be computed by multiplying the
entries of the previous vector with the corresponding
entries of the matrix as shown by the edges. To
parallelize the matrix powers kernel, the graph can
be partitioned into Nq blocks where each block q can
be mapped on a single processor. In case, where we
generate k vectors using repeated SpMV, we need to
synchronize after each step to get the corresponding
entries of the previous vector that are computed by
the neighbouring processors as shown by white ver-
tices in Figure 2(b)(i). The synchronization in k SpMVs
is avoided by the parallel matrix powers kernel, which
trades communication with redundant computation.

The key idea is to determine the dependency chain of
each partition q for computing the entries of the kth
vector as shown by the bounded box in Figure 2(b)(ii).
The vertices that are required from the neighbouring
processors are fetched at once as shown by the white
vertices in Figure 2(b)(ii). To avoid communication
with neighbours, the redundant computation is then
performed at each step (dotted white vertices). While
this is well and good, two factors are crucial for
optimal performance. First, it is desired to keep the
surface to volume ratio (Redundant Flops

Useful Flops) as low as possible
by efficient partitioning of the matrix. Secondly, the
value of k needs to be picked carefully as redundant
flops grow as O(k2b2) [7].

3 MATRIX POWERS KERNEL ON A GPU
While mapping the matrix powers kernel on a GPU,
we want to answer two important questions (1) How
to optimally utilize the current GPU memory subsys-
tem and pick the algorithmic parameter k to achieve
the desired performance for a particular architecture?
(2) How can current GPU architecture be changed
to enhance the performance of iterative solvers? We
first present the current GF100 GPU architecture and
then discuss different optimization techniques that
lead to high throughput. We then present an analytical
model to predict and understand the performance of
the matrix powers kernel on any GPU device (model
parameters are obtained using micro-benchmarks).
We use the same model to select k for current GPU
architectures (See Section 6.1) and also make architec-
tural projections to obtain a desired performance with
future devices (See Section 7).

3.1 GPU Architecture
We select the Nvidia GF100 variant C2050 GPU, which
is intended for high-performance numerical comput-
ing [14] [19]. A simplified architectural description of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013 4

the GPU is shown in Figure 3 highlighting memory
hierarchy as well as capacity, bandwidth and latency
of each memory.

Registers
(128KB)

L1
(16KB)

SMEM
(48KB)

SM-0

Registers
(128KB)

SMEM
(48KB)

SM-1

Registers
(128KB)

SMEM
(48KB)

SM-13

L2 Cache (768KB)

Global Memory (DRAM)

~100-800 Cycles

 27 Cycles

L1
(16KB)

L1
(16KB)

144 GB/s

1.3 TB/s

 1 Cycle
8 TB/s

Fig. 3. GPU Architecture (Nvidia C2050 Fermi).

The GPU comprises 14 streaming multiprocessors
(SMs) each operating at 1.15 GHz. Each SM has 32
floating-point cores capable of performing 1 single-
precision flop/cycle reaching a peak throughput of
1.03 TFLOPs for single-precision and 515 GFLOPs
for double-precision. Tasks are scheduled on GPU as
thread blocks. Each thread block can run independently
on an SM without any communication with other
SMs during a single parallel task, e.g. each SM can
compute k SpMVs for a single block as shown in
Figure 2(b)(ii) for q = 2.

3.2 Partitioning Strategy−One Partition Per
Thread Block
Each of the Nq blocks within the matrix powers kernel
is mapped to a thread block and all these thread
blocks are computed independently in parallel and
in any order. The size of each block is bR×b where
bR is the number of rows in each block. However, the
actual size is (bR+k(b−1))×b as we need some entries
from neighbouring blocks for redundant computation
that helps in avoiding communication. We assign
each vertex to a single thread, which performs serial
reduction to compute the dot product of the row with
b components of vector x(i). If NT denotes the number
of threads, we can represent partition size bR and the
total number of partitions as

bR = NT − k(b− 1) (2)

Nq =

⌈
n+ bR − 1

bR

⌉
(3)

3.3 GPU Optimizations
To exploit memory hierarchy of the GPU for fast
access of the matrix and vector partitions, we explore
three possible mappings of the matrix powers kernel
as shown in Table 2. We take a matrix of size n = 106

with band size b = 9, number of threads NT = 512 and
number of levels k = 8 and evaluate the performance
of these mappings. We select the values of NT and
k to show performance scaling and later on show

how these values impact performance and need to be
picked carefully. We choose spmv_dia_kernel from
CUSP library [15] as baseline to perform k SpMVs
with a performance of 34.8 GFLOPs. We now briefly
discuss the three possible GPU optimizations.

TABLE 2
Single-Precision Parallel Matrix Powers Kernel Parallel

Mapping on C2050 GPU (n =1M, b =9, k =8).
Efficiency = Sustained GFLOPs

Peak GFLOPs .

Global Shared Reg. Sustained Effic-
Memory Memory GFLOPs iency

k SpMVs [15] A, x(i) 34.8 3.3%
Matrix Powers A x(i) 63 6.12%
(Thread Blocking)
Matrix Powers A, x(i) 97.6 9.4%
(Thread Blocking +
Cache Blocking)
Matrix Powers x(i) A 123 11.9%
(Thread Blocking +
Reg. Blocking)

3.3.1 Thread Blocking (63 GFLOPs)
Each thread within the thread block is responsible for
computing a single entry of the vector x(i) from the
entries of matrix A and vector x(i−1). We, therefore,
only store NT = bR + k(b − 1) components of the
vector x(i−1) within the shared memory of each SM.
To avoid communication with other SMs, the entries
from neighbouring blocks are pre-fetched. As the
entries of the matrix A are not modified and do not
require inter-SM synchronization at each level, we
can access A from global memory (See Listing 1 of
supplementary file).

3.3.2 Thread Blocking + Explicit Cache Blocking
(97.6 GFLOPs)
In this case, in addition to thread blocking, we also use
explicit cache blocking to store the partition of matrix A
into on-chip shared memory of each SM (See Listing
2 of the supplementary file). Using this approach, we
not only avoid communication between different SMs
but also with the global memory as well. As a result,
we see a significant performance improvement over k
SpMVs.

3.3.3 Thread Blocking + Register Blocking (123
GFLOPs)
GPUs have an inverse memory hierarchy [19], i.e.
registers have relatively large capacity as compared
to L1 cache/shared memory and L2 cache. Also reg-
isters have low latency (∼1 cycle) compared to shared
memory (∼27 cycles). To get high throughput, they
have been recently used to block matrices arising in
small linear algebra problems with high arithmetic
intensities [16]. In the matrix powers kernel, each
matrix partition can be blocked within the registers
of the SM (See Listing 3 of the supplementary file).
We store the NT×b partition matrix in a row cyclic

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013 5

distributed fashion within these registers, i.e. each
thread can store a single row of length b. The vector
partition is not register-blocked as its entries need to
be shared among different threads and is, therefore,
kept in the shared memory. We show the performance
of these optimizations in Figure 4.

10

20

40

60

80

100

120

140

2 5 20 50 120 250 500 1000

G
F

L
O

P
s

Matrix Size (n x 1000)

k SpMVs
Matrix Powers (Thread Blocking)
Matrix Powers (Exp. Cache Blocking)
Matrix Powers (Register Blocking)

Fig. 4. GPU Optimizations (b = 9, NT = 512, k = 8).

The matrix powers kernel with thread blocking and
register blocking gives higher throughput as we not
only avoid communication within different SMs and
within memory hierarchy of a single SM but also
utilize low latency and high bandwidth memories of
GPU. We see more than 3.5× speedup over k SpMVs
for large matrices and this speedup is even more
pronounced for small matrices with higher value of
k (See Table 6).

3.4 Modelling Performance
Mapping the matrix powers kernel on GPU and

selecting optimal k to trade communication with com-
putation is not obvious due to the complex GPU archi-
tecture. To understand and predict the performance of
the matrix powers kernel on the GPU, we characterize
our discussion using bandwidth and latency of entire
GF100 memory hierarchy. To that end, we assume
data is either stored in global or shared memory and
use two simple models to predict GPU performance.
Our model is based on the LogP model used for
distributed architectures [17]. The global and shared
memory models are shown as

τglb = #msg × αglb +msize× βglb + flops× γ .

τsh = #msg × αsh +msize× βsh + nsync× αsync

+flops× γ .

Like LogP model, our models comprise three pa-
rameters α, β and γ. Overall runtime is the sum
of three factors, memory latency (αglb or αsh), in-
verse memory bandwidth (βglb or βsh) and time per
flop (γ). Additionally, the shared memory model also
captures time required for thread synchronizations
(nsync×αsync). We estimate the model parameters for
GF100 architecture using micro-benchmarks [16] and
summarize them in Table 3.

TABLE 3
Model Parameters for GPU Performance.

Nvidia Nvidia Nvidia
C2050 C2075 K20

Specifications
Peak TFLOPs (single-precision) 1.03 1.03 3.95
Global memory clock (GHz) 3.0 3.0 5.2
Global memory bandwidth (GB/s) 144 144 250
Core clock rate (Freq) GHz 1.15 1.15 0.732
Number of SMs (P) 14 14 14
Number of cores per SM (Nc) 32 32 192

Parameter Estimation with Micro-benchmarks
αglb (cycles) 95 95 235
βglb (s/GB) 1

108
1

96.5
1

129
αsh (cycles) 27 26 23
βsh (s/GB) 1

880
1

898
1

864
Sync. Latency (αsync) cycles 154 114 53
FP Pipeline latency (γ) cycles 18 18 10

We build separate models for global and shared
memory accesses and then combine them to find out
the latency (Lq) of a single thread block (See Section
2.2 of the supplementary file for details about the
model).

Lq = lAglb2reg + lxglb2sh + k(lxsh2reg + lcompute (4)
+lcondition + lxreg2sh)

Referring to Equation (4), lAglb2reg is the number
of cycles required in loading a block of the matrix
A from the global memory to the register file and
similarly lxglb2sh represents number of cycles utilized
in loading partition of the vector x from the global
memory to the shared memory. As shown, these
blocks are fetched only once and then they are used
k times to calculate partitions for the k vectors which
are stored in the shared memory (See other terms in
Equation (4)). We calculate total cycles by plugging in
the parameters from Table 3 and then find out overall
runtime L by taking into account the total number
of thread blocks (Nq), number of SMs (P) and the
number of thread blocks concurrently running per
SM (we obtain this information using CUDA Visual
Profiler [20]). We run CUDA code shown in Listing
3 of the supplementary file on the GPUs to measure
the actual results for validation of the performance
model. We compare the predicted performance with
the actual measured results for a range of GPU de-
vices in Figure 5.
To indicate the accuracy of our model, we also show

the mean (εµ) and standard deviation (εσ) of error
(absolute difference in measured and modelled per-
formance) as a percentage of measured performance
for each band size. Our model does not capture
register spilling, i.e. when the data does not fit in
GPU registers, the data is stored to local memory,
which is a part of the global memory. Each thread can
have a maximum of 64 registers, which are enough to
store a single row of the matrix, the length of which
is equal to the band size. The band sizes that arise
in all practical applications can fit in these registers
and therefore, there is no register spilling in our
implementation.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013 6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64

G
F

L
O

P
s

k

T
Measured

 - C2075

T
Model

 - C2075

T
Measured

 - C2050

T
Model

 - C2050

T
Measured

 - K20

T
Model

 - K20

Fig. 5. Performance on different GPU architectures for
b = 9, C2050 (εµ= 1.5%, εσ= 1.6%), C2075 (εµ =
13.8%, εσ = 5.3%) , and K20 (εµ = 7.5%, εσ = 4.2%)

3.5 Performance Optimization
Having an accurate model to predict performance
on the GPU in terms of the problem parameters (n,
b), the architectural parameters (γ,αglb,βglb,αsh,βsh,P)
and the algorithmic parameters (k, bR), we can solve
the following optimization problem to select the algo-
rithmic parameters.

min
k,bR

L(n, b, γ, αglb, βglb, αsh, βsh, P, k, bR)

Freq

subject to

k ≤ 2
bR

b− 1
(5)

Referring to (5), the constraint ensures only near-
est neighbour communication in the matrix powers
kernel as shown in Figure 2. We carry out sensitivity
analysis of GPU performance with respect to the
algorithmic parameters with constant architectural pa-
rameters in Section 6.1. We also highlight in Section 7
that by carefully picking the algorithmic parameters
we can achieve higher performance over k SpMVs
that otherwise requires significant architectural mod-
ifications in terms of global memory bandwidth and
latency.

4 MATRIX POWERS KERNEL ON FPGA
The potential to use FPGAs in high-performance com-
puting arises from the fact that computer architecture
can be specialized to accelerate a particular task (See
Section 3.1 of the supplementary file for details).
Table 1 lists the important architectural features of FP-
GAs in terms of raw floating-point performance, on-
chip memory capacity and on-chip as well as off-chip
memory bandwidth. Referring to Table 1, although
the off-chip memory bandwidth and peak floating-
point performance is 5× and 2.3× lower than that
of the same generation GPU device, it is the on-chip
capacity and on-chip memory bandwidth coupled

with rich communication-fabric, which make FPGAs
suitable for accelerating iterative solvers. We now
introduce the architecture-aware hybrid matrix pow-
ers kernel that exploits these architectural features to
get high throughput. In this regard, we also present
a resource-constrained methodology for selecting an
optimal k for a target FPGA device.

4.1 Proposed Hybrid Matrix Powers Kernel
The proposed algorithm loads the blocks of the matrix
from the slow memory into large on-chip memory
using a sequential algorithm and then performs com-
putations within the block in parallel without do-
ing redundant computations. We show the proposed
method in Algorithm 1.

Algorithm 1 Hybrid Matrix Powers Kernel
for q = 1 to Nq do

load block q from slow memory into fast memory
for i = 1 to k do

compute all locally computable x
(i)
j

wait for all the receives from neighbours to finish
compute the remaining entries of x

(i)
j with depen-

dencies
end for

end for

The outer loop is a sequential algorithm that loads
the blocks of matrix A such that the block fits into
the on-chip memory of the FPGA. The inner loop is
a parallel algorithm, which is very similar to the one
shown in Figure 2(b)(i). The working of the algorithm
is shown in Figure 6 with a toy example, where we
have 2 outer blocks that are loaded sequentially from
the slow memory into FPGA on-chip memory.

A3x(0)

A2x(0)

 Ax(0)

 x(0)

Block 1

 Locally computable vertices Vertices which communicate

 Vertices with remote dependencies

b
R

 Redundant vertices

Sub-Block 2Sub-Block 1
Block 2

Fig. 6. Proposed hybrid matrix powers graph for n =
12, k = 3, b = 3 and number of blocks Nq = 2.

Each outer block is further partitioned into two sub-
blocks that can be processed in parallel by an array of
processing elements (PEs) working in a SIMD fashion
as shown in Figure 7. All the vertices inside a sub-
block are computed in a pipelined fashion using a
reduction circuit within the PE (See Section 3.2 of
the supplementary file for details). After each level
in the graph, PEs need to communicate dependencies

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013 7

Matrix
Memory

Pxb
banks

Vectors
Memory

P
banks

X

X
+

X

X
+

+

+

+Matrix
Memory

(b-banks)

Vector Memory
(b

R
 x k)

Left
FIFO

bb
R

S
h

ift R
eg

Right
FIFO

PE 1

PE 2

PE 3

PE P-1

PE P

Control
Unit

Fig. 7. FPGA data-path for the matrix powers kernel.

to their nearest neighbours. However, unlike GPU,
where this communication is only possible using
shared global memory and is therefore avoided using
redundant computation, the PEs within the FPGA uti-
lize low-latency FIFOs and hence avoid the redundant
computation. This allows larger values of k and hence
higher possible speedups. To provide motivation, we
show the performance of this hybrid matrix powers
kernel in Table 4 for the same matrix that we use
for demonstrating GPU optimizations in Table 2. We
observe that if A is blocked in on-chip memory of
the FPGA along with the vector x(i), we can get ∼6×
speedup over k SpMVs used in standard iterative
solvers. This speedup factor is almost twice of what
we achieved with parallel matrix powers kernel on
GPU. Although the net performance of FPGA (85
GFLOPs) is less than that of GPU (123 GFLOPs) for
this band size, however, we have better silicon effi-
ciency with FPGA (18.8%) compared to GPU (11.9%).
We show in Section 6 that for a range of matrix and
band sizes, the FPGA even outperforms GPU because
of the higher values of k.

TABLE 4
Hybrid Matrix Powers Kernel Mapping on

Virtex6-SX475T FPGA (n =1M, b =9, k =10).
Off-Chip On-Chip GFLOPs Efficiency
Memory Memory

k SpMVs A, x(i) 14.21 3.1%
k SpMVs A x(i) 15.68 3.4%
Hybrid Matrix A,x(i) 85 18.8%
Powers

4.2 Modelling Performance
To understand the performance of matrix powers
kernel on FPGA, we use the same LogP model which
comprises both computation as well as communica-
tion cost as shown in Section 3.4 for the GPU. The
model is exact due to the highly predictive nature
of FPGAs as a computing platform. We show the
parameters of the model in Table 5.

As FPGA has relatively larger on-chip memory
compared to GPU, we intend to store the k vectors

TABLE 5
Model Parameters for FPGA.

Parameters Virtex6-SX475T
Global memory 6
latency (αglb) cycles
Global memory 1

34 [18]
inverse bandwidth (βglb) s/GB
FP Add latency (γA) cycles 11 [22]
FP Mult latency (γM) cycles 8 [22]
FP Operating Frequency (Freq) MHz 258
No. of FP Adders P (b−1)
No. of FP Multipliers Pb

on-chip to be utilized by subsequent modules in
communication-avoiding iterative solver. There are
three stages in the matrix powers kernel on FPGA:
loading the block, computing the sub-blocks in paral-
lel and an optional stage for storing the k vectors back
to the off-chip memory if they do not fit on-chip. The
latency (Lq) of a single block is the summation of the
latency of these three stages (See Section 3.3 of the
supplementary file for details about the model).

Lq = (lAglb2local + lxglb2local) + k × lcompute +

k × lxlocal2glb (6)

The overall latency L is then calculated by multiplying
Lq with total number of blocks Nq .

4.3 Resource-Constrained Methodology

Like GPU, the performance of the matrix powers
kernel depends on the problem parameters (n,b), the
architectural parameters (P ,γA,γM ,αglb,βglb) and the
algorithmic parameters (k,bR). We find the maximum
number P of PEs that can be synthesized within the
FPGA device for the given band size b (the number
of floating-point units only depends on this param-
eter shown in Table 5). We calculate the memory
bandwidth required for these P PEs (2b words per
PE), partition the available on-chip memory in bR×b
blocks and assign these blocks to P PEs. We solve the
following constrained optimization problem to pick k
on a particular FPGA for a given problem.

min
k,bR

L(n, b, γA, γM , αglb, βglb, P, k, bR)

Freq

subject to

R(P) ≤ FPGALogic

M(P, bR, k) ≤ FPGABRAMs

k ≤ 2
bR

b− 1
(7)

Referring to Equation (7), our objective is to minimize
the runtime based on constraints on FPGA resources.
M(P, k, bR) is the number of BRAMs (FPGA on-chip
memories) required and R(P) is a vector containing
the number of resources in terms of LUTs, FFs and
DSP48Es that are used in floating-point adders and
multipliers [22]. The last constraint ensures only near-
est neighbour communication in the matrix powers
kernel as shown in Figure 6.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013 8

5 EVALUATION METHODOLOGY

We use the same generation (40nm) of GPU (NVidia
C2050) and FPGA (Virtex6-SX475T) devices as men-
tioned in Table 1. We use CUDA 5.0 for compil-
ing CUDA kernels and also use cusp-v0.3.1 [15],
which is a sparse library optimized for GPUs. We
prefer CUSP over vendor-specific cuSPARSE [21] since
cuSPARSE lacks SpMV routine for banded matrices.
We use Xilinx IP Core [22] for BRAMs, adders and
multipliers. We synthesize as well as place and route
the circuit using Xilinx ISE 13.4. To evaluate the per-
formance of matrix powers kernel on GPU and FPGA,
we use a range of randomly generated matrices with
varying band sizes.
6 RESULTS

As FPGAs and GPU are radically different computing
platforms, we first analyze how the communication-
avoiding approach of the matrix powers kernel can
enhance their individual performance over k SpMVs
in standard iterative solvers. We then compare the
matrix powers kernel with optimal k for both GPU
and FPGA and show which architecture is better in
different problem and band sizes.

6.1 Sensitivity to Algorithmic Parameters
We use the formulations in (5) and (7) to select the
algorithmic parameters for minimizing the runtime on
GPU and FPGAs respectively. There are two algorith-
mic parameters, the partition size bR and the unroll
factor k. While both parameters affect the surface to
volume ratio but the impact of the partition size bR
is marginal as compared to the unroll factor k (See
Section 2.4 of the supplementary file). To show the
performance variation with k, we take a problem size
(n = 1M) and show both the communication and
computation costs for band size equal to 9 in Figure 8
and for band size equal to 27 in Figure 1. We observe
from Figure 8 and Figure 1 that in GPU, the optimal
value of k decreases as we increase the band size
whereas in case of FPGA, it shows opposite trend.
After a certain value of k, both computation and com-
munication costs dominate on GPU. The computation
cost increases due to O(k2b2) growth in redundant
operations and as a result the larger the band size,
the smaller the value of k whereas the communication
cost increases with increasing value of k due to shared
memory accesses (See Figure 4 of the supplementary
file).

In case of FPGA, the optimal value of k increases
with increasing band size. The communication cost
decreases with increasing value of k for all band sizes
until it flattens as the vectors can no more be stored
on-chip and they have to be stored back. For large
band sizes, the computation to communication ratio is
large and these vectors can be stored in an overlapped
fashion. This allows large values of k as shown in
Figure 1 and 8. As a result of careful selection of the

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64 128 256 512

T
im

e/
F

lo
p
 (

p
s)

k

TComp - FPGA
TComm- FPGA
TTotal - FPGA
TComp - GPU
TComm- GPU
TTotal - GPU

Fig. 8. Algorithmic Sensitivity (b = 9, n = 1M).

unroll factor k on both GPU and FPGA, we see a
significant increase in the silicon efficiency of these
architectures as shown in Figure 9. We also observe
that FPGAs have much better silicon efficiency as
compared to GPU because of the relatively large
values of k as shown in Table 6.

2

5

10

20

30

40

2 5 20 50 120 250 500 1000

E
ff

ic
ie

n
cy

 (
P

er
ce

n
ta

g
e)

Matrix Size (n x 1000)

k = 1 GPU
Optimal k GPU

k = 1 FPGA
Optimal k FPGA

Fig. 9. Efficiency of FPGA and GPU as a percentage
of peak single-precision performance (b = 9).

6.2 Performance Comparison
Although FPGAs have better silicon efficiency than
GPU as a result of careful selection of k, to compare
these architectures in terms of raw performance for
a range of problem and band sizes, we see three
interesting scenarios in Figure 10.

6.2.1 Small Problem Sizes (n ≤ 20K)
In this case, across all band sizes, due to small matrix
size, k vectors can also be stored in the on-chip
memory of the FPGA with k having large values.
Since there is no off-chip communication involved
except loading the matrix once, we see up to 4.4×
speedup over GPU in this region due to the large on-
chip capacity and zero redundant operations in FPGA.

6.2.2 Large Problem Sizes (n ≥ 20K), Small Band
Sizes (b ≤ 9)
For large problem sizes and small band sizes, GPU
performs slightly better than FPGA since the vectors

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013 9

20

40

60

80

10

120

140

160

180

2K 5K 20K
50K

120K
250K

0.5M
1M

G
F

L
O

P
s

160
160

77
56

32
32

32 32

354

139

35

14

17 16 17 16

GPU Optimal k
FPGA Optimal k

(a) Band Size b = 3

20

40

60

80

10

120

140

160

180

2K 5K 20K
50K

120K
250K

0.5M
1M

G
F

L
O

P
s

43
40

19
19

16 16 8 8

458

184
47

14

17 19 15 12

GPU Optimal k
FPGA Optimal k

(b) Band Size b = 9

20

40

60

80

10

120

140

160

180

2K 5K 20K
50K

120K
250K

0.5M
1M

G
F

L
O

P
s

10
9

8
6 6 6 6 5

481

193

26 45 30 29 28 28

GPU Optimal k
FPGA Optimal k

(c) Band Size b = 27

Fig. 10. Matrix Powers Performance Comparison vs. Matrix Size. The optimal value of k is shown on the top of
the bar for both FPGA and GPU.

TABLE 6
Matrix powers kernel performance comparison (Range is for n =2k − 1M).

Band GPU FPGA FPGA vs. GPU
Size k Range Efficiency(%) k Range Efficiency(%) SpeedUp

k =1 Optimal k k =1 Optimal k
3 160 − 32 0.04 − 2.6 2 − 11.6 354 − 16 2.8 − 3.3 15.1 − 8.8 3.2× − 0.3×
7 58 − 16 0.1 − 3.2 2.3 − 10.5 436 − 28 3.0 − 3.3 19.8 − 16.1 3.7× − 0.7×
9 43 − 8 0.11 − 3.3 2.4 − 11.9 458 − 12 3.0 − 3.3 19.6 − 18.6 3.5× − 0.7×

13 30 − 16 0.2 − 3.5 2.7 − 9.1 466 − 21 3.0 − 3.3 23.1 − 22.7 3.6× − 1.1×
27 10 − 5 0.3 − 3.7 2.6 − 7.4 481 − 28 3.1 − 3.3 27.3 − 29.9 4.4× − 1.7×

spill into off-chip memory in case of FPGA and
due to its relatively low off-chip memory bandwidth,
the problem becomes communication-bound. On the
other hand, GPU has higher off-chip bandwidth and
as a result we see up to ∼3× speedup.

6.2.3 Large Problem Sizes(n ≥ 20K), Large Band
Sizes (b > 9)
In this region, as the band size increases, number of
redundant operations grow rapidly which constrain
GPU performance and as a result we see very small
values of k. On the other hand, as the computation
and communication (storing the vectors) ratio is high
, the problem remains compute-bound as vectors can
be stored in an overlapped fashion. As a result, FPGAs
perform better and we get up to 1.7× speedup over
GPU.

7 ARCHITECTURAL INSIGHT

Since we have an accurate predictive model for GPU
and FPGA, we can answer questions

• if we do not change the algorithmic parameters,
how we might have to change the architectural
parameters?

• how to optimally change the architectural param-
eters to obtain a desired performance?

7.1 Sensitivity to GPU Architectural Parameters

We solve the optimization problem in (5) using a
steepest ascent method. The steepest ascent curve
shows different points of performance enhancement
and the corresponding architectural parameters as
shown in Figure 11. For example, to achieve a 3.5×
speed up over a problem running on C2050 GPU, we
show that our optimization vector (αglb, βglb,αsh,βsh)
for a hypothetical GPU should be scaled as (∼ 1

10 ,∼10,
1
13 ,1.23). However, using our predictive model and

measured results, we have already shown in Figure 5
that same performance can be obtained by careful
selection of k without changing the architecture.

122

52

70

87

104

122

52

70

87

104

Shared Memory Bandwidth (GB/s)

(10,979,2,1101,3.5x)
o

122

87

70

52

104

(10,685,2,974,3x)
o

(91,325,23,902,2x)

(100,110,27,894,1x)

o

 o

G
lo

b
a
l
M

e
m

o
ry

 B
a
n
d
w

id
th

 (
G

B
/s

)

900 1000 1100 1200 1300 1400

200

400

600

800

1000

1200

1400

60

70

80

90

100

110

120

Fig. 11. Architectural Sensitivity− GPU performance
contours in GFLOPs as a function of global memory
bandwidth (βglb) and shared memory bandwidth (βsh)
for band size b = 9 and n = 1M. Specific points (in
red) on the steepest ascent curve (in black) are shown
representing (αglb,βglb,αsh,βsh,Lbase

Lpred
) where Lbase is

the performance obtained on C2050 GPU. αglb and αsh
are in cycles whereas βglb and βsh are in GB/s.

7.2 Sensitivity to FPGA Architectural Parameters
We show the sensitivity of the FPGA performance
with respect to off-chip memory bandwidth in Fig-
ure 12 for two cases. Firstly, when we have fixed
algorithm with k =1 and second with optimal value
of k. We observe that by carefully picking k we can
get a 5.6× performance for a Virtex6-SX475T FPGA.
To achieve similar performance, k =1 curve shows
that off-chip memory bandwidth needs to be scaled
by 8.6×. In case we can not tolerate such signifi-
cant modifications in architecture, a tight algorithm-
architecture interaction is necessary to accelerate such
kind of communication-bound problems.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013 10

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

Off−Chip Memory Bandwidth (GB/s)

G
F

L
O

P
s

k = 10

k = 1

Fig. 12. Architectural Sensitivity− FPGA performance
in GFLOPs as a function of off-chip memory bandwidth
(βglb) for band size b = 9 and n = 1M. The starting
point of the curves is a Virtex6-SX475T architecture
with an off-chip bandwidth of 34 GB/s.

8 CONCLUSION

Trading communication with computation increases
the silicon efficiency of hardware accelerators like
FPGAs and GPU for accelerating communication-
bound sparse iterative solver. Although unrolling k
iterations using the matrix powers kernel provides
significant performance improvement compared to
standard k SpMVs on a GPU, the performance is
constrained due to quadratic growth in redundant
computations. Our proposed hybrid matrix powers
kernel for FPGA exploits the architectural features
of this radically different platform to minimize re-
dundant computations. This allows us large value
of k and hence superior silicon efficiency compared
to GPU. For a range of randomly generated banded
matrices, we demonstrate 0.3×−3.2× and 1.7×−4.4×
speedup over GPU for small and large band sizes
respectively. Our architectural insight shows a tight
algorithm-architecture interaction can provide similar
performance, which otherwise requires significant en-
hancements in memory bandwidth.

9 FUTURE WORK

Besides Nvidia GPUs, we intend to validate our
predictive model for the matrix powers kernel on
other GPUs as well. We intend to extend the work to
general sparse matrices with hyper-graph partitioning
as a pre-processing step. We intend to use the matrix
powers kernel instead of SpMV for applications [11]
where we have to solve Ax = b repeatedly in each
iteration. As the sparsity pattern does not change over
the iterations, we believe that the cost of this pre-
processing step will be quite low as compared to the
actual computation.

ACKNOWLEDGMENT

Dr. George A. Constantinides would like to ac-
knowledge the support of EPSRC (EP/I020357/1 &
EP/G031576/1). We would like to thank Michael
Anderson, PAR Lab, University of California, Berke-
ley for providing us the GF100 micro-benchmarks.

Also, we would like to thank Mark Hoemmen
and Marghoob Mohiyuddin, University of California
Berkeley for giving useful suggestions that help in
improving the draft.

REFERENCES
[1] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.

John Hopkins University Press, 1996.
[2] W.A. Wulf and S.A McKee, Hitting the memory wall: Implications

of the obvious, ACM SIGARCH Computer Architecture News,
vol. 23(1), pp. 20-24, 1995.

[3] M. Snir and S. Graham, Getting up to speed: The Future of
Supercomputing, National Academies Press, 2004.

[4] S.A. Toledo, Quantitative performance modeling of scientific compu-
tations and creating locality in numerical algorithms, PhD. Thesis,
Massachusetts Institute of Technology, 1995.

[5] M. Strout, L. Carter and J. Ferrante, Sparse Tiling for Stationary
Iterative Methods, International Journal of High Performance
Computing Applications, vol. 18(1), pp. 95-114, 2004.

[6] S. K. Kim and A. T. Chronopoulos, A class of Lanczos-like
algorithms implemented on parallel computers, Journal of Parallel
Computing, vol. 17(6), Elsevier, 1991.

[7] J. Demmel, M. Hoemmen, M. Mohiyuddin and K. Yelick, Avoid-
ing Communication in Sparse Matrix Computations, In Proceedings
of IPDPS. April, 2008.

[8] M. Mohiyuddin, M. Hoemmen, J. Demmel and K. Yelick, Min-
imizing communication in sparse matrix solvers, In Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, 2009.

[9] V. Volkov, Programming inverse memory hierarchy: case of stencils
on GPUs, In GPU Workshop for Scientific Computing, Interna-
tional Conference on Parallel Computational Fluid Dynamics
(ParCFD), 2010.

[10] G. Sewell, The numerical solution of ordinary and partial differen-
tial equations. Wiley-Interscience, 2005.

[11] E. Klerk, Exploiting special structure in semidefinite programming:
A survey of theory and applications, European Journal of Opera-
tional Research, Elsevier, 2010.

[12] C.V Rao, S.J. Wright and J.B. Rawlings, Application of interior-
point methods to model predictive control, Journal of optimization
theory and applications, vol. 99(3): pp. 723-757, Springer, 1998.

[13] E. Anderson, Z. Bai, C. Bischof, L.S. Blackford, J. Demmel,
Jack J. Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum,
A. McKenney and D. Sorensen, LAPACK Users’ Guide (Third
Edition), vol. 9: Society for Industrial and Applied Mathematics,
Philadelphia, USA, 1999.

[14] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, Stencil computation optimiza-
tion and auto-tuning on state-of-the-art multi-core architectures, in
IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pp. 1-12, 2009.

[15] N. Bell and M. Garland, CUSP: Generic parallel algo-
rithms for sparse matrix and graph computations., Available at:
code.google.com/p/cusp-library, 2010.

[16] M.J. Anderson, D. Sheffield and K. Keutzer, A Predictive Model
for Solving Small Linear Algebra Problems in GPU Registers, In
Proceedings of 26th IEEE International Symposium on Parallel
and Distributed Systems, pp. 2-13, 2012.

[17] D. Culler, R. Karp, D. Patterson, A. Sahay, E.K. Schauser,
E. Santos, R. Subramonian and T.V. Eicken, LogP: Towards a
realistic model of parallel computation, ACM, vol.28(7), 1993.

[18] P. Sundararajan, High Performance Computing using FPGAs,
www.xilinx.com/support/documentation/
white papers/wp375 HPC Using FPGAs.pdf, 2010.

[19] V. Volkov, Better performance at lower occupancy, in Proceedings
of the GPU Technology Conference, GTC, 2010.

[20] Compute Visual Profiler, http://developer.download.nvidia.com
/compute/cuda/3 2 prod/toolkit/docs/VisualProfiler
/Compute Visual Profiler User Guide.pdf, 2010.

[21] Nvidia cuSPARSE Library, http://docs.nvidia.com/cuda/pdf
/CUSPARSE Library.pdf, 2013.

[22] Xilinx DS816 Floating-Point Operator v6.0,
http://www.xilinx.com/support/documentation/ip
documentation/floating point/v6 0/ds816 floating point.pdf,
2012.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013 11

Abid Rafique received the MSc. degree
from Technical University Munich, Germany
in 2010. Since 2010, he is a PhD student
in the Circuits and Systems research group
at Imperial College London. His research in-
terests include high performance computing,
parallel architectures and communication op-
timization in iterative numerical algorithms.

George A. Constantinides (S’96-M’01-
SM’08) received the Ph.D. degree from Impe-
rial College London in 2001. Since 2002, he
has been with the faculty at Imperial College
London, where he is currently Professor of
Digital Computation and Head of the Circuits
and Systems research group. He will be pro-
gram (general) chair of the ACM International
Symposium on Field-Programmable Gate Ar-
rays in 2014 (2015). He serves on several
programme committees and has published

over 150 research papers in peer refereed journals and international
conferences. Dr Constantinides is a Senior Member of the IEEE and
a Fellow of the British Computer Society.

Nachiket Kapre is an Assistant Professor
at Nanyang Technological University, Singa-
pore since October 2012. He has received
a PhD in Computer Science (2010) and a
MS in Computer Science (2006) and an
MS in Electrical Engineering (2005) all from
California Institute of Technology, Pasadena,
USA. He was awarded the prestigious Im-
perial College Junior Research Fellowship in
2010. He has won the best paper award at
FPT 2011 and a HiPEAC paper award for

his FCCM 2013 paper. His FCCM 2006 paper was featured in the
FCCM20 list as one of the influential papers in past 20 years at
FCCM conferences. He is broadly interested in exploiting the limits of
modern VLSI architectures though reconfigurability, parallelism and
domain-specific frameworks.

