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Abstract—
Dataflow computing architectures exploit dynamic paral-

lelism at the fine granularity of individual operations and
provide a pathway to overcome the performance and energy
limits of conventional von Neumann models. In this vein, we
present DaCO (Dataflow Coprocessor FPGA Overlay), a high-
performance compute organization for FPGAs to deliver up to
2.5× speedup over existing dataflow alternatives. Historically,
dataflow-style execution has been viewed as an attractive par-
allel computing paradigm due to the self-timed, decentralized
nature of implementation of dataflow dependencies and an
absence of sequential program counters. However, realising
high-performance dataflow computers has remained elusive
largely due to the complexity of scheduling this parallelism
and data communication bottlenecks. DaCO achieves this
by (1) supporting large-scale (1000s of nodes) out-of-order
scheduling using hierarchical lookup, (2) priority-aware rout-
ing of dataflow dependencies using the efficient Hoplite-Q NoC,
and (3) clustering techniques to exploit data locality in the
communication network organization. Each DaCO processing
element is a programmable soft processor and it communicates
with others using a packet-switching network-on-chip (PSNoC).
We target the Arria 10 AX115S FPGA to take advantage of the
hard floating-point DSP blocks, and maximize performance by
multipumping the M20K Block RAMs. Overall, we can scale
DaCO to 450 processors operating at an fmax of 250 MHz on
the target platform. Each soft processor consumes 779 ALMs,
4 M20K BRAMs, and 3 hard floating-point DSP blocks for
optimum balance, while the on-chip communication framework
consumes < 15% of the on-chip resources.

I. INTRODUCTION

FPGAs have assumed an important role in modern com-
puting systems through deployments in cloud environments
like Microsoft Azure [1], Amazon F1. New products like the
Intel Xeon-FPGA 6138P hybrid SoC, and the Xilinx ACAP
platforms further bolster their growing relevance. FPGAs
are now firmly in the mainstream and have successfully
demonstrated the long promised benefits of performance and
energy efficiency of reconfigurable hardware.

To make FPGAs easy to program, vendors are investing
in high-level synthesis (HLS) through programming lan-
guages like C/C++, OpenCL, as well as embedded design
ecosystems like Xilinx PYNQ. Intel’s latest Xeon 6138P
SoC with an integrated Arria 10 FPGA make it possible
for software developers to easily offload critical portions
of their software code to the FPGA attached as a tightly-
coupled co-processor. Another way to leverage this capacity
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Figure 1: DaCO topology: C clusters of N processing
elements (PE) connected by local crossbar arbiters;

inter-cluster communication supported by Hoplite NoC

is through soft-processor + network-on-chip overlays such as
the 1680-core GRVI-Phalanx system [2]. Thousands of tiny,
customized soft processors can deliver improved application-
specific performance and energy efficiency, while reducing
the parallel programming challenge and software devel-
opment effort at the same time. The NoC interconnect
backbone simplifies data movement and offers scalability
and flexibility of integration.

The goal of this paper is to demonstrate an FPGA
overlay design of a dataflow coprocessor, called DaCO, that
maximizes the resource efficiency (ALMs, M20Ks, DSPs)
to deliver a manycore dataflow acceleration engine on an
Arria 10 FPGA. DaCO is composed of dataflow-driven soft-
processors that communicate over a hierarchical packet-
switching network-on-chip [3], [4] (PSNoC). Figure 1 shows
a high-level architectural view of DaCO.

We propose the following key techniques to address the
challenges of implementing dataflow on FPGAs:
• We devise a hardware-friendly criticality-aware OoO

(out-of-order) scheduling technique that uses a bit-vector
to capture node readiness and supports that with a hierar-
chical lookup approach. This technique avoids squander-



ing precious on-chip BRAMs on active-ready queues used
by contemporary dataflow systems and instead free them
up to accommodate larger dataflow graphs. We use a static
criticality-aware memory organization to pick the most
important node for execution at runtime. Our hardware is
able to schedule across 1000s of active nodes.
• We reduce the overheads of deflection routing in the

FPGA-friendly communication networks by using a local
crossbar interconnect to exploit data locality and route
dependencies within the cluster much more efficiently.
We adapt the Hoplite-Q NoC to support configurable
clustering to determine the right balance of resource cost
and dataflow execution time.
• We pay close attention to the ALM, M20K, and DSP

balance on the Arria 10 FPGA to determine how to best
provision resources in our DaCO array to boost compute
density and memory efficiency.

II. BACKGROUND

A. Dataflow Principles and Limitations

The Good: Unlike conventional soft processors, dataflow
processors have no program counter. Instead, the token
dataflow processor operates directly on a dataflow graph
(DFG) using a simple dataflow firing rule: execute an
instruction only when all its operands are available. This
encourages the programmer or HLS compilers to expose
concurrency directly in the form of dataflow graphs. In our
abstraction, the nodes in a DFG encode an instruction, while
the edges represent any data dependencies between these
instructions. The edges can be viewed as communication
send and receive instructions over the PSNoC. A DFG
is partitioned and stored across multiple dataflow proces-
sors, and instructions execute in parallel at each dataflow
processor independently. This dataflow-style parallelism is
captured in the DFG representations, and is a very useful
feature when parallelizing sparse workloads characterized by
irregular instruction level parallelism and irregular memory
access patterns (e.g. indirect pointer addressing).

The Bad: Dataflow implementations, however, introduce
an out-of-order scheduling challenge at runtime where we
must choose between many ready instructions to process in
the processor. Fortunately, unlike out-of-order scheduling in
existing CPUs, we have to tackle a simpler problem since the
concurrency between instructions is already known upfront
and does not need to be rediscovered. However, this still
means that, at runtime, at any given cycle, multiple unpre-
dictable subset of nodes can be ready for evaluation. Figure 2
shows an example trace of a benchmark (bomhof2) on
a 4x4 DaCO instance – an average of up to 800 nodes
can be ready per processor, which not only stresses the
resource budget to maintain an active-ready queue, but could
also inhibit overall performance if critical nodes are not
prioritized for evaluation. The active-ready queue in existing
dataflow soft processors typically gets synthesized into long
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Figure 2: Average number of nodes ready / per processor
at every cycle. Trace obtained by evaluating benchmark
bomhof2 on a 4x4 DaCO instance (cluster size = 1)

FIFOs using on-chip block RAMs (BRAMs), which is an
inefficient use of the scarce hard RAM resource.

The Ugly: The tail-end of the execution trace in Fig-
ure 2 shows a distinct lack of parallelism. An active-ready
queue implementation of this structure will only store a
few elements, and be massively underutilized. Furthermore,
any data communication over a deflection-routed NoC like
Hoplite will only exacerbate the packet routing latencies
of latency-sensitive dataflow parallel evaluations in this
critical, mostly sequential phase of the problem and prolong
execution time.

B. Brief History of Dataflow

Token dataflow was originally introduced through the
MIT static dataflow machines [5], [6]. The static dataflow
model, while promising at its inception, was largely rele-
gated to academic research due to its limited applicability
as a general-purpose computing model. In addition, the
aggressive frequency/density scaling of the 1990s favored
the classic von Neumann single-threaded microprocessor
architectures. Nevertheless, the token dataflow overlay has
seen interest lately as evidenced by [7]–[9]. The Qualcomm
R1 and R2 research prototype dataflow chips revealed at
ISCA 2018 were shown to be competitive with their con-
ventional processors. The dataflow abstraction can be the
foundation of an acceleration model for exploiting high
instruction-level parallel (ILP) regions in non data-parallel
regions, commonly found in sparse workloads [7].

C. OoO in FPGA-based soft processors

Most existing FPGA soft processors are simple in-order
processors (e.g. MicroBlaze [10], NIOS [11]), including
existing token dataflow soft processors [8]. Implementing
out-of-order scheduling for FPGA-based soft processors
can be challenging due to the underlying FPGA substrate
limitations (e.g. limited number of read/write ports on
BRAMs). Recent work [12], [13] in this domain took on the
challenge of designing out-of-order schedulers for traditional
von Neumann soft-processors (>1000 LUTs for a 16–40
scheduling window). EDGE [9] supports OoO within a
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fixed 32-size instruction window. Our work surpasses these
previous attempts by supporting massive OoO (1000s of
instructions) with a hierarchical scheme.

D. Arria 10 AX115S

Table I: Ratio of resources on Arria 10 AX115S

ALMs Regs M20Ks DSPs
ALMs 1:1 1:4 157:1 281:1
Regs 4:1 1:1 630:1 1126:1
M20Ks 1:157 1:630 1:1 2:1
DSPs 1:281 1:1126 1:2 1:1
Total 427,200 1,708,800 2713 1518

Our target FPGA in this body of work is the Arria 10
AX115S. Table I shows the available resources and their
ratios to one another. The ratio between ALMs to M20Ks
(157:1) and DSPs (281:1) is particularly challenging to
design for, as that is a small budget for designing a fully-
featured dataflow soft processor. In order to balance the
overall resource utilization, we allocate multiple M20K and
DSP blocks to each processor. We also focus on the resource
efficiency of M20K blocks – ideally, M20K blocks should
only store the DFG structure in order to maximize the largest
application sizes that can fit inside the on-chip memory.

III. DATAFLOW COPROCESSOR OVERLAY (DACO)

DaCO is a collection of customized dataflow soft-
processors that communicate with each other in a hierarchi-
cal fashion: packets addressed to another processor in the
same local cluster are routed by the local crossbar arbiter,
whereas packets addressed to an out-of-cluster processor
are routed over the Hoplite network. Figure 1 shows an
example N-cluster DaCO engine, where N is the number of
processing elements (PE) inside each cluster. In this section,
we describe in detail each of the building blocks depicted
in Figure 1.

A. Processing Element (PE)

Each PE is a custom dataflow soft-processor composed
of five components: on-chip node/edge memory, arithmetic
logic unit (ALU), packet consumer, packet generator, and
a scheduler for managing computation at runtime. Figure 3
shows these five modules and their layout within the pro-
cessor design. Each PE communicates by sending/receiving
packets to/from the local crossbar arbiter or the Hoplite
router directly (if clustering is disabled). The processor is
fully-pipelined, which guarantees that a new packet can
be injected into the processor every cycle, i.e. a proces-
sor cannot backpressure the communication network. This
guarantees a deadlock-free NoC architecture, as a packet is
always allowed to exit into a PE.

NoC 
Port 
Entry

Packet 
Consumer

Scheduler

ALU

Packet 
Generator

M20K 
[Edge]

M20K 
[Edge]

NoC 
Port 
Exit

M20K 
[Node]

M20K 
[Node]

Figure 3: Dataflow soft-processor design

1) Node and Edge Memory: We fracture the dataflow
graph memory into two distinct node and edge memory
structures stored in separate M20K RAMs. This decision
is motivated by the different memory access patterns to
node and edge state in the processor. Node state is used
to store input operands for the dataflow instruction (node)
as well the result of the dataflow operation, whereas edge
state (dataflow dependency information) is read only by the
packet generator module. From our synthesis experiments,
we settled on a design where each processor is allocated
four M20K BRAMs, as it gives us a balanced resource
utilization ratio (see Table I). We allocate two BRAMs
each to store node and edge state. Due to the fractured
graph memory design, there is a small storage overhead for
saving addressing information that connects each node to its
respective edges in the edge memory (depicted by the red
arrow in Figrue 3). Figure 4 shows how the node and edge
states are packed into each addressable slice in an M20K
BRAM. As a consequence, each M20K BRAM can pack
512 × 40b node slices or 1024 × 20b edge slices. There is
a ≈14% overhead to store node-to-edge addresses described
above, which is absorbed into the edge memory module.
Overall, each processing element can pack 1,024 nodes and
1,536 edges. This balance is motivated by the characteristics
of the dataflow benchmarks in this study, which have ≈1.2–
1.3× more edges than nodes.

Multipumping [14] is a well-known overclocking tech-
nique that can be used to create 2× read and 2× write ports
out of the 1× read and 1× write port natively supported
by the on-chip M20K BRAMs on the FPGA. This gives
the advantage of having dedicated read/write ports for each
stage, simplifying the design logic and eradicating any non-
determinism in the memory operations. Multipumping incurs
a small control logic overhead (≈30 ALMs) and achieves the
target 250MHz system overlay clock, since the hard M20K
blocks can be clocked up to 645MHz.

2) Arithmetic Logic Unit (ALU): The hardened
floating-point DSP (FPDSP) block is an attractive feature of
the Arria 10 FPGAs that enables high-performance IEEE-
compliant single-precision floating point computation with-
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Figure 4: Node state and edge state packed in M20K. Flag
guides the control datapath in the processor.

out the need of instantiating high-latency, resource-heavy
floating-point IP cores. The Arria 10 DSP blocks can be
statically configured into several floating-point instruction
modes, such as multiply, add, or multiply-accummulate.
We provision three FPDSP blocks per ALU inside each
processor and configure them statically at compile time to
support the ISA required for each benchmark type.

3) Packet Consumer: The packet consumer implements
the key tenet of token dataflow computing – the dataflow
firing rule. In this case, the consumer manages the dataflow
state of all locally-stored nodes in the node memory. This
involves fulfilling 4 key tasks:
• Storing the payload of arriving packets at each processor

into the local graph memory,
• Sending instructions, with payload, to the ALU when all

operands of a local node have been received
• Storing the ALU result back into the node memory, and
• Notifying the next pipeline stage that a node is ready for

edge evaluation to create NoC packets.
When a packet arrives at the inputs of the dataflow

processor, the packet consumer issues a read to the local
node memory for the node slice addressed by the incoming
packet. The node slice contains a trigger bit-vector (see
Figure 4), which is a small state machine that keeps track
of the status of the node – e.g. given a 2b trigger, 00: node
has received no operands, 01: node has received 1 operand,
10: node has received both operands, 11: node has been
completely evaluated and its result is stored in the node
slice.

Based on the trigger value, the incoming payload is either
stored in the local memory or bypassed directly to the ALU
packaged as an instruction, while also supporting writeback
from the ALU. The packet consumer datapath is fully-
pipelined in order to support an Initiation Interval (II) of
1, i.e. the PE can accept back-to-back packets from the
network safely. This is achieved by designing a robust data-
forwarding circuit that prevents read-after-write data hazards
with careful support for back-to-back packets headed to the
same destination node.

Finally, the processor notifies the next processor stage
that a node is ready for edge processing. This notification
is dependent on the scheduling strategy that we discuss in
detail in Section III-A5. The flag in the node slice (see
Figure 4) indicates whether the dataflow node has any
outgoing dependencies (outgoing edges).

4) Packet Generator: The packet generator is respon-
sible for iterating over and generating a packet for each of
the outgoing edges of all nodes that have finished dataflow
firing. These packets are then injected into the PSNoC
communication framework and routed to their destination.
The packet generator is a finite state machine (FSM) that
manages this entire process. With the help of a small fixed-
size FIFO, the FSM also executes speculative memory reads
to support back-to-back packet injection into the network
(assuming there is no congestion). The packet generation
logic needs an initial setup cost of 6 cycles for each node to
extract its fanout information (due to the fractured node/edge
memories described in Section III-A1). This setup phase also
masks the cost to reset the LOD ready flags, such that the
next ready node is scheduled safely before the FSM has
finished processing all the fanouts of the current active node.

5) Scheduler: At any given cycle during the graph
execution, several nodes may be ready for edge processing
to generate new packets (see Section III-A4). We develop
a hierarchical, criticality-aware, out-of-order, leading-ones
detector (LOD) circuit for scheduling and compare it to
a naı̈ve in-order FIFO-based scheduler to demonstrate its
effectiveness.

Naı̈ve In-Order baseline: In the simplest implementation,
we can connect the packet-consumer and packet-generation
logic with sufficiently-deep FIFOs that essentially creates an
in-order dataflow processor, i.e. input packets arriving at the
processor and their respective packets on the outgoing edges
are evaluated in arrival order. However, not all nodes are
equal, as some nodes along the critical path of the dataflow
graph are more critical than others. If we can schedule nodes
along the critical path sooner, we can ensure that the entire
dataflow graph executes faster.

Software Pre-processing: In order to implement a node
scheduling strategy in hardware, we first identify the critical
nodes in the dataflow graph. To achieve this, we run a one-
time software pass in the dataflow compiler that labels each
node with a criticality heuristic. This criticality heuristic is
based on a well-known slack analysis technique designed
for dataflow graphs, where nodes are statically assigned a
real number Cn between zero and one that indicates their
criticality in the dataflow graph, with one being most critical.

Memory Storage: Once we have identified the critical
nodes in the dataflow graph, we sort the nodes, and their
respective edges, in memory in descending criticality order
(i.e. most critical node at the first address in memory). This
is an important step that allows us to pick the most critical
ready node in hardware using a simple LOD circuit. The
LOD is a well-studied circuit that takes a bit-vector as an
input, and evaluates the position of the leading one in the
input bit-vector.

Leading Ones Detection : Identifying the leading one in
the sorted memory layout implicitly guarantees the most
critical node is selected for the next stage of packet gen-
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eration. However, the size and speed of the LOD module
needed is ∝ number of locally-addressable node slices in
each processor (e.g. 512-wide LOD requires a whopping
800 ALMs and runs at a slow fmax of below 200MHz).
To address this, we design a multi-cycle hierarchical LOD
scheduler that trades-off processor latency for a much leaner
design and improved clock performance. Fortunately, the
scheduler latency is hidden at runtime since the packet
generator is busy for a longer number of cycles servicing
the current active node. Figure 5 shows the design of the
LOD scheduler.

MLAB Memory
[Node-Ready Flags] N

M

LOD-N

LOD-M

log2N

log2M

Set/Reset Set/Reset Address

Node Ready Node Ready Address

Figure 5: Hierarchical (depth = 2) LOD scheduler design

FPGA-Friendly Scheduler: The scheduler is designed
using two back-to-back LOD circuits of size N and M
respectively. The node-ready flags are all stored in an MLAB
memory structure, since the overhead to store all the ready
flags is only 1024b (i.e. the maximum number of nodes
per PE). MLABs in the Arria 10 FPGA are 640b simple
dual-port memory structures made up of 10 ALMs each.
Hence, the ready flags memory can be realized with a
small 20 ALM overhead. The ready flags are fractured and
packed as an N×M memory structure, and the two LOD
circuits are used to determine the most critical ready node
in any given cycle. The LOD scheduler now has a latency
of 3 cycles, but is fully-pipelined to support back-to-back
set/reset instructions. Through experiments, we determined
N = 32 and M = 32 to give us the best performance-resource
tradeoff. Finally, decoupling the node and edge memory
as described in Section III-A1 has a positive effect on the
LOD scheduler as well, since now we only need to allocate
and track ready flags for addresses of node states. Later in
Section V, we compare the performance of the LOD-based
scheduler shown in Figure 5 against the baseline FIFO-based
in-order scheduler.

B. PSNoC Design

As depicted in Figure 1, we adopt a hierarchical com-
munication framework topology. The PSNoC is composed

of crossbars to support intra-cluster communication, and
a Hoplite/Hoplite-Q network to support inter-cluster com-
munication. The crossbar allows fast local communication
between PEs inside each cluster at the expense of a higher
resource utilization budget. The size of a crossbar grows
quadratically with the size of the cluster and slows down
Fmax. At some point, we expect diminishing returns from
moving to larger cluster sizes. For a cluster size of N, the
crossbar is composed of (N+1) round-robin arbiters – one
round-robin arbiter for each PE in the cluster + one round-
robin arbiter to the Hoplite network. An arriving packet from
the Hoplite network is always given priority over other local
packets, if there is a conflict.

Inter-cluster communication is supported by a sparser
Hoplite network in a 2D-torus topology. We partition our
dataflow graphs in a cluster-aware manner such that a
significant portion of the communication edges are absorbed
into the richer crossbar network.

IV. METHODOLOGY

All components of DaCO are designed and written in
Verilog and synthesized using Quartus Prime v18.0. We
use Verilator [15] for our simulation experiments, where
we explore the impact of different DaCO configurations on
performance – e.g. varying cluster sizes, enabling/disabling
OoO scheduling, and choice of Hoplite router. The synthesis
experiments focus on achieving the right resource utiliza-
tion balance on the target FPGA – factors such as LOD
design, datapath pipelining, memory instantiation, etc have
an impact on the performance of the final design (latency,
Fmax, resource utilization). We ensure that the behavioural
simulation matches the final DaCO design we settle on.
Tables II and III give a breakdown of the resource utilization
for various components in DaCO.

We run each benchmark with varying system and cluster
sizes. We vary total system size from 1×1 to 16×16 (256
PEs), and group PEs into clusters of size 1–16 (powers
of two). We write a C++ software backend that converts
each benchmark into a dataflow graph, and generates the
necessary configuration files to run each simulation. The
backend is capable of analyzing the DFGs and producing
criticality-aware optimizations described in this paper. We
use PaToH [16] to do cluster-aware graph partitioning.

We extract traces from eight different sparse matrix bench-
marks from the circuit simulation domain. bomhof and
hamm matrices are available from the MatrixMarket col-
lection, while the remaining matrices are selected from the
ISCAS89 benchmark set [17]. The traces are extracted from
the sparse matrix factorization phase, which is evaluated
millions of times in an iterative fashion, forming the compute
bottleneck.
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Table II: Soft-processor resource utilization breakdown

Sub-Module ALMs Registers M20Ks DSPs Clock
(ns)

ALU 16 17 0 2 2.9
Packet Consumer 89 301 0 0 2.0
Node Memory1 80 243 2 0 1.8
Edge Memory 16 64 2 0 1.6
Packet Generator 138 335 0 0 2.3
Scheduler (LOD) 433 279 0 0 2.2
Scheduler (FIFO) 61 116 1 0 2.1

Total (PE-DaCO) 779 1292 4 2 3.7
Total (PE-Baseline)2 457 1121 5 2 3.9
1Multipumped module
2BRAM usage scaled to match graph memory capacity of PE-DaCO

Table III: Resource Utilization Breakdown (ALMs) and
clock performance (ns) of cluster crossbar (CC) and
packet-switching (PS) routers that make up the NoC

CC Size 1RR Arbiter Muxes Total Clock (ns)

2 4 114 118 3.6
4 27 326 353 3.6
8 242 1015 1257 3.6

16 963 3855 4818 3.7

PS-Router DOR Arbiter Muxes Total Clock (ns)

Hoplite 4 33 56 3.0
Hoplite-Q 127 40 215 3.0

1RR = Round-Robin

V. RESULTS

We compare DaCO’s performance against a prior state-
of-the-art FPGA dataflow processor design as well as an
optimized CPU implementation using a well-known linear
algebra library (Eigen). We measure runtime in cycles re-
quired to process the graphs on the dataflow overlay. Our
token dataflow baseline [8] has no clustering and OoO
scheduling and we refer to it as DF Baseline in this section.

A. Runtime Performance

Table IV summarizes the runtime results across 8 bench-
marks. All benchmarks, with the exception of bomhof2
beat the CPU baseline when evaluated with DaCO. For
two benchmarks (s1488 and s1494), DaCO improves
baseline performance significantly enough to overturn the
performance outcome against the CPU baseline. bomhof2
presents an interesting outcome – despite offering the best
runtime improvement over the dataflow baseline, DaCO still
fails to beat the CPU baseline. On further investigation,
we discover that the bomhof2 trace has the least sparsity.
While the non-zero density allows DaCO to exploit ILP
better than the dataflow baseline, the microprocessor is also
able to take advantage of that significantly. We hypothesize
that a better data-locality-aware partitioning strategy could
further close the performance gap for such benchmarks.

B. Effect of criticality-aware scheduling
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Figure 6: Effect of replacing Baseline PE (in-order) with
DaCO PE (out-of-order). Cluster size fixed to 1.

Figure 6 shows the speedup observed when we isolate the
effect of criticality-aware scheduling inside the DaCO PEs at
varying system sizes. For most benchmarks, we observe an
improvement of 1.1–1.6×. bomhof2, however, showcases
improvements of up to 2.6×, while s1423 slows down
by ≈10%. This is because the DFG of s1423 has several
parallel critical paths, quantified by the high average edge
criticality of 0.84 (vs 0.7 in bomhof2). Hence, criticality-
aware scheduling does not benefit s1423 as most nodes
are of equal importance, and the performance loss is due to
unpredictable runtime effects (e.g. congestion/deflection).

(a) DF Baseline (b) DaCO

Figure 7: Scheduling delay suffered by node vs node
criticality (bomhof2)

Figure 7 shows the scheduling delay suffered by nodes in
an example trace from bomhof2. The LOD scheduler pro-
duces a desirable criticality-aware scheduling trend, where
nodes on the critical path are prioritized for scheduling,
unlike the FIFO implementation. There are, however, some
high-criticality nodes in DaCO which still suffer from large
scheduling delay (> 5000 cycles). That is due to the long
sequential tail of the dataflow graph, which is unavoidable.
A rudimentary criticality-delay product heuristic indicates
that DaCO schedules nodes by criticality better by up to
87% (15% mean across all benchmarks).
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Table IV: Best-case benchmark runtimes with different types of PEs, compared against a baseline CPU implementation

DF Baseline DaCO CPU1

Benchmark Nodes Edges Critical
Path PEs Time (us) C N PEs Time (us) Time

(us)
vs

Baseline
vs

DaCO
bomhof1 1925 2408 57 256 4.2 (1.0×) 16 16 256 3.8 (1.1×) 8.9 0.5× 0.4×
bomhof2 35609 45796 501 256 81.9 (1.0×) 16 16 256 34.4 (2.4×) 23.8 3.4× 1.4×
bomhof3 75305 90264 494 256 79.1 (1.0×) 16 16 256 36.2 (2.2×) 81.1 1.0× 0.4×
s953 37671 44052 171 256 15.8 (1.0×) 16 16 256 12.9 (1.2×) 32.0 0.5× 0.4×
s1423 52310 60852 470 256 30.4 (1.0×) 16 16 256 32.2 (0.9×) 48.0 0.6× 0.7×
s1488 86035 101608 655 256 83.5 (1.0×) 16 16 256 47.4 (1.8×) 70.8 1.2× 0.7×
s1494 86444 102060 628 256 77.1 (1.0×) 16 16 256 45.3 (1.7×) 69.5 1.1× 0.7×
hamm 115616 135416 337 256 48.0 (1.0×) 16 16 256 32.9 (1.5×) 93.5 0.5× 0.4×
1Measured on an Intel Xeon E5-2680 using Eigen 3.3.4 Linear Algebra Library (compiled with -O3, single-core performance)
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Figure 8: Communication trace of bomhof2 at varying
system and cluster sizes

C. Effect of clustering

Figure 8 shows the effect of clustering on bomhof2.
As cluster size increases, the number of inter-cluster edges
decreases as expected. However, we observe diminishing
returns when cluster size is increased beyond 4 PEs/cluster.
As resource utilization of the cluster crossbar grows by
O(N2) (see Table III), we recommend a cluster size of 2–4
to deliver the most resource-efficient runtime performance.

Figure 9 shows the runtime performance impact of cluster-
ing on both DF Baseline and DaCO across all benchmarks.
For small benchmarks like bomhof1, few PEs in a small
cluster configuration delivers the best overall throughput
efficiency. DaCO delivers better throughput/PE for most
data-points, while clustering delivers significant benefits to
DF Baseline implementations as well.
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Figure 9: Throughput/PE with varying cluster size across
different benchmarks

D. Peak GFLOPs vs. Resource Utilization

Figures 10 and 11 show the total throughput against
ALMs and M20K BRAMs for three representative bench-
marks. Overall, DaCO delivers better overall throughput
with the same resource budget, especially when considering
M20K utilization. Furthermore, by freeing up the FIFO
BRAMs in the DF Baseline, DaCO can accommodate 20%
larger graphs in the on-chip memory, hence, offering better
scalability and resource balance at the same time.

VI. CONCLUSIONS

We present DaCO – Dataflow Coprocessor Overlay – a
high-performance token dataflow overlay architecture for
Arria 10 FPGAs. DaCO improves over existing token
dataflow baseline with three improvements: (1) adding sup-
port for criticality-aware out-of-order scheduling for 1000s
of nodes inside each PE, (2) customization of the commu-
nication framework into a hierarchical topology to tradeoff
resource for runtime performance, and (3) careful RTL de-
sign to maximize resource utilization on the target AX115S
FPGA board. Overall, the criticality-aware OoO scheduler
delivers up to 2.5× speedup over existing dataflow baseline
implementations, and up to 2.8× over a baseline CPU
implementation, with a small 15–40% resource overhead
from clustering (cluster size 2–4).
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Figure 10: Total through vs ALM utilization observed on 3 representative benchmarks with varying system sizes
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Figure 11: Total throughput vs M20K utilization observed on 3 representative benchmarks with varying system sizes
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