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Abstract—We can exploit application-specific sparse structure
and distribution of non-zero coefficients in Discrete Wavelet
Transform (DWT) matrices to significantly improve the per-
formance of 1-D DWT mapped to FPGA-based soft vector
processors. We reformulate DWT computations specifically in
terms of sparse matrix operations, where the transformation
matrices have a repeating block with a fixed non-zero pattern,
which we refer to as a skeleton. We exploit this property to
transform the original DWT matrix into a Modified-Matrix-Form
to expose abundant soft vector parallelism in the dot products.
The resulting form can also be readily compiled into low-
level DMA routines for boosting memory throughput. We auto-
generate vector routines and memory access sequences tailored
for parametric combinations of DWT filter sizes, and decom-
position levels as required by the application domain. When
compared to embedded ARMv7 32b CPU implementations using
optimized OpenBLAS routines, soft vector implementation on
the Xilinx Zedboard and Altera DE2/DE4 platforms demonstrate
speedups of 12–103x.

I. INTRODUCTION

One-dimensional (1-D) DWT finds application in biomed-
ical signal processing [5], broadband sonar signal processing
[1], financial data mining [8], among other domains. Real-time
applications involving 1-D signals have witnessed a significant
increase in volume of data and rates of their production. This
data must be rapidly crunched to operate at high speeds and
high accuracy within microseconds [2], particularly in the
high frequency finance and biomedical embedded scenarios.
The key challenges in the evaluation of DWT are to uncover
inherent data parallelism in the algorithm and computation
of high volume of data with strict energy and performance
constraints.

Among the various implementation formulations, the matrix
form realization of DWT provides abundant opportunities for
parallelization at the expense of potential storage overheads.
The core computations are SIMD-friendly matrix-matrix or
matrix-vector arithmetic operations on fixed-point data. In
this paper, we propose novel implementation strategies to
exploit available inherent parallelism in matrix-form DWT
algorithm using soft vector processor. In our implementation,
we exploit the sparsity pattern observed in the construction
of transformation matrices (TM ), and show a representative
example in Figure 1. For different DWT parameters, TM

can be expressed in the form of short skeletons (non-sparse
fragments) which have a fixed repetitive pattern within the
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Fig. 1: Transformation matrix (TM ) for 6-tap DWT filter
(L = 6) and 3-level decomposition (k = 3) with the noticeable
sparsity pattern along with the skeleton (SK) of size 8⇥36
are shown beside it. The black squares represent the non-zero
elements of the skeleton.

full TM matrix. We exploit the skeleton (SK) (Figure 1)
to reduce matrix-vector multiplication involved in 1D DWT
evaluation to scalar-vector products, thereby, reducing the
complexity from O(n2) to O(n). This, however, comes at the
cost of rearrangement penalties on the input data. Apart from
the algorithmic modifications, our implementation strategy
includes customized direct memory access (DMA) transfers
that are tuned to hide data loading costs between the on-
chip and off-chip memories. The proposed DWT accelerator is
implemented using the soft vector processor, Vectorblox MXP
[6], as an FPGA IP core, on different boards such as Altera
DE4, DE2 and Xilinx Zedboard. We compare our optimized
MXP implementations to similarly optimized OpenBLAS [9]
routines on ARM 32b CPUs on the Zedboard and the Bea-
glebone Black and ARMv6 32b CPU on Raspberry Pi. The
contributions in this paper are:

• Exploitation of inherent parallelism in matrix-form fixed-
point 1D DWT evaluations using FPGA-based Vectorblox
MXP soft vector processor.

• Identification of sparse memory patterns in multi-level
DWT transformation matrices to obtain memory skele-
tons for efficient hardware resource utilization.

• Customized data rearrangement for optimized DMA
transfers and reduction of matrix-vector arithmetic of 1D
DWT to low complexity scalar-vector operations.



• Characterization of performance and power of ARMv7,
ARMv6 and MXP implementations across various DWT
image/signal sizes, and transformation levels.

II. BACKGROUND

A. MXP Soft Vector Processor

VectorBlox MXP, shown in Figure 2, is a fixed point, multi-
platform, customizable FPGA-based soft-vector processor [6].
MXP primarily consists of parallel 32-bit ALUs organized into
multiple SIMD lanes, supported by an on-chip scratchpad and
DMA engine for data transfers. The host processor that drives
the MXP operation can be a soft processor, e.g. Altera Nios
II/f or Xilinx Microblaze, or a hard processor like the ARM
CPU in the Zedboard. The host processor orchestrates DMA
transactions and also issues vector instructions to the MXP
unit. The DMA engine transfers data between off-chip RAM
and on-chip scratchpad. For our work, we use Altera DE4
which has 32 lanes and 128 kB scratchpad running at ⇡184
MHz and Altera DE2 and Xilinx Zedboard that have 16 lanes
and 64kB scratchpad running at 100 MHz each. The DMA
engines on DE4, DE2 and Zedboard support data transfer of
32, 8 and 4 bytes/cycle respectively.
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Fig. 2: High-Level picture of the MXP soft vector processor
coupled with a host CPU.

B. DWT Using Matrix Form

A DWT implementation is characterized by three param-
eters – (1) N , length of the input signal, (2) L, length of
the filter coefficients, and (3) k, decomposition level of the
design. DWT computation involves low-pass h[l] and high-
pass g[l] filtering operations followed by down-sampling by
a factor of 2 as shown in Equation 1. Number of resulting
low-pass and high-pass coefficients, represented as cA and
cD in Equation 1, are each equal to half of the number of
original input samples (i.e. N/2). The convolution operation in
Equation 1 can be interpreted as an inner-product between two
vectors [3]. The combination of inner products can be repre-
sented in a matrix form and DWT coefficients are computed
by multiplying the analysis transformation matrix Ta1 with the
input vector X .

(cA)[n] =
P

l h[2n� l]x[l] (cD)[n] =
P

l g[2n� l]x[l]

where n = 0, 1, ... , N/2
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Equation 2: Transformation matrix (T p
a1) multiplied with finite

signal (X) of length N and 6 filter coefficients (L = 6) for
level-1 DWT evaluation.
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Equation 3: Transformation matrix (T p
a2) multiplied with level-

1 coefficients for 2nd level DWT evaluation.

Equation 2 shows the transformation matrix T

p
a1 for 1st

level of decomposition of a finite signal (X) of length N,
where subscripts p and a denote periodization and analysis
respectively. The process of obtaining T

p
a1 involves shifts and

boundary corrections over Equation 1 and is not shown for
the sake of brevity, but discussed in greater detail in [3].
Equation 3 shows the transformation matrix, T p

a2, for the 2nd
level of decomposition, which is obtained by performing a
DWT decomposition (Equation 1) on the low-pass coefficients
(cA) computed from the previous level. The transformation
matrix, T

p
a2, then needs to be laced with zeros and ones

at appropriate places (see Equation 3). Lacing with ones
is required to preserve detailed coefficients through various
decomposition levels. In general, DWT for the kth-level of
decomposition can be obtained by multiplying directly with
an appropriate transformation matrix TM (see Equation 4).

C = TM ·X, where TM =
Y

k

T

p
ak (4)

A spy graph generated using MATLAB for TM of size
(256 ⇥ 256) for L = 6 and k = 3 is shown in Figure 1.
The noticeable sparsity pattern along with the basic block
structure, referred to as a skeleton (SK) is shown beside the
transformation matrix in Fig. 1. The size of the skeleton
depends on two parameters: filter size (L) and levels of
decomposition (k). For a given L and k, the skeleton obtained
is independent of TM size, i.e. N⇥N.

C. Acceleration Potential
DWT as a transform can be realized in three ways: (1) low

and high pass filtering, (2) sequence of lifting steps or (3)
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Fig. 3: Example on transformation of original matrix-form
DWT to Modified-Matrix-Form DWT (N = 216, L = 6, k = 3)

multiplication with an appropriate transformation matrix [3].
Existing works in DWT acceleration have typically employed
filtering or lifting techniques [1], [4], [10]. However, the
filter-based methods are recursive in nature while the lifting
schemes have inherent sequential bottlenecks, which results in
limited acceleration potential for these methods. Unfortunately,
matrix-form DWT also poses two key challenges that limit
acceleration potential: (1) the compute complexity of matrix-
based DWT is O(n2), as opposed to O(n) [7] for the other two
methods, and (2) the matrices are highly sparse, which imposes
a severe penalty on runtime performance due to high cache
miss rates. We first address these challenges with an algo-
rithmic optimization that transforms the difficult-to-parallellize
matrix-form DWT into a SIMD-friendly form, which we refer
to as the Modified-Matrix-Form (see Section III-A).

III. 1-D DWT OPTIMIZATIONS

A. Modified-Matrix-Form DWT
The Modified-Matrix-Form (MMF) is an algorithmic trans-

formation that allows us to reduce the compute complexity and
tackle sparsity-related challenges found in the naı̈ve matrix-
form DWT. In MMF, we first identify the skeleton in the TM
matrix, which is the repeating basic block of fixed size and
fixed sparsity pattern (see example in Figure 1). Figure 3a
shows an example where the skeleton is of the size 8x36. We
then rearrange the input signal vector into a matrix-form as
shown in Figure 3a, based on the size of the skeleton. Note
that the input signal vector has to be extended to account for
the corner cases in the original TM matrix (see top-right and
bottom-left of TM matrix in Figure 1). The final 1-D DWT
result can then be obtained one row at a time by doing a
row-wise scalar-vector product and accumulate as shown in

Figure 3b. Since we know the sparsity pattern of the skeleton
upfront, we can ensure that only the non-zero scalar rows are
multiplied and accumulated for the final result. Hence, the
MMF method reduces the compute complexity of the 1-D
DWT kernel from O(n2) to O(n) and also avoids wasteful
multiply-by-zero computations resulting from high sparsity.

B. MMF Vectorblox MXP Implementation

The static scalar-vector product and accumulate form in
MMF is a very SIMD-friendly, as now we can issue just single-
cycle vector instructions to compute results in a highly parallel
fashion. On the Vectorblox MXP, we can issue up to 32 fixed-
point vector instructions (multiply/accumulate) in a single-
cycle, depending on the size of the FPGA. We also customize
the DMA transfers such that the on-chip scratchpad memory
is used efficiently and memory transfer time is hidden behind
compute time. The host processor orchestrates the entire DMA
transfer and computation flow, ensuring that only non-zero
vector computations occur on the MXP to deliver efficient
hardware utilization.

IV. EXPERIMENTAL SETUP

On the ARM 32b CPUs, we write our MMF 1-D DWT
implementation in C (with OpenBLAS) and compare its per-
formance to off-the-shelf signal processing toolbox available
in Octave. We develop our FPGA-based MXP implementa-
tions on the Altera DE2, DE4, and the Xilinx Zedboard (see
Section II-A), and compare its performance to the baseline
Octave implementation run on the 32b CPUs in the Zedboard
(ARMv7), Beaglebone Black (ARMv7), and Raspberry Pi
B+ (ARMv6). All implementations use OpenBLAS routines
(v0.2.15) and are compiled using gcc with -O3 optimization
flags enabled. We measure timing with PAPI (v5.4.3). We
obtain runtimes for 8b/16b/32b data precision for all MXP
implementations. For timing measurements on the MXP, we
use the MXP timing API averaged across hundreds of trials
while also recording power using the Energenie power meter.
We also verify functionality of our vector implementation
against the reference Octave solution.

V. RESULTS

A. Software MMF

Simply rewriting the software routines to support our
Modified-Matrix-Form (MMF) transformation delivers
speedups ranging from 1.8⇥–5.6⇥ across the three target
embedded platforms (Beaglebone Black, Raspberry Pi, and
Zedboard). We achieve the best speedup on the Zedboard
as there is a small on-chip NEON vector engine capable of
providing acceleration support to the CPU. Figure 5 shows
the energy vs. throughput profile of the three embedded
boards (red line) when running the optimized software MMF
implementations.
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Fig. 4: Speedups from 32b MXP implementations on the DE2,
Zedboard (Zed), and DE4 over ARM CPUs on the Zedboard
(Zed), Raspberry Pi (RP), and Beaglebone Black (BB). L =
6, k = 3, N = 216.

B. MMF on the Vectorblox MXP

Figure 4 shows the 2–55⇥ speedups obtained from our
FPGA-based MMF implementations over all the optimized
MMF CPU mappings on the Zedboard, Beaglebone Black,
and the Raspberry Pi. We note that the DE4 offers the best
acceleration potential among all the FPGA boards, which can
be attributed to its larger size (more number of vector lanes),
larger onchip scratchpad memory (fewer DMAs), faster clock,
and higher DRAM bandwidth. Table I presents execution
times on various FPGA MXP overlays for 8/16/32 bitwidths
resolutions. Figure 5 shows the energy vs. throughput profile
for the 3 FPGA boards (blue line), which reaffirms the
dominance of the DE4 board as being the most power efficient
board for doing 1-D DWT computations. Finally, our MXP
implementations deliver an overall speedup of 12-103⇥ over
the baseline filter-based DWT implementations from off-the-
shelf libraries available in Octave.

●

●
●

20

40

60

80

0.1 1.0
Throughput (GOps/S)

En
er

gy
 (m

J)

●
●
●

ARM (Beagl.)

ARM (Rasp.)

ARM (Zedb.)

MXP−DE2

MXP−DE4

MXP−Zed

Fig. 5: Energy vs. Throughput for 1-D DWT MMF implemen-
tations on various platforms. L = 6, k = 3, N = 216.

VI. RELATED WORK

Zhang [10] propose a spatial FPGA-based implementation
of 1-D DWT that requires (N+J) cycles at a clock period of
8.7 ns, where N is number of input samples and J is level

TABLE I: Execution time (ms) using MXP overlays on FPGA.

Resolution 8-bit 16-bit 32-bit
DE4 0.12 0.23 0.80
Zedboard 0.48 0.96 1.92
DE2 0.99 1.97 3.91

of decomposition. However, the computation time reported⇤

does not include data transfer time. Using our proposed
implementation, we obtain a total runtime of 0.089–0.327 ms
on various FPGA boards, inclusive of data transfer time. This
translates to 1.7–6.4⇥ better performance over [10].

VII. CONCLUSION

In this paper, we improve the matrix-based multi-level
Discrete Wavelet Transform (DWT) kernel with our Modified-
Matrix-Form (MMF) technique to unlock inherent parallelism,
which we then exploit using the Vectorblox MXP soft-vector
processor. Our MMF approach takes advantage of the repeat-
ing sparse matrix skeletons in order to reduce the compute
complexity from matrix-vector operations (O(n2)) to scalar-
vector operations (O(n)). Our final 1-D DWT MXP imple-
mentations deliver performance speedups of 12-103⇥ over
state-of-the-art signal processing libraries available in Octave,
while improving energy efficiency simultaneously.
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