
Enhancing Butterfly Fat Tree NoCs for FPGAs
with lightweight flow control

Gurshaant Singh Malik
University of Waterloo

Ontario, Canada
gsmalik@uwaterloo.ca

Nachiket Kapre
University of Waterloo

Ontario, Canada
nachiket@uwaterloo.ca

Abstract—FPGA overlay networks-on-chip (NoCs) based on
Butterfly Fat Tree (BFT) topology and lightweight flow control
can outperform state-of-the-art FPGA NoCs, such as Hoplite and
others, on metrics such as throughput, latency, cost and power
efficiency, and features such as in-order delivery and bounded
packet delivery times. On one hand, lightweight FPGA NoCs built
on the principle of bufferless deflection routing, such as Hoplite,
can deliver low-LUT-cost implementations but sacrifice crucial
features such as in-order delivery, livelock freedom, and bounds
on delivery times. On the other hand, capable conventional NoCs
like CONNECT provide these features but are significantly more
expensive in LUT cost. Butterfly Fat Trees with lightweight
flow control can deliver these features at medium cost while
providing bandwidth configuration flexibility to the developer.
We design FPGA-friendly routers with (1) latency-insensitive
interfaces, coupled with (2) deterministic routing policy, and
(3) round-robin scheduling at NoC ports to develop switches
that take 311-375 LUTs/router. We evaluate our NoC under
various conditions including synthetic and real-world workloads
to deliver resource-proportional throughput and latency wins
over competing NoCs, while significantly improving dynamic
power consumption when compared to deflection-routed NoCs.
We also explore the bandwidth customizability of the BFT
organization to identify best NoC configurations for resource-
constrained and application-requirement constrained scenarios.

RTL → https://git.uwaterloo.ca/watcag-public/bft-flow

I. INTRODUCTION

FPGAs have become first-class citizens in the data-center
as illustrated by the Microsoft Catapult [5] project and rapid
deployment in cloud service providers such as Amazon F1.
FPGAs are gaining prominence as a programmable com-
putational platforms for contemporary applications such as
Machine Learning, Graph Accelerators, Network Virtualiza-
tion, among others. Modern FPGAs also support a growing
number of diverse, high-speed interfaces for programmable
communication with the outside world and also integrate
optional features such as deep pipelining and lightweight
absorption FIFO support that can boost design frequencies
and increase throughputs. Programming FPGAs through High-
Level Synthesis tools like Vivado HLS, Intel a++, and OpenCL
workflows have put FPGAs within reach of software develop-
ers. As a result of this, FPGAs have not only become more
accessible, but also support the design of large and complex
applications. With increasing complexity, diversity of exter-
nal interfacing, and tighter design schedules of software-like

Deep Pipelining +
Absorption FIFOs

Pi Switch T Switch Datapath

System IO

Np

bisection

A

B

Fig. 1. High-Level Picture of the Butterfly Fat Tree (BFT) NoC.
Configurable bisection bandwidth Np with p=Rent parameter. Deterministic
A → B path highlighted. Parametric pipelining of wires in upper stages.

development, modular design flows have become necessary.
NoC (Network-on-Chip) overlays are necessary to support
connectivity requirements of these modular designs, while
providing smooth access to system-level interfaces.

Overlay NoCs complement hardened NoC resources by
providing much-needed configurability and last-mile connec-
tivity options to the FPGA developer. The design of efficient
overlay NoCs can also help us customize the programmable
nature of FPGA resources to different FPGA application
requirements. Overlay NoCs such as Hoplite [13] demonstrate
a radically different approach towards NoC design for FPGAs
built around deflection routing principles that are low-cost
and significantly better in cost and throughput compared to
contemporary alternatives such as CMU CONNECT [20] and
Penn Split-Merge [11] designs. However, deflection-routed
NoCs are prone to livelock, unable to deliver packets in-order,
and impose reordering cost on the destination. Deflection-
Routed Butterfly Fat Trees [12] do marginally better by
allowing the bisection bandwidth of the NoC to be customized
to match application requirements, but otherwise suffer from
rest of the compromises of a deflection-routed design.

In this paper, we show how to design an in-order, low-cost,
FPGA-friendly Butterfly Fat Tree (BFT) NoC that supports
customization of bisection bandwidth, without suffering the
compromises of a deflection-routed NoC, while exploiting
FPGA-specific features. As shown in Figure 1, we can config-

https://git.uwaterloo.ca/watcag-public/bft-flow

ure the bisection bandwidth of the NoC by choosing a combi-
nation of pi () and t () switches. This is in stark contrast
to the Fat Tree topology option in CMU CONNECT [20]
that does not provide this parameterization and has a rigid
organization. We add deterministic routing support to the Fat
Tree routing algorithm to ensure packet flow between a source-
destination endpoint takes identical paths. This is highlighted
by a candidate path from A→B in Figure 1 which takes that
strict path even when the pi switch hops provide alternatives
on the uphill climb. We adopt a lightweight latency-insensitive
interface on the NoC ports to (1) ensure packets are delivered
in-order, (2) do not suffer the penalty of deflections, and (3)
are AXI-S compatible. We augment the latency-insensitive
interfaces with absorption FIFOs to allow deep pipelining in
the upper stages of the tree, illustrated as in Figure 1.

They key contributions of this work include:
• Design and RTL implementation of BFT NoC routers

with latency-insensitive AXI-S I/O, deterministic routing
function, round-robin arbitration, LUT-fracturing friendly
mapping, and NoC assembly with configurable bisection
bandwidth tuning and optional pipelining support.
• Performance evaluation of the different NoC configura-

tions under synthetic and real workloads. Measurement and
analysis of sustained throughput, average latency, worst-case
latency, power reduction due to avoided deflections.
• FPGA floorplanning and mapping characterization of re-

source cost, frequency, and dynamic power.

II. BACKGROUND

Modern FPGA chips pack millions of LUTs, thousands of
BRAMs and DSPs, and a rich set of I/O interfaces on the same
chip. This high compute density is matched by a corresponding
increase in connectivity choices at the system-level. Modern
FPGA IO interfaces include high-bandwidth DDR4 memories
(21.3 GB/s), HBM and HMC memories (460–480 GB/s),
along with next-generation network ports (100–400 Gbps).
Besides matching the high data rates of these system-level
interconnect, we often require guarantees on ordering, latency,
and synchronization on these communication channels. These
growing connectivity requirements have long suggested a need
for low-cost, high-bandwidth overlay NoCs [13] or hardened
NoCs [1] for FPGA chips. In fact, the HBM AXI IP [25] for
the Xilinx VU37P integrates two 16×16 256b AXI crossbars
to ensure uniform access to the HBM memory stack. Beyond
one-off solutions for such interfaces, we need FPGA overlay
and hard NoCs to support intra-FPGA traffic patterns.

A. Survey of Contemporary FPGA NoCs

We now review key state-of-the-art FPGA overlay NoCs to
better understand the underlying tradeoffs. Deflection-routed
NoCs such as Hoplite [13] [14] and BFTs [12] have upended
conventional wisdom in the design and engineering of FPGA
overlay NoCs. These NoCs are low-cost, FPGA-friendly solu-
tions that emphasize economy of LUT usage while sacrificing
other features of the communication network. Fully-featured
NoC frameworks like CONNECT [20] provides developers

with a host of choices including topology, buffering, virtual
channel support, flow control options, and others to match
developer requirements but do so at significant LUT expense.
Off-the-shelf IPs such as the Xilinx AXI4-Stream Intercon-
nect exploit mux cascades in Xilinx logic fabric to deliver
monolithic AXI-compatible router blocks but have limited
scalability (16-endpoints) and poor scheduling.
1. Implementation Cost: Deflection-routed NoCs are signif-
icantly cheaper to realize on FPGAs and even on ASICs [7].
By avoiding the use of buffers, Hoplite and Deflection-
routed BFTs offer a cheaper alternative to classic buffered
NoCs. They are easier to pipeline owing to fewer logic
stages in the internal crossbar and can easily run at high
speeds subject to appropriate pipelining. However, deflec-
tions keep the NoC switching activity high by forcing the
packets to keep traveling in the network.

2. Performance: Deflection routing offers high absolute
throughputs when considering implementation frequency
(GB/s) but low relative throughputs (packets/cycle). They
also suffer from higher worst-case routing latency due to
the overhead of deflections. In contrast, conventional NoCs
like CONNECT supports higher packet throughput (packet-
s/cycle) but suffers on absolute throughput metrics (GB/s)
due to significantly lower implementation frequency/fmax.
The Xilinx AXI4-Stream Interconnect IP only scales to 16
endpoints but offers competitive throughput.

3. Packet Delivery: Deflection routers are unable to offer
in-order packet delivery due to the unpredictable order of
deflections. Deflection routers misroute packets along un-
intended directions to manage contention without the need
for buffering. It is possible to provide ordering in presence
of deflection [19] at the cost of a significant reduction in
throughput. Stateful streaming FPGA applications require
ordered packet delivery and order DMA transactions on ex-
ternal DRAMs. Deflection routed NoCs are also susceptible
to livelocks where unlucky packets keep getting misrouted
perpetually. While this behavior is very uncommon, even
a possibility of a livelock makes the design of coherence
protocols, implementation of synchronization operations on
FPGAs, and realization of real-time applications with strict
timing guarantees difficult. Conventional buffered NoCs like
CONNECT, and Xilinx AXI4-Stream Interconnect IP can
provide in-order delivery at great cost.

B. Butterfly Fat Trees

Most modern NoC topologies are either 2D meshes or tori
due to the geometric simplicity of mapping to a 2D VLSI
substrate. However, these topologies are unable to scale bi-
section bandwidth to meet differing application requirements.
Instead of making all chip-spanning NoC links wider to boost
throughput, Butterfly Fat Trees (BFTs) offers customizable
bisection bandwidth to the communication workload with con-
figurable multi-level NoC topology. Through proper selection
of switch richness at different levels of the tree we can tune
the network to any bisection bandwidth O(Np) where p is
the Rent parameter [16] of the architecture. BFTs have a

2

2:1

2:1 2:1

Uo

Li RiLo Ro

Ui

(a) t switch

2:1 2:1

3:1 3:1

U0o U1o

Li RiLo Ro

U0i U1i

(b) pi switch

Fig. 2. Microarchitecture of BFT t and pi switches.

long history [18] [17] and have found use in traditional ASIC
designs [22] [3] [6], Multi-Processor SoC designs [24] [10]
[9] and off-chip networks in the data-center [23] [2].

Switch Microarchitecture: A popular version of 2-ary BFT
NoCs is constructed from two types of building blocks: t and
pi switches as shown in Fig 2. All switches at a given level of
the tree are of the same type. A t switch has two ports to/from
the lower levels of the tree and only a single uphill port. A pi
switch has two ports from the lower levels of the tree, and two
ports to the upper levels of the tree, thereby preserving total
bandwidth. Even if the IO ports are buffered [15], the NoC still
delivers packets out-of-order as the uphill ports still provide
two choices at each climb. If the ports are bufferless [12], with
a suitable choice of routing algorithm, the NoC switches are
low-cost but, as discussed previously, guarantee neither packet
ordering nor livelock freedom.

Bandwidth of a BFT: Fat trees allow the network bisection
of the NoC (O(Np)) to be adjusted as required to reflect
Rent properties (p) of the communication workload. We can
consider two extreme configurations of a BFT to better under-
stand the tunable range of bisection bandwidth configurations
available to us. On one hand, a binary tree (BFT0), configured
by simply choosing t switches at all levels at a cost of O(N)
switches, can only sustain nearest-neighbor style lightweight
communication (bisection bandwidth of O(1)). On the other
hand, a multi-stage crossbar (BFT3), configured by choosing
only pi switches at all levels at a cost of O(N × log(N)),
supports all-to-all communication patterns (bisection of O(N))
in a cost effective manner. By choosing the right mix of t and
pi switches, we can construct the right NoC to suit application
demands, a key requirement of FPGA workloads. For this
paper, we will refer to the (t-pi-t-pi) topology as BFT1 and
the (t-t-pi-pi) topology as BFT2.

Routing Policy of a BFT: For packet-switched opera-
tion, we assume single-flit operation where the destination
address and payload are part of a single indivisible unit of
communication. The routing algorithm used on BFTs [12] is
straightforward and can be separated into three phases: (1)
climbing, (2) turning, and (3) descent. During the climbing
phase, packets can take any available uphill port until they
reach the common ancestor of both source and destination
clients. The level of the NoC that represents the common
ancestor is the bit position of the common prefix of both
addresses. The packet must turn here and has only one choice

2:1 2:1

3:1 3:1

U0o U1o

Li RiLo Ro

U0iU1i

(a) Orig. pi switch, all
turns allowed.

2:1 2:1

2:1 2:1

U0o U1o

Li RiLo Ro

U0iU1i

(b) Downhill locked
U0 → L, U1 → R.

2:1 2:1

3:1 3:1

U0o U1o

Li RiLo Ro

U0i U1i

(c) Uphill locked
L → U0, R → U1.

Fig. 3. Pruning the pi switch to enforce deterministic routing policy and
save multiplexing cost.

of outgoing port. During descent, at level i of the NoC, extract
bit i of the destination address and turn left (0) or right (1).
Again the downhill path is fixed based on destination address
and no routing freedom is available during descent.

III. BFTS WITH LIGHTWEIGHT FLOW-CONTROL

Butterfly Fat Trees offer a configurable platform for the
design of FPGA-friendly NoCs. Conventional buffered vari-
ants offered by CONNECT are too large and slow, while
bufferless deflection-routed variants are cheaper but suffer
from livelocks, lower packet throughputs and absence of
bounds on packet delivery. Can we retain the features of a
buffered NoC while approaching the low cost potential of
bufferless deflection-routed NoCs? Let us find out by first
understanding the root causes of problems on deflection routed
BFTs. Then we will walk through the proposal for rectifying
these limitations with our BFT NoC design that employs
lightweight flow control.

A. Designing the BFT Switch Microarchitecture

The broad design goals for the switch include in-order
delivery, livelock freedom, and bounded routing times.

Quest for Deterministic Routing The key feature of the
classic BFT routing policy allows packets routing via pi
switches to choose uphill routes as required, depending on
local congestion. This baseline switch, shown in Figure 3
(a) costs us 2 2:1 multiplexers (uphill ports), and 2 3:1
multiplexers (downhill ports). This generous routing freedom
can lead to packet reordering that is typically handled with re-
assembly buffers at the endpoints. Instead, we can strategically
limit this freedom of path selection while distributing band-
width fairly across the NoC. For datacenter BFT networks,
deterministic routing can be enforced [8] by scattering packets
based on destination address. This is applicable to larger-
scale networks as the cost of switch has already been paid
and no optimization of switch richness is necessary. Instead,
for an efficient FPGA mapping, we investigate LUT-friendly
deterministic routing choices as shown in Figure 3.
• We can limit routing freedom by pruning the downhill

muxes and forcing packets to strictly take U0 → L and
U1 → R paths as shown in Figure 3b. This reduces the

3

LUT mapping cost of the switch to 2 2:1 multiplexers
(uphill ports) and 2 2:1 multiplexers (downhill ports).
• Alternatively, we can restrict uphill packets to take L →
U0 and R → U1 paths as shown in Figure 3c. This will
eliminate the uphill multiplexers entirely. We now only need
to pay the cost of 2 3:1 multiplexers for the downhill ports.

By restricting routing freedom, packets take deterministic
paths along the tree and packets for a particular source-
destination pair will travel along identical routes in the tree.

0, 0 1, 0

0, 1 1, 1

Fig. 4. Livelock in BFTs:
mixing deflection and

determinism.

However, if we add this restric-
tion to deflection-routed BFTs, the
NoC loses livelock freedom. A con-
crete example of this manifestation
is shown in Figure 4. In this ex-
ample, the red path is forced to
take L → U0 route at 0,0 and
blue path must take R → U1 at
1,0 thereby creating a cyclic de-
pendency. The orange and green
downhill paths also have a fixed
route during BFT descents. The
four co-dependent flows can lead
to livelock. Deflection-routed BFTs

force packets to return along the arriving links and create a
local dependency on the output resource. When we enforce
uphill routing restrictions, packets no longer have the ability
to route around congestion. Recall, that during BFT routing,
downhill paths are already constrained to a specific path based
on the destination address. If a set of packet flows request
resources in a cyclic fashion, they are now susceptible to a
livelock that previously did not exist under the relaxed routing
policy of the BFT NoC.

Quest for Low-Cost Handshaking: The key to breaking
cyclic livelocks is to eliminate the dependency on the deflected
outgoing port. Instead of sharing the outgoing port for both
deflected packets and nominally routed packets, we choose
to use a lightweight latency-insensitive interface for handling
contentions. With latency-insensitive protocol, the contending
packet is stored in a shadow register at the input port itself
rather than deflecting it on the output port. This removes
the dependence on the output port and eliminates livelock.
This makes the NoC handshake-driven (valid, backpressure
protocol) rather than built on deflection-routing principles.

2:1Li OL Lo

SL

2:1Ri OR Ro

SR

2:1U0i OU0 U0o

SU0

Fig. 5. Lightweight Latency-Insensitive Interface integration with the BFT t
switch. Each input port has a cheap shadow register (single FF, or an

SRL32 absorption FIFO).

Previous embodiments of this handshake [4] suffered from
some key limitations. They were (1) mapped to cheap SRL FI-
FOs but limited by the logic cost of complex flow control, (b)
throttled throughput by 50% to simplify the control logic for
handshaking, and (c) compromised frequency of the mapped
design in the quest for low LUT footprint. Neither of these
alternatives are effective for NoCs where the cost of every
extra LUT matters. We adapt the latency insensitive interface
to compose seamlessly with the multiplexing stage of our
internal switching crossbar to lower overheads. A side-effect
of the adoption of handshaking, combined with the proposed
deterministic routing, also enforces ordering guarantees on the
packets in addition to livelock-free deterministic routing.

Round-Robin Arbitration: The final piece of the puzzle
is the choice of arbitration policy. We manage contentions
using a fair, work-efficient arbiter that provides service to
contending packets in a round-robin fashion. Since packets are
not deflected, they just stay in the shadow registers, service is
guaranteed and no local livelocks are possible. Conventionally
deflection-routed NoCs [12] can suffer from local livelocks
due to mismatch between pipelining latency on the link and
service cycle period of the round robin arbiter.

B. FPGA Mapping

We now investigate the FPGA LUT cost and implementation
frequency of the different BFT router variants in Table I
for the Xilinx UltraScale+ VU9P FPGA with Vivado 2017.4
running synthesis, placement and routing. In contrast to the
Deflection BFT router [12], we introduce a lightweight shadow
register module and a different round robin arbiter. For the pi
switch proposed in this paper with deterministic uphill paths,
we are able to save the cost of the muxes but still need to
pay for the latency insensitive interface blocks. Thus, our
proposed t and pi switches are 1.5–3× larger than their vanilla
deflection-oriented counterparts but provide 1.) livelock-free
routing, 2.) in-order delivery, and 3.) a manyfold increase in
throughput, latency and power performance, as illustrated in
Section IV. We also augment our lightweight router with deep
pipelining along the links supported with lightweight 32-deep
absorption SRL FIFOs. This further increases area cost by
1.5× and drops frequency slightly. Later, we see in Section IV,
that the designer may choose between wire-rich or LUT-rich
alternatives for a given workload.

In contrast to a recent [21] partial-reconfiguration friendly
implementation of a 32-node 64b deflection-routed BFT taking
29K LUTs on a Xilinx ZU9EG MPSoC, our topology takes
≈30K LUTs on a VU9P FPGA and provides multiple extra
benefits in exchange for the modest increase in LUTs and
identical wiring requirement.

IV. RESULTS

In this section, we report the outcomes of the experimental
evaluation of the our Flow-controlled BFT FPGA overlay
NoCs and other contemporary NoCs under different traffic
patterns. We quantify metrics such as throughput, latency
(source queuing+inflight), resource cost and power. We aim

4

TABLE I
BFT t AND pi SWITCH COST (32B DATA + 4B ADDR).

Architecture Kind LUTs FFs Freq. (MHz)

Deflection BFT t 122 146 1176
[12] pi 207 145 965

This paper t 311 216 780
pi 375 288 881

This paper t 530 282 751
+ SRL FIFOs [4], [15] pi 548 378 875

to establish the tradeoffs between the different NoCs and how
to choose between them under various constraints.

Experimental Setup: For synthetic workloads, we investi-
gate uniform random and locality-aware traffic patterns that
send single-flit messages (1024 packets/client). We extract
real-world traces from FPGA accelerators for Sparse matrix-
vector multiplication, graph processing, and Token LU factor-
ization graphs with 10K–1M messages/benchmark. We iden-
tify Hoplite, Deflection BFT, CMU CONNECT, and Xilinx
AXI4-Stream Interconnect (IC) as the set of NoCs for head-
to-head comparison across a range of system sizes from 2–64.
For the Flow-controlled BFT, we choose four configurations
(BFT0–3) between and inclusive of the binary tree (BFT0,
all t switches) and multi-stage crossbar topologies (BFT3, all
pi switches). We mimic similar four BFT configurations from
the Deflection BFT work [12] (TREE, MESH0, MESH1, and
XBAR). The CMU CONNECT BFT is configured to have
8-deep buffers, peek flow control, and separable input-first
round-robin arbitration to closely match our testing conditions.
We run cycle-accurate simulations using a combination of
iverilog, verilator, and Xsim as required by the dif-
ferent NoCs. All hardware mapping experiments targeted the
Xilinx UltraScale+ VU9P FPGA (xcvu9p-flga2104) with a -3-
e speed grade using Vivado 2017.4 under default synthesis and
implementation settings. We floorplan the NoCs to span the
chip dimensions and optimize layout for wiring distribution.

A. Cost-Power-Performance Tradeoffs

In Figure 6a, we show sustained throughput (packets/ns) as
a function of LUT utilization at 16 client system size. It is clear
that Hoplite has the smallest LUT footprint of all NoCs, but
the superior bisection bandwidth of the BFT NoCs help boost
their sustained rates by as much as 3× over Hoplite. The BFT
proposed in this paper is more expensive than the deflection
variant by 1.5–2× but delivers 1.5× better throughput in
exchange. The CMU CONNECT NoC is significantly more
expensive (1.5–3×) than the BFT NoCs and delivers 1.8×
lower throughput , while the Xilinx IC has remarkably poor
6× less throughput than our BFTs.

It may seem tempting to exploit the low-cost nature of
Hoplite to create replicas of the NoC and use it instead
of paying for the more expensive BFT. In Figure 6b, we
quantify the fallacy of this thinking. The baseline Hoplite
design consumes 1.1K LUTs compared to the 10K LUTs
of our fully-feature BFT. For RANDOM workload with 100%
injection rate, we observe that multi-channel Hoplite with 3
channels is able to deliver a better throughput result compared

1

2

3

4

5

6

2.5K 5K 7.5K 10K
LUTs

T
h
ro

u
g
h
p
u
t
(p

a
c
k
e
ts

/n
s
)

(a) Area-Throughput Trends

2.5K 5K 7.5K 10K12.5K
LUTs

(b) Multi-channel Hoplite

Flow Controlled BFT0 BFT1 BFT2 + BFT3
Deflection TREE MESH0 MESH1 + XBAR
Hoplite Channel 1 2 3 4 5 6

CMU Xlnx IC
Fig. 6. FPGA LUT cost-performance trends for different NoCs. 16 clients,

RANDOM traffic at 100% injection.

2

3

4

5

1 2
Dynamic Power (W)

T
h
ro

u
g
h
p
u
t
(p

a
c
k
e
ts

/n
s
)

(a) Dynamic Power-Throughput

0.2

0.4

0.6

0.8

2 4 8 16 32 64
PE Count

S
w

it
c
h
in

g
 A

c
ti
v
it
y

(b) Switching Activity-System Size

Flow Controlled BFT0 BFT1 BFT2 + BFT3
Deflection TREE MESH0 MESH1 + XBAR

CMU Hoplite Xlnx IC
Fig. 7. FPGA Dynamic Power-performance trends for different NoCs. 16

clients, RANDOM traffic at 100% injection.

to a BFT0 NoC. As we scale channel count, the Hoplite
throughput saturates and is not competitive with rest of the
BFT NoC configurations. This is for two reasons: (1) a drop in
implementation frequency as we add more wires to the multi-
channel NoC, and (2) ejection bottleneck where packets try
to exit the NoC from the multiple channels. Thus, a bisection
configurable network like a BFT offers better use of wiring
resources than naive replication of a low-cost topology.

Next, we investigate power-throughput tradeoffs to primar-
ily quantify the benefit of avoiding deflections. We expect
the use of lightweight handshakes to eliminate the switching
activity due to deflections. We compute dynamic power using
Xilinx Xpower by supplying switching activity rates. We
extract these switching activity rates from simulation data. In
Figure 7a, for RANDOM workloads at 100% injection rate,
we observe a simultaneous 1.1–1.2× reduction in dynamic
power and 1.1–1.5× boost in throughput when comparing our
BFTs with their deflection variants. While Hoplite has low
dynamic power due to its dramatically lower LUT cost, it has
high switching activity and struggles to meet the throughput
capabilities of the BFT NoC.

In Figure 7b we measure switching activity as a function
of system size for RANDOM workloads at 100% injection
rate. As expected, deflection-based topologies like Hoplite and
Deflection BFTs are characterized by high 60–80% activity
rates. Our BFTs exhibits the low switching rates of 40–50%.

5

100

300

500

700

2 4 8 16 32 64
PE Count

M
a

x
.

F
re

q
u

e
n

c
y
 (

M
H

z
)

(a) System Size Scalability

32 64 128 256 512
Data Width (bits)

(b) Datawidth Scalability, 16 PEs

CMU Defl. XBAR Hoplite BFT3 Xlnx IC
Fig. 8. FPGA frequency characterization as a function of system size and

datawidth.

The Xilinx IC is a single-stage crossbar and thereby exhibits
the lowest activity rates.

B. Understanding FPGA Mapping Trends

To understand the source of these LUT cost efficiency
trends, we now investigate the LUT implementation cost and
operating frequency of the different NoC configurations.

In Figure 8a, we implement the different NoCs with 32b
datawidth and scale PE counts. We observe that our BFT is
the fastest NoC and runs as fast as 700 MHz (2–8 PEs) and
degrades to 500 MHz (64 PEs). It is also better than the de-
flection variant of the BFT by ≈1.25×. The Hoplite frequency
generally keeps pace with the BFT and only slows down at
larger system sizes. With aggressive link pipelining even at
large system sizes, it is possible to achieve frequency-parity
between Hoplite and BFT topologies. The CMU interconnect
is the slowest NoC in this comparison due to complex router
microarchitecture. The Xilinx AXI4-Stream Interconnect is
fast at small system sizes but its frequency drops to 400 MHz
at 16 clients due to a simple, low-cost design.

In Figure 8b, we scale the datawidth of the NoC with 16
clients. As expected, all NoCs suffer a frequency drop with
widening links. Below 128b links the BFT NoC proposed in
this paper offers the highest frequency across the set of NoCs.
As we scale beyond 128b, the frequency of Hoplite and Xilinx
AXI4-Stream interconnect is faster at around 500 MHz while
the BFT drops to around 300 MHz. Note that with aggressive
pipelining (extra register cost) of the links all NoCs can be
made to achieve similar operating frequencies.

C. Effect of Injection Rate of Synthetic Traffic

When considering synthetic traffic patterns, we must exam-
ine the effect of injecting packets into the NoC at varying rates
and measure sustained rates and average latency at saturation.

For RANDOM (Figure 9a) and LOCAL (Figure 9b) workloads,
on a 16 client system, the BFT NoC outperforms all other
NoCs in our comparison by 1.5–2× (worst case) and by 3–
6× (best case). The key reason for this difference is the ability
of our NoC to avoid the penalty of deflections (Hoplite, De-
flection BFT), faster frequency (CMU CONNECT), and fairer
arbitration (Xilinx AXI4-Stream Interconnect). As expected,
the LOCAL traffic pattern suits the BFT architecture nicely as

1
2
3
4
5
6
7
8

25 50 75 100
Injection Rate (%)

T
h
ro

u
g
h
p
u
t
(p

a
c
k
e
ts

/n
s
)

(a) RANDOM traffic

25 50 75 100
Injection Rate (%)

(b) LOCAL traffic

CMU Defl. XBAR Hoplite BFT3 Xlnx IC
Fig. 9. Sustained Throughput trends for different NoCs for 16 clients and

for RANDOM and LOCAL traffic patterns.

0

100

200

300

1 10 100 1K 4K 30K
Latency of a packet (ns)

N
u
m

b
e
r

o
f
P

a
c
k
e
ts

(a) Latency distribution

200

400

0 20 40 60
Injection Rate

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

n
s
)

(b) Average Latency

CMU Defl. XBAR Hoplite BFT3
Fig. 10. NoC packet latency trends for 64 client NoCs, RANDOM traffic.

locality in the communication trace matches the hierarchical
structure of the NoC.

In Figure 10a, we investigate the latency distribution trends
of the different NoCs for 64 clients with RANDOM traffic and
100% injection rate. The long tail distribution of deflection-
routed Hoplite NoC is clearly evident in this plot. We are
able to marginally outperform the buffered CMU CONNECT
NoC by 1.1× due to a faster implementation frequency of our
design. We are also 1.7× better than a Deflection BFT.

In Figure 10b, we plot average latency (before network
saturation) for varying injection rates under RANDOM traffic.
As expected, deflection-routed NoCs like Hoplite saturate very
quickly at 2% injection rate. The CMU CONNECT NoC
delivers much better average latency behavior due to buffers.
However, the BFT NoCs are ultimately superior due to richer
wiring bandwidth of the upper stages.

D. Effect of System Size

In Figure 11, we quantify the effect of PE scaling on NoC
throughput and worst-case latency for synthetic (RANDOM) and
real (geometric mean of various benchmarks) workloads at
100% injection rate. The flow controlled BFT NoC is the clear
winner with highest throughputs for both synthetic and real
traffic and the lowest worst-case packet routing latencies.

The sustained throughput of our proposed BFT is able to
outperform CONNECT by 1.75× and the deflection variant
(XBAR) by 1.4× at 64 clients with RANDOM workload. For
real workloads the gap is similar at 1.8× (vs CONNECT)
and 1.2× (vs deflection variant) suggesting that the wins hold
even for realistic traffic patterns. Deflection overheads even-
tually choke Hoplite and yield low sustained throughputs and

6

2

6

10

14

2 4 8 16 32 64
PE Count

T
h
ro

u
g
h
p
u
t
(p

a
c
k
e
ts

/n
s
)

(a) Throughput for RANDOM

2 4 8 16 32 64
PE Count

(b) Throughput for REAL

1

10

100

1K

30K

2 4 8 16 32 64
PE Count

W
o

rs
t

to
ta

l
L

a
te

n
c
y
 (

n
s
)

(c) Worst-Case Latency for RANDOM

2 4 8 16 32 64
PE Count

(d) Worst-Case Latency for REAL

CMU Defl. XBAR Hoplite BFT3 Xlnx IC
Fig. 11. Impact of PE scaling on sustained rate and worst-case latency for

RANDOM and real workloads (geomean).

longer packet latencies. CMU CONNECT is a buffered NoC
and should offer higher throughputs but suffers from lower
operating frequencies as observed previously in Figure 8a. The
Xilinx AXI4-Stream Interconnect does not scale beyond 16
clients, and suffers from high contention due to single-stage
design and lower frequency.

The worst-case latency wins for the BFT under synthetic
RANDOM traffic are as large at 6× over deflection-prone
Hoplite and Xilinx AXI4-Stream interconnect while as larger
as 1.5× when compared to deflection XBAR and CMU CON-
NECT. We see a similar trend for real workloads (geomean),
where the latency gap is 1.5-2.3× smaller than other NoCs.

E. Routing Realistic Workloads

We evaluate 64 client systems running realistic FPGA ac-
celerator workloads and show sustained throughput and worst-
case latency in Figure 12. These communication traces for real
workloads have 1K–1.5M packets depending on the dataset.
We exclude Xilinx AXI4-Stream Interconnect since it does not
scale beyond 16 clients.

For Sparse Matrix-Vector Multiplication (SpMV) workload
shown in Figure 12a, our BFT NoC is able to outperform
CMU CONNECT by 2–2.35×, deflection routed XBAR by
nearly 1.2–1.5× and Hoplite by 1.8–3.2×. Graph Analytics
workloads, shown in Figure 12c, have a high degree of locality
which allows our BFT to outperform CONNECT by 1.25–2×,
deflection XBAR by 1.65-2.25×, and Hoplite by 1.7×.

We measure worst-case end-to-end latency (source queueing
+ in-flight) for routing realistic workloads. The worst-case
latency figure is scaled with the CMU CONNECT latency
as baseline. Our BFT is able to reduce worst-case latency
for SpMV workloads shown in Figure 12b by around 2.3×
over CONNECT , 1.5× over Deflection XBAR and 3× over
Hoplite. For Graph analytics, shown in Figure 12d, the latency

add20

bomhof1

bomhof2

bomhof3

dac

hamm

ram2k

0 1 2 3 4

(a) Sustained Throughput (SpMV)
0.0 0.5 1.0

(b) Relative Latency (SpMV)

amazon

google

human

roadnet

soc

stanford

wiki

0 10 20 30

(c) Sustained Throughput (Graph)
0 1 2 3 4 5

(d) Relative Latency (Graph)

Defl. XBAR CMU BFT3 Hoplite

Fig. 12. Throughput-Latency trends for REAL traffic.

wins range between 1.1-2× over CONNECT and 1.1-1.7×
over Deflection BFT. The stanford and amazon workload
graphs have extremely high locality with very little message
communication over the NoC (most messages ≈80% stay in
the same client). Hence, the routing latency observed is in the
order of a few cycles due to very light NoC injection rate.
Hoplite outperforms our BFTs for Graph analytic workloads
such as wiki, soc and human, but not on throughput as we
saw previously on Figure 12c.

F. Choosing a BFT that is best for you

Constrained by cost: Given a particular resource and power
budget, we hope to show how to select a particular BFT
topology and its associated bisection bandwidth richness. We
consider four configurations with richness varying between
a binary tree to a multi-stage crossbar. We evaluate the
NoCs under RANDOM traffic and 100% injection rate. In both
Figure 13a (area) and Figure 13b (power), we see three regions
of operation:
• In the first region below 10K LUTs (1 Watt), there is little

to distinguish between the variants in terms of throughput,
so the BFT0 topology (binary tree) is adequate.
• In the second region, between 10–20K LUTs (1 to 2.5

Watts), the BFT topology that matches the bisection band-
width of a mesh (BFT2) offers the best result.
• In the extreme case where resource costs are not a factor
> 20K LUTs (2.5 Watts), the BFT3 (multi-stage crossbar)
is best.

7

4

8

12

20K 40K 60K
LUTs

T
h

ro
u

g
h

p
u

t
(p

a
c
k
e

ts
/n

s
)

(a) Area-Throughput

0 2 4 6
Dynamic Power (W)

(b) Dynamic Power-Throughput

●

●

●

●6

8

10

1 2 3 4
Sigma

T
h

ro
u

g
h

p
u

t
(p

a
c
k
e

ts
/n

s
)

(c) Locality Analysis (N=16)

●

●

●

●
●

●
●

●

10

20

30

2 4 6 8
Sigma

(d) Locality Analysis (N=64)

BFT0 BFT1 BFT2 +BFT3

Fig. 13. Selecting the BFT that is right for you. Evaluating FPGA LUT cost
and Dynamic Power tradeoffs for different system sizes, RANDOM traffic

pattern.

Constrained by application locality: We provide further
insight by analyzing the effect of locality on topology se-
lection. For this experiment, we vary the locality parameter
SIGMA of our synthetic workloads from 1 (nearest neighbor)
to
√
N (uniform RANDOM), for a topology with system size

N. The locality parameter restricts the destination address of
a packet to lie within the SIGMA×SIGMA rectangle of the
source address. We plot observations for N=16 and N=64 in
Figure 13c and Figure 13d respectively. For nearest neighbor
style communication, all topologies perform equally well due
to little contention among packets. As packets travel larger
distances, the degree of contention in the NoC increases
and richer topologies like BFT2 and BFT3 perform better.
An important observation here is that BFT3 is matched in
performance by BFT2, suggesting that the BFT3 (multi-stage)
topology is excessive and not needed for real-world locality.

G. Analyzing BFTs with SRL FIFOs

Conventional BFT NoCs [15], [20] use buffers along the
links of the tree to hold contending packets. We wish to
evaluate the effectiveness of this approach. We have previously
quantified the effect of adding 32-deep SRL FIFOs in Table I
and concluded that they increase cost by 1.5×.

The number of pipeline stages are doubled every two levels
to account for longer wires at the top assuming an H-tree
layout. We analyze two pipeline configurations with one and
two pipeline registers at the leaf nodes used for seeding the
doubling every two levels.

Figure 14a shows sustained throughput (packets/s) as a
function of LUT utilization for two pipeline configurations:
1-1-2-2-4-4 and 2-2-4-4-8-8 for a NoC of system
size 64. We compare these configuration against our flow-
controlled BFT by injecting RANDOM traffic at 100% rate.
We observe that the buffered BFTs offer higher throughput

5

10

15

20

25K 50K 75K 100K 125K
LUTs

T
h

ro
u

g
h

p
u

t
(p

a
c
k
e

ts
/n

s
)

(a) Area-Throughput

5 10 15 20
power

(b) Power-Throughput

BFT0 BFT1 BFT2 +BFT3

1-1-2-2-4-4 1-1-1-1-1-1 2-2-4-4-8-8
Fig. 14. FPGA LUT cost and Dynamic Power tradeoffs for different NoC

configurations. 64 clients, RANDOM traffic at 100% injection rate

but at a disproportionate increase in cost. For instance, we
can slightly exceed the throughput of a Buffered BFT2 design
with a richer flow-controlled BFT3 design while needing fewer
LUT resources. This allows us to tradeoff wiring bandwidth
for improved performance. FPGA developers who wish to
further boost performance of the BFT3 design can certainly
add buffering to do so. Another observation here is that over-
pipelining the links hurts rather than helping the NoC, with the
1-1-2-2-4-4 design consuming fewer LUTs and sustaining
higher throughput.

Figure 14b captures the power-throughput tradeoffs for the
same NoC configurations. Again, we observe that the buffered
NoCs consume more dynamic power due to the increased
activity of the FIFO resources and associated link pipelines.
The buffered BFT2 is again delivering lower throughput while
consuming more power than the flow-controlled BFT3 design.

Thus, wire-rich flow-controlled BFTs offer a better alterna-
tive to buffered BFT NoCs when considering resource costs
as well as power consumption. It remains to be seen whether
these conclusions will apply to the Intel Stratix-10 Hyperflex
register fabric. It is a different cost model than the LUT-
oriented pipelining implementations explored here, and will
be studies as part of future work.

V. CONCLUSIONS

We show how to construct FPGA-friendly BFT NoCs with
lightweight flow control to deliver improved throughput, and
latency outcomes while adding in-order delivery and bounded
delivery on routing time. In contrast to contemporary FPGA
NoCs like Hoplite and CONNECT which either sacrifice
NoC features or NoC implementation cost, the BFT is able
to deliver both and offers bandwidth configurability to the
FPGA developer. We augment the BFT topology with a
lightweight latency insensitive interface, deterministic routing
policy, and round-robing arbitration to deliver the desired
features. Across a range of synthetic and realistic workloads,
our topology outperforms others by 1-6×.

RTL → https://git.uwaterloo.ca/watcag-public/bft-flow

8

https://git.uwaterloo.ca/watcag-public/bft-flow

REFERENCES

[1] M. S. Abdelfattah and V. Betz. Networks-on-chip for fpgas: Hard, soft
or mixed? ACM Trans. Reconfigurable Technol. Syst., 7(3):20:1–20:22,
Sept. 2014.

[2] A. Andreyev. Introducing data center fabric, the next-generation
facebook data center network. https://code.facebook.com/posts/
360346274145943/, 2014. [Online].

[3] A. Bouhraoua and M. Elrabaa. An efficient network-on-chip architecture
based on the fat-tree (ft) topology. In Microelectronics, 2006. ICM’06.
International Conference on, pages 28–31. IEEE, 2006.

[4] E. Caspi. Design Automation for Streaming Systems. PhD thesis,
University of California, Berkley, 2005.

[5] A. M. Caulfield et al. Configurable clouds. IEEE Micro, 37(3), 2017.
[6] A. DeHon. Compact, multilayer layout for butterfly fat-tree. In Proceed-

ings of the Twelfth Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’00, pages 206–215, New York, NY, USA, 2000.
ACM.

[7] C. Fallin, C. Craik, and O. Mutlu. Chipper: A low-complexity bufferless
deflection router. In 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, pages 144–155, Feb 2011.

[8] C. Gomez, F. Gilabert, M. E. Gomez, P. Lopez, and J. Duato. Deter-
ministic versus adaptive routing in fat-trees. In 2007 IEEE International
Parallel and Distributed Processing Symposium, pages 1–8, March 2007.

[9] C. Grecu, P. P. Pande, A. Ivanov, and R. Saleh. Structured interconnect
architecture: A solution for the non-scalability of bus-based socs. In Pro-
ceedings of the 14th ACM Great Lakes Symposium on VLSI, GLSVLSI
’04, pages 192–195, New York, NY, USA, 2004. ACM.

[10] H. Gu, J. Xu, and W. Zhang. A low-power fat tree-based optical network-
on-chip for multiprocessor system-on-chip. In 2009 Design, Automation
Test in Europe Conference Exhibition, pages 3–8, April 2009.

[11] Y. Huan and A. DeHon. FPGA optimized packet-switched NoC using
split and merge primitives. In Field-Programmable Technology, pages
47–52, Dec. 2012.

[12] N. Kapre. Deflection-routed butterfly fat trees on fpgas. In 2017 27th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), pages 1–8, Sept 2017.

[13] N. Kapre and J. Gray. Hoplite: Building austere overlay nocs for fpgas.
In 2015 25th International Conference on Field Programmable Logic
and Applications (FPL), pages 1–8, Sept 2015.

[14] N. Kapre and T. Krishna. Fasttrack: leveraging heterogeneous fpga wires
to design low-cost high-performance soft nocs. In Proceedings of the
45th Annual International Symposium on Computer Architecture, pages
739–751. IEEE Press, 2018.

[15] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson,
M. Wrighton, and A. DeHon. Packet switched vs. time multiplexed fpga
overlay networks. In 2006 14th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 205–216, April
2006.

[16] B. S. Landman and R. L. Russo. On a Pin Versus Block Relationship
For Partitions of Logic Graphs. Computers, IEEE Transactions on,
(12):1469–1479, 1971.

[17] B. Lebiednik, A. Mangal, and N. Tiwari. A survey and evaluation of
data center network topologies. arXiv preprint arXiv:1605.01701, 2016.

[18] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE transactions on Computers, 100(10):892–901,
1985.

[19] J. Mische, C. Mellwig, A. Stegmeier, M. Frieb, and T. Ungerer.
Minimally buffered deflection routing with in-order delivery in a torus.
In 2017 Eleventh IEEE/ACM International Symposium on Networks-on-
Chip (NOCS), pages 1–8, Oct 2017.

[20] M. K. Papamichael and J. C. Hoe. Connect: re-examining conventional
wisdom for designing nocs in the context of fpgas. In Proceedings of
the ACM/SIGDA international symposium on Field Programmable Gate
Arrays, pages 37–46. ACM, 2012.

[21] D. Park, Y. Xiao, N. Magnezi, and A. Dehon. Case for fast fpga
compilation using partial reconfiguration. In 2018 28th International
Conference on Field Programmable Logic and Applications (FPL),
pages 1–4, Sept 2018.

[22] S. Scott, D. Abts, J. Kim, and W. J. Dally. The blackwidow high-
radix clos network. In 33rd International Symposium on Computer
Architecture (ISCA’06), pages 16–28, June 2006.

[23] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat.
Jupiter rising: A decade of clos topologies and centralized control
in google’s datacenter network. SIGCOMM Comput. Commun. Rev.,
45(4):183–197, Aug. 2015.

[24] Z. Wang, J. Xu, X. Wu, Y. Ye, W. Zhang, M. Nikdast, X. Wang, and
Z. Wang. Floorplan optimization of fat-tree-based networks-on-chip for
chip multiprocessors. IEEE Transactions on Computers, 63(6):1446–
1459, 2014.

[25] M. Wissolik, D. Zacher, A. Torza, and B. Da. Virtex ultrascale+
hbm fpga: A revolutionary increase in memory performance. Xilinx
Whitepaper, 2017.

9

https://code.facebook.com/posts/360346274145943/
https://code.facebook.com/posts/360346274145943/

