
FX-SCORE: A Framework for Fixed-Point
Compilation of SPICE Device Models using

Gappa++
Hélène Martorell

Institut National Polytechnique de Toulouse
Toulouse, France

helene.martorell@gmail.com

Nachiket Kapre
Imperial College London

London, United Kingdom
nachiket@imperial.ac.uk

Abstract—Automated, offline precision-analysis of dataflow
computation containing elementary functions (e.g. exp) and if-
then-else control flow operations enables accurate fixed-point
FPGA implementation of SPICE device equations. We perform
interval analysis of these equations using Gappa++ to stati-
cally compare error bounds of fixed-point and double-precision
implementations. This is possible due to the limited dynamic
range of physical voltage, current and conductance quantities
in a SPICE simulation of real-world circuits. In contrast to
previous custom-precision SPICE device mappings, our fixed-
point implementation has the same accuracy as double-precision
implementation when compared to ideal arithmetic (reals). To de-
liver these implementations we develop FX-SCORE, a high-level
framework based on the SCORE streaming FPGA framework,
that automatically generates Gappa++ scripts and AutoESL
circuits to explore the cost-quality tradeoffs of FiXed-point FPGA
implementations. Using our methodology, we can determine
whether fixed-point is always better than a double-precision
implementation at the same relative error. We demonstrate 35%
geometric mean area improvement for different SPICE device
models such as Diode, Level-1 MOSFET and an Approximate
MOSFET when comparing custom fixed-point implementations
with standard double-precision realizations.

I. INTRODUCTION

FPGA-based application accelerators can outperform con-
ventional architectures e.g. multi-core CPUs, GPUs by orders
of magnitude for parallel applications that are amenable to
spatial implementation. A combination of factors explain
these speedups including pipelined, application-specific datap-
aths, concurrent access to distributed memories, and localized
movement of data over wires. FPGA performance is enhanced
if we can unroll the dataflow computation as a fully spa-
tial circuit. However, for many complex, irregular and large
problems e.g. high-performance computing (HPC) problems,
it is not always possible to fully exploit spatial parallelism
due to FPGA capacity limits. In these cases, we can explore
precision customization of the datapath circuits to deliver a
smaller spatial implementation. We can perform this tradeoff
for numerical computations where we can define and compare
the accuracy of datapath evaluation. Usually, this is achieved
through paper-pencil analysis, extensive simulations or a com-
piler optimization for simple, signal-processing applications.

New Terminal Voltages

Old Terminal Voltages

SPICE
Iteration

Finished?

Loop control
Model

Evaluation

Matrix Solve (Ax=b)

Conductances, Currents

Fig. 1: Flowchart of a SPICE Simulator

We use the Model-Evaluation phase of the SPICE circuit
simulator as a case study to demonstrate the potential for
automated precision analysis. SPICE (Simulation Program
with Integrated Circuit Emphasis) [15] is a numerical program
that is floating-point intensive and challenging to implement
on parallel hardware. It models static and dynamic analog
behavior of electronic circuits by iteratively solving non-linear,
differential circuit equations. It consists of two phases per
iteration as shown in Figure 1: Model Evaluation followed
by Matrix Solve (A~x = ~b). The Model Evaluation phase is
a data-parallel computation requiring concurrent evaluation of
different device equations to construct A and ~b. A double-
precision FPGA implementation of Model-Evaluation can be
expensive to implement on the FPGA. Hence, we investigate
the potential for fixed-point compilation of such device models
to the FPGA fabric.

Recent advances in static analysis tools such as
Gappa++ [1], [14] offer an opportunity to automate the
exploration of precision for challenging applications such
as SPICE. In contrast with other precision analysis tools
currently available, Gappa++ is able to analyze dataflow
graphs containing elementary functions e.g. exp. However,
we must still write verbose, low-level Gappa++ scripts that

1

encode the arithmetic properties we wish to analyze. This can
be tedious, error-prone and would have to be managed by
the already over-burdened hardware designer. In this paper,
we develop a high-level toolflow called FX-SCORE, based
on the SCORE [7] framework, to automatically generate
appropriate fixed-point implementations of double-precision
datapaths using Gappa++, AutoESL [3], Flopoco [4] library
and the Xilinx Coregen library. While we demonstrate this
toolflow on SPICE device models, the framework is general
and can be reused in other applications.

In this paper, we make the following contributions:
• Development of a high-level methodology for compiling

SCORE programs to low-level Gappa++ scripts for static
computation of relative error in SPICE devices.

• Compiler support for handling if-then-else control flow
operations in Gappa++ scripts.

• Design of a hardware backend that compiles SCORE
programs to AutoESL C circuits using Flopoco and
Coregen libraries for elementary functions (e.g. exp).

• Demonstration of area-error tradeoffs of using this
toolflow for devices such as Diode, Level-1 MOSFET
and Approximate MOSFET (can be extended to other
device models as well).

II. BACKGROUND

A. SPICE Simulator

SPICE simulates the dynamic analog behavior of a circuit
described by its constituent non-linear differential equations.
The circuit equations model the linear (e.g. resistors, capaci-
tors, inductors) and non-linear (e.g. diodes, transistors) behav-
ior of devices and the conservation constraints (i.e. Kirchoff’s
current laws—KCL) at the different nodes and branches of
the circuit. SPICE solves the non-linear circuit equations
by alternately computing small-signal linear operating-point
approximations for the non-linear elements and solving the
resulting system of linear equations until it reaches a quiescent
operating point. In the Model-Evaluation phase, the simu-
lator computes conductances and currents through different
elements of the circuit and updates corresponding entries in
the matrix with those values.

B. Non-Linear Models

In this paper, we focus on three devices to illustrate the
impact of precision analysis. Each of these examples allows
us to illustrate unique cases for the use of FX-SCORE in
customizing precision for hardware implementation. We show
range-limited I-V characteristics of these devices in Figure 2.
• Diode A diode is a simple two-terminal non-linear device

modeled in SPICE. We represent the current and con-
ductance expressions for a simplified diode as shown in
Table I. The equation for diode current and conductance
contains the exp elementary function which is expensive
to implement on an FPGA (See Table IV. Can precision
analysis of equations with elementary functions help reduce
implementation cost?

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

D
io

d
e

 O
u

tp
u

ts

Diode Voltage

vj=2.58642e-2 isat=10
-3

I
G

(a) Diode

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 4.5e-05

 5e-05

 5.5e-05

 0 0.2 0.4 0.6 0.8 1
D

ra
in

 C
u

rr
e

n
t

Drain Voltage

a=12 b=16
-3

 vt=0.4 vg=0.7 vs=0

level1
approx1
approx2

(b) MOSFET

Fig. 2: I-V Characteristics of different devices
• Level-1 Schichman-Hodges MOSFET Model The Level-

1 MOSFET model is the simplest transistor model avail-
able in SPICE. We show expression for drain current and
gate-drain conductance in Table I. This model contains
conditional control flow operations in the form of if-then-
else statements. We suggest an approach for handling these
statements later in Section III-C. The operating regions of
the transistor, in each branch, are valid over different input
ranges which can offer an opportunity for precision cus-
tomization. Can we customize the precision of each branch
of the IF-statement to improve FPGA area requirements
compared to a homogeneous-precision implementation?
• Approximate MOSFET Model For many circuit simula-
tions, it is important to obtain proper subthreshold current
characteristics that are not captured in the Level-1 model.
We may choose a simple approximate model from IBM
that delivers this behavior with few operations. This model
contains two log and exp operations for each current,
as shown in Table I, that are valid over a small input
range. As we scale to finer geometries we need to start
enhancing SPICE device equations with models of extra
physical effects. What is the cost of modeling subthreshold
effects in this manner when implemented in fixed-point?

C. SCORE Framework

SCORE [2], [7] is a high-level system architecture that
is well-suited for high-performance FPGA implementation of
SPICE device models as well as other parallel, streaming
computations. A SCORE program consists of a graph of
operators (compute) and segments (memory) linked to each

Device Equations
Diode I = isat × (expV/vj −1)

G = isat × exp(V/vj) /vj
Level-1 if (V gs < vt)
MOSFET Id = 0
(level1) elseif (V ds > V gs− vt)

Id = b× (V gs− vt)2 /2
else
Id = b× (V gs− vt− (V ds/2))× V ds

Approximate term1 = log(1 + expa(V gs−vt)) /a

MOSFET term2 = log(1 + expa(V gd−vt)) /a
(approx1) Id = b× (term2

1 − term2
2)/2

Approximate term1 = (V gs− vt > 0)? (V gs− vt) : 0
MOSFET term2 = (V gd− vt > 0)? (V gd− vt) : 0
(approx2) Id = b× (term2

1 − term2
2)/2

TABLE I: SPICE Device Equations

other via streams (interconnect). Streams provide point-to-
point communication and are realized as single-source, single-
sink FIFO queues of unbounded length. For SPICE devices,
non-linear device is a streaming operator with voltage
inputs and conductance and current outputs.

D. Gappa++

Gappa [1] and Gappa++ [14] are proof assistants that
enables static analysis of arithmetic properties of numerical
programs. Gappa performs interval analysis of numerical
programs and can bound intervals of numerical variables
by providing intervals on inputs and/or outputs. It can also
compute absolute and relative error in different implementa-
tions. We pick Gappa++ instead of other tools (e.g. System
Generator) because it supports elementary functions that are
present in SPICE device models. Gappa++ [14] has been
used to compare CPU, FPGA and GPU implementations of
some example programs using low-level Gappa++ scripting
and manual implementation on each target. Our approach
automates the manual creation of verbose Gappa++ scripts and
also generates FPGA implementations from the same high-
level description of computation.

E. Previous Work

In Table II, we list previous attempts at implement-
ing SPICE phases in parallel hardware. AWSIM [13] and
TINA [17] implement device evaluation using TBMA approx-
imation [12] (table-lookup with interpolation) with a permis-
sible error tolerance (1% relative error for currents down to
10−11A compared to nominal double-precision implementa-
tion on Sun-3/60). Our approach avoids any accuracy tradeoffs
and delivers the same quality as double-precision implemen-
tation of the device models. If required, we can easily adapt
our approach to deliver even cheaper implementations at lower
accuracy. In [18], a fixed-point, table-lookup implementation
(without interpolation) is used to implement a circuit-specific
simulation accelerator without reporting accuracy tradeoffs.
In [6], a transformed and discretized macromodel of device
equations is implemented on the FPGA in fixed-point arith-
metic with no quality comparisons with traditional SPICE
simulation. SILCA [20] performs a combination of piecewise
weakly non-linear (PWNL) approximation of device evalu-
ation and chordal conductance approximation, among other

Ref. Name Key Idea Hardware Accuracy Tradeoff
[13] AWSIM-3 Compiled-

Code VLIW
Custom
prototype

1% rel.
error
(10−11A)

Table-
lookup

[17] TINA Based on
AWSIM-3

23 Xilinx
XC4005
chips

1% rel.
error
(10−11A)

Table-
lookup

[18] - Partial-
evaluation

Altera
Flex10K

not
reported

Fixed-
point

[6] SPO Analytical
Transform

Xilinx
Spartan 3

not
reported

Fixed-
point

[20] SILCA Approximation - SPICE-
like (not
precise)

PWNL,
etc

[9] Nascentric Data-
parallelism

NVIDIA
8800 GTS

4.8×10−5

rel. error
Single-
Precision

[10] SPICE2 Custom-
VLIW

Xilinx V6
lX760

Same as
spice

Double-
Precision

TABLE II: Parallel SPICE Approaches with
Precision/Accuracy Tradeoffs

transformations, to deliver “SPICE-like” accuracy of the over-
all simulation. We have a more precise definition of accuracy
and deliver the same accuracy as that of a double-precision
Model-Evaluation implementation. Nascentric [9] implements
device evaluation on single-precision NVIDIA GPU with a
large relative error of 4.8×10−5, compared to double-precision
CPU, across few benchmark simulations. We compute relative
error with reference to ideal arithmetic using static analysis.
In [10], a resource-shared FPGA implementation of the SPICE
device models delivers 6.5× speedup across different device
models when implemented in double-precision arithmetic. We
hope to lower the implementation precision to avoid resource
sharing on the FPGA fabric.

III. PRECISION-ANALYSIS OF SPICE DEVICE MODELS

In this section, we describe how we use FX-SCORE and
Gappa++ to perform precision analysis of SPICE devices.

A. Accuracy

Both fixed-point and double-precision implementations of
computation can have error due to rounding. Rounding errors
are introduced due to insufficient precision to represent a
number (e.g. 1

3 = 0.333 . . .). We can bound these errors
through exhaustive simulations of our numerical programs.
This is intractable for SPICE device models (e.g. multiple
64-bit inputs). Instead, we use Gappa++ to statically analyze
error bounds on the outputs of the device models. Gappa++
can allow us to examine two kinds of errors. Absolute error,
shown in Equation 1, (1) is the difference between the given
and reference values while Relative error, shown in Equation 2,
(2) is Absolute error scaled with the reference value. We
compare relative error of alternative implementations instead
of absolute error since we have small, but non-trivial dynamic
ranges for our physical variables. We perform a sweep of
different precisions and pick one that provides the same or
lower relative error than the double-precision implementation
(See Equation 3).

ABSERRprecision(f) = (fprecision − fideal) (1)

RELERRprecision(f) = (fprecision − fideal)/fideal (2)

RELERRfixed−point(f) ≤ RELERRieee double(f) (3)

B. High-Level FX-SCORE Framework

We extend the open-source SCORE framework [11] with
two new code-generation backends, one for Gappa++ and
another for AutoESL. We also add language support for spec-
ifying input stream intervals in SCORE syntax. The intervals
are propagated to Gappa++ for computation of relative error.
SCORE already supports custom bitwidth types which are
provided to AutoESL for hardware generation. As Gappa++
does not naturally support if-then-else statements, we devise
a simple strategy described later in Section III-C.

We can better understand the mechanics of the FX-SCORE
framework through an example. We show how the framework
compiles a SCORE diode description into Gappa++ scripts
and AutoESL C code.

SCORE Code: In Listing 1, we observe that the SCORE
description of the diode consists of two main parts: (1) SCORE
operator definition which lists all inputs (voltage) and
outputs (only showing current for simplicity) with optional
interval information (Line 2–3 in Listing 1), and (2) SCORE
operator body which captures the dataflow description of the
computation into individual states (Line 4–5 in Listing 1). For
SPICE device models, we can also specify instance-specific
device constants (e.g. a, b, c, vj , vt and isat parameters
from Table I) using SCORE param type (not shown in
listing). These values are encoded as constants for Gappa++
and AutoESL. When generating code, we must be careful
to note that while Gappa++ fixed-point representation only
requires the LSB weight (i.e. fraction bits), AutoESL requires
specification of both LSB and MSB weights (i.e. integer bits
and fraction bits)

Gappa++ Script: In Listing 2, the Gappa++ script contains
three main parts: (1) expression of computation under real
(m), double (dbl) and fixed-point (fx) versions (Line 3–5
in Listing 2), (2) specification of intervals for the variables
(Line 7–8 in Listing 2), and (3) questions about the relative
error between double-ideal and fixed-ideal implementations
(Line 9–10 in Listing 2). In (2), we must also specify a
bound on the smallest output quantity required which in the
example is machine ε for double-precision numbers. It is clear
that writing these low-level Gappa++ scripts can be easily
avoidable with automation.

AutoESL C: In Listing 3, the AutoESL C code contains
three parts: (1) ap_fixed data-type specification of fixed-
point format (Line 1), (2) function with inputs and outputs
(passed as a pointer like in CUDA [16]) that match the
streaming SCORE operator (Line 2), and (3) function body
with dataflow expression for output (Line 4). We also use
AutoESL for floating-point mapping by replacing ap_fixed
type with double.

1diode(
2input double v [1e-7,0.1],
3output double i) {
4state dfg(v):
5i = isat*(exp(v/vj)-1);
6}

Listing 1: SCORE (User input)

1@fx = fixed<-32,ne>;
2@dbl = float<ieee_64,ne>;
3i_m = isat_m*(exp(v_m/vj_m)-1);
4i_dbl dbl = isat_dbl*(exp(v_dbl/vj_dbl)-1);
5i_fx fx = isat_fx*(exp(v_fx/vj_fx)-1);
6{
7v in [1e-7,0.1] /\
8|i_m| >= 0x1p-53 ->
9(i_dbl-i_m)/i_m in ? /\
10(i_fx-i_m)/i_m in ?
11}

Listing 2: Gappa++ (Auto-Generated)

1typedef ap_fixed<32,8> data_t;
2void diode(data_t v, data_t *i)
3{
4*i = isat*(exp(v/vj)-1);
5}

Listing 3: AutoESL (Auto-Generated)

TABLE III: Code Listings for Diode Current

1y_1 = (cond_1)*option_1 + (1-cond_1)*option_2
2y_2 = (cond_2)*option_1 + (1-cond_2)*option_2
3{
4(cond_1 in [0,0] \/ cond_1 in [1,1]) /\
5(cond_2 in [0,1])
6->
7y_1 in ? /\
8y_2 in ?
9}

Listing 4: Solution for IF-statement in Gappa++

C. IF-statement handling

Gappa++ does not naturally support expression of if-then-
else type statements. For SPICE Level-1 equations as shown
in Table I, we must specify drain current in three operating
regions separately and combine them based on drain-source
voltage. To support this, we construct a formulation shown
in Listing 4. We then rewrite the if-then-else construct as a
binary select operator. We then assign integer 0,1 constraints
to the condition variable to capture its boolean behavior.
We experimented with mutually exclusive range constraints
([0, 0] or [1, 1]) and inclusive range constraints ([0, 1]). We
observed that we consistently got tighter results with the mu-
tually exclusive range constraints at the expense of additional
exploration time by Gappa++. We realize that for complex
dataflow computations with multiple IFs, Gappa++ will have
to exhaustively explore 2N range permutations for the N
condition variables. For the examples in this paper, we report
the tighter error measurements.

IV. EXPERIMENTAL SETUP

In Figure 3, we show the compilation flow for using the
FX-SCORE framework for mapping SPICE Device Equations
to fixed-point circuits.

The SCORE compiler accepts range-annotated input de-
scriptions of device equation computations. It performs simple
optimizations such as constant-folding and strength-reduction
to simplify certain operations (e.g. divide by constant vj gets
converted into multiplication with its inverse). We supply input
ranges to the SPICE physical voltage quantities from realistic
SPICE circuit simulations of CMOS digital circuits. For the
diode, we constrain the input voltage to 10−6V→ 0.1V. This
ensures the output currents stay within reasonable physical
limits (e.g. V=1 results in an I=6.8 · 1013. This also captures
the behavior of the SPICE lim exp (limited exponential)
function that avoids runaway outputs of resulting current and
conductance values. For the transistor circuits, we separately
constrain drain voltage to 1.9V→ 2.1V (pullup transistor
topology) and source voltage to 10−6V→ 0.1V (pulldown
transistor topology). Gate voltages can go between these two
extremes. We constrain drain and source voltages to tight
intervals based on expected usage scenario in a digital CMOS
circuit. For both pullup and pulldown cases, we observe
similar error behavior. We do range sensitivity analysis later in
Section V-A. We also limit supplied input precision to double-
precision for all implementations. This is because the Model-
Evaluation phase of SPICE operates in tandem with Matrix-
Solve phase which is implemented in double-precision. This
constraint may be lifted as part of future work.

We explore different fixed-point bitwidths to generate rela-
tive error information and choose the minimum implementa-
tion bitwidth accordingly. Our framework currently supports
homogeneous fixed-point representation. However, for certain
examples, we modify the generated Gappa++ and AutoESL
programs to support hybrid precision implementations. While
SCORE can generate spatial fixed-point Verilog circuits, we
use AutoESL because of its floating-point operator support.
For the hardware implementation, we tabulate the resource
costs of double-precision operators in Table IV. We use
Flopoco to support custom exp and log operators in fixed-
point implementations. The number format used in these
functions is custom floating-point with exponent fixed to 8
bits. While the simulation ranges can be accommodated with
even fewer exponent bits, we are constrained by Flopoco’s to
a minimum of 8 exponent bits. We also supply appropriate
number format conversion wrappers around these cores with
the help of Coregen. These cores are limited to a maximum
of 64 fraction bits. We also replace the fixed-point divider
core generated by AutoESL with Coregen-supplied fixed-
point divider due to AutoESL’s pessimistic integer bitwidth
calculation. These in turn are limited to 54 bits of fraction
bits. The bitwidth limits of the hardware cores constrain our
experimental data to a limited range of possibilities. However,
we are still able to deliver same relative error implementations
with hybrid precision implementations.

GAPPA++
Code-Generator

AutoESL
Code-Generator

Flopoco/Coregen
Library

Relative Error

Physical
Ranges

SPICE
Devices SCORE

Compiler

FX-SCORE
Framework

FPGA Mapping
(Area, Clock)

Fig. 3: FX-SCORE Flow
Operator Area Latency Speed Ref.

Slices DSP RAM clocks MHz
Multiply 238 10 0 10 308 [19]
Add 360 3 0 8 370 [19]
Divide 1896 0 0 57 190 [19]
Exponential 841 0 5 36 172 [5]
Logarithm 934 0 12 40 109 [8]

TABLE IV: Double-Precision Cost Model (V6LX760)

V. EVALUATION

In this section, we show the error and area results of static
analysis of SPICE device equations using FX-SCORE.

A. Impact of Range on Error

The exact value of relative error in the computation will
depend on the tightness of the input range. In Figure 4, we
show the impact of changing the upper limit of the input
voltage range on the relative error in the current I of the
diode (10−3 → 101]) where the lower limit is set to 10−6.
We observe that relative error at a given precision increases
as we increase the upper limit of the input range. This is
expected as a wider range will require more bits to represent
correctly. At 48-bit precision, the fixed-point implementation
error is much larger than the nominal double-precision error
for all range combinations. However, as we increase this to
72-bit, we are able to meet or do better than double-precision
across all range combinations. When we limit the upper range
to under 10−1V, we observe that the double-precision error
is now larger than the 72-bit fixed-point error. This confirms
that we need to reasonably bound the input range to achieve
narrower bitwidths.

B. Impact of Precision on Error

We now investigate the impact of changing precision of the
datapath on the relative error of the different device models as
shown in Figure 5. We are interested in using this precision
sweep to identify the smallest fixed-point precision (crossover

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
e
la

ti
v
e
 E

rr
o
r

V (Upper-Limit)

I-double
I-72
I-48

Fig. 4: Impact of Input Range on Diode I Equation

precision) that matches or does better than the relative error
of double-precision implementation.

For the diode, shown in Figure 5(a), we observe that the
current (I) and conductance (G) error scaling trends are very
similar and decrease monotonically as we increase fixed-point
bitwidth. The crossover precision for both quantities is at 72-
bits. We do not observe any further improvement in error at
higher fixed-point precisions as we consider voltage inputs to
be available in double-precision for all implementations.

For the Level-1 MOSFET trends in Figure 5(b), we no-
tice similar improvement in error as we increase fixed-point
bitwidth. We analyze precision requirements of the linear and
saturation region separately. We observe that the fixed-double
crossover is at 60 bits for the saturation region and at 70
bits for the linear region. This difference can be explained
by counting operations in each branch, the saturation region
only requires one multiplication and a subtraction while the
linear region requires two subtractions and a multiplication.
This hybrid precision assignment may potentially offer an
opportunity to save FPGA area.

Finally, we consider the error scaling trends for the two
Approximate MOSFET implementations in Figure 5(c). We
observe that the approximation with subthreshold behavior
exhibits larger relative error and has a crossover bitwidth of
96 bits. As expected, the less-accurate, simpler approximation
without subthreshold behavior has smaller relative error and
a crossover bitwidth of 72 bits. We attribute this difference
due to the simplicity of operations in the second approxima-
tion, two multiplications and three subtractions. In contrast,
subthreshold modeling requires the presence of elementary
functions like exp and log.

C. Impact of Precision on FPGA Implementation

Next, we evaluate the impact of precision on the FPGA re-
source requirement of different SPICE device models together
with relative error. We are primarily interested in identifying
FPGA resource costs at the crossover bitwidth. We show the
area-error trends for the different devices in Figure 6 and
tabulate FPGA implementations details in Table V.

For the diode implementation, shown in Figure 6(a), we
observe that area scaling data is only available up to 64 bits
due to core generation limitations. We build a hybrid precision
64-72 bit implementation to deliver better relative error than
the reference double-precision implementation. In this case,
only the portion of the dataflow expression following the exp
function is implemented in 72-bit hardware. Unfortunately,
our hybrid fixed-point implementation requires 10% more area
than the reference double-precision mapping. This is because
total area is dominated by exp operator and the associated
format conversion wrappers.

The Level-1 MOSFET without elementary functions shows
more promise. In Figure 6(b), we observe that the fixed-point
implementation at the crossover bitwidth of 72 bits is 70%
smaller than the reference double-precision implementation.
A hybrid precision implementation is possible where we
customize the precision in each branch at 60 bits (saturation)

10
-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

 8 16 32 64 128

R
e

la
ti
v
e

 E
rr

o
r

Precision

I-fixed

I-double

G-fixed

G-double

(a) Diode

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

 8 16 32 48 60 70 96 128
R

e
la

ti
v
e

 E
rr

o
r

Precision

only-linear-fixed
only-saturation-fixed

all-regions-fixed
all-regions-double

(b) Level-1 MOSFET

10
-15

10
-10

10
-5

10
0

10
5

 8 16 32 64 72 96 128

R
e

la
ti
v
e

 E
rr

o
r

Precision

approx1-fixed
approx1-double

approx2-fixed
approx2-double

(c) Approximate MOSFET

Fig. 5: Gappa++ Error for different devices

and 70 bits (linear). This implementation is able to surpass
the reference double-precision implementation by 3.3×. Since
we have a common subexpression Vgs − Vt between the two
branches, AutoESL is able to resource-share and reduce the
area of the hardware implementations.

For the Approximate MOSFET implementation with sub-
threshold effects, shown in Figure 6(c), we observe that we
are again limited by the expensive hardware implementations
of the exp and log operators. Due to core generation limits,
we can only generate hardware up to 64 bits. We develop
a hybrid-precision implementation that keeps the exp and
log operators at 64 bits while increasing the precision of
the downstream operations to the crossover bitwidth of 96.
We used Gappa++ to certify that this hybrid implementation
had better relative error than the reference double-precision
mapping. Our hybrid implementation is 40% larger than the

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 32 48 52 64 72 96 128
 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000
R

e
la

ti
v
e
 E

rr
o
r

F
P

G
A

 A
re

a

Precision

64-72 hybrid

fxerr
dblerr

fxarea
dblarea

(a) Diode

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

 32 48 52 64 72 96 128

 0

 1000

 2000

 3000

 4000

 5000

R
e
la

ti
v
e
 E

rr
o
r

F
P

G
A

 A
re

a

Precision

64-72 hybrid

fxerr
dblerr

fxarea
dblarea

(b) Level-1 MOSFET

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 32 48 52 64 72 96 128

 2000

 3000

 4000

 5000

 6000

 7000

 8000

R
e
la

ti
v
e
 E

rr
o
r

F
P

G
A

 A
re

a

Precision

64-96 hybrid

fxerr
dblerr

fxarea
dblarea

(c) Approximate MOSFET

Fig. 6: Gappa++ Area-Error Trends for different devices

double-precision mapping. We later show in Table V, that
the fixed-point implementation of the simpler approximate
MOSFET delivers an area benefit of 60% at the smaller
crossover bitwidth of 72.

In Table V, we note that the AutoESL clock period for
the fixed-point mappings is relatively high. The timing report
suggests a insufficient pipelining of DSP48 chains for high
bitwidths multipliers. We also report that the Gappa++ run-
times for all our device models is less than a one second.

VI. DISCUSSION

In Figure 7, we show the Area-Error tradeoffs for the
different device models. The FX-SCORE framework can allow
the hardware developer to explore the entire range of Area-
Error tradeoffs when designing and composing the hardware

system. We deliver fixed-point implementations of all device
models with relative error that is better than reference double-
precision implementations. For the Level-1 MOSFET and
Approximate MOSFET (approx2), we were able to deliver
area improvements when compared to the double-precision
mapping due to simpler operations and hybrid-precision tuning
of different IF-statement branches. This was not possible in
the case of Diode and Approximate MOSFET (approx1) due
to the overheads of expensive implementations of elementary
functions exp and log. Of course, we can lower evaluation
accuracy to achieve better area.

In Figure 8, we show the normalized throughput possible on
a Xilinx V6LX760 by tiling multiple instances of the differ-
ent device implementations to fit 118560 slices. Normalized
throughput is the number of device evaluations per unit time
across multiple tiles (118560

SLICE ×
1

Tclk
). We show significantly

improved throughput compared to a resource-shared VLIW
implementation from [10]. Under ideal pipelining of fixed-
point multiplier DSP chains, our fixed-point devices are able
to outperform double-precision Level-1 MOSFET and Ap-
proximate MOSFET (approx2) implementations by 3.4× and
3.8× respectively. For the Diode and Approximate MOSFET
(approx1) our implementation has 10% less throughput in
both cases.

Can precision analysis of equations with elementary func-
tions help reduce implementation cost? For our examples,
we have to revert to double-precision mapping of devices
with exp and log operators. The large dynamic ranges
around these operators (especially subthreshold currents down
to [10−12 : 10−6]A) makes it difficult for purely fixed-point
mappings to surpass double-precision implementations.

Can we customize the precision of each branch of the IF-
statement to improve FPGA area requirements compared to
a homogeneous-precision implementation? For the Level-1
MOSFET, we were able to tune the precision of each branch
to further improve area reduction from 1.7× to 3.3× when
compared to a double-precision mapping. This translates into
a saving of 1.9× compared to the homogeneous case.

What is the cost of modeling subthreshold effects when im-
plemented in fixed-point? Modeling of subthreshold MOSFET
effects results in variables with a large dynamic ranges. This
coupled with the presence of elementary functions makes it
expensive to model on FPGAs. For fixed-point processing we
pay an overhead of 7× while for double-precision we pay an
overhead of 3× (see Table V).

Larger device models with different distributions of arith-
metic operators can potentially deliver better results than
the small diode and approx1 examples. We also expect
better support for smaller exponent bitwidths in the exp and
log operators to further reduce area required. For timing,
better pipelining of inter-DSP interconnect by the tools or
substitution with pipelined fixed-point multipliers can deliver
better results. A quick experiment with Flopoco’s [4] 70-
bit integer multiplier suggests that a Tclk = 2.5ns is easily
achievable.

SPICE Relative Double-Precision Bitwidth Fixed-Point Area Gappa++
Device Error (I) SLICE DSP RAM Tclk Ideal Feasible SLICE DSP RAM Tclk Saving Runtime
diode 1.6 · 10−11 1258 22 10 3.5 72 64-72 1386 68 5 8.5 0.9 0.6s
level1 9 · 10−16 1745 17 0 3.8 72 72 1002 108 0 10.2 1.7 0.7s
level1hybrid 9 · 10−16 - - - - - 60-70 515 49 0 8.4 3.3 0.7s
level1linear 8.9 · 10−16 737 17 0 3.5 72 72 493 54 0 8.9 1.4 0.5s
level1satur. 6.1 · 10−16 1473 17 0 3.5 64 64 403 33 0 8.8 3.6 0.5s
approx1 2.9 · 10−14 4840 78 70 4.4 96 64-96 6722 210 42 10.2 0.7 0.8s
approx2 8.8 · 10−16 1604 34 0 3.5 72 72 950 68 0 9 1.6 1s

TABLE V: Comparing different FPGA Implementations of SPICE devices (Tclk in ns)

Fig. 7: Error-vs-Area for different devices

 0.1

 1

 10

 100

diode level1 approx1 approx2

N
o
rm

a
liz

e
d
 T

h
ro

u
g
p
u
t

Device

vliw
double

fixed
fixed-pipe

Fig. 8: FPGA Throughput for different devices

VII. CONCLUSIONS

The FX-SCORE framework delivers a ≈ 1.35× geomean
(0.7–3.3×) area reduction for custom fixed-point implementa-
tion of SPICE device models when compared to the reference
double-precision implementations with same or better relative
error. We are able to provide this analysis by compiling
parallel SCORE descriptions of the devices into low-level
Gappa++ scripts for evaluating relative error and AutoESL cir-
cuits for estimating FPGA implementation costs. For devices
dominated by exp and log operations such as Diode and
Approximate MOSFET (with subthreshold effects), our fixed-
point mappings presently cannot offer efficient alternatives
to double-precision implementations. However, for the Level-
1 MOSFET and Approximate MOSFET (no subthreshold
effects), our fixed-point mappings provided up to 3.3× area
reductions. In the future, we expect this framework to enable
us to deliver a complete application-level fixed-point analysis
and area-error tradeoffs for complex applications like SPICE.

VIII. APPENDIX

The tools used in this study are open-source and available
for download online [11]. We would like to thank Eylon Caspi,
André DeHon, Michael Linderman and Kuen Hung Tsoi.

REFERENCES

[1] S. Boldo, J. Filliâtre, and G. Melquiond. Combining Coq and Gappa for
certifying floating-point programs. Intelligent Computer Mathematics,
pages 59–74, 2009.

[2] E. Caspi. Design Automation for Streaming Systems. Phd, University
of California, Berkeley, 2005.

[3] J. Cong, B. Liu, S. Neuendorffer, and J. Noguera. High-Level Synthesis
for FPGAs: From Prototyping to Deployment. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 30(4):473–
491, 2011.

[4] F. de Dinechin. FloPoCo, 2011.
[5] F. De Dinechin and B. Pasca. Floating-point exponential functions

for DSP-enabled FPGAs. In International Conference on Field-
Programmable Technology, pages 110–117. IEEE, 2010.

[6] B. Deepaksubramanyan, P. Parakh, Zhenhua Chen, H. Diab, D. Marcy,
and F. Schlereth. An FPGA-based MOS circuit simulator. In 48th
Midwest Symposium on Circuits and Systems, pages 655–658 Vol. 1,
2005.

[7] A. Dehon, Y. Markovsky, E. Caspi, M. Chu, R. Huang, S. Perissakis,
L. Pozzi, J. Yeh, and J. Wawrzynek. Stream computations orga-
nized for reconfigurable execution. Microprocessors and Microsystems,
30(6):334–354, Sept. 2006.

[8] J. Detrey, F. De Dinechin, and X. Pujol. Return of the hardware floating-
point elementary function. In IEEE Symposium on Computer Arithmetic,
pages 161–168. IEEE, 2007.

[9] K. Gulati, J. F. Croix, S. P. Khatri, and R. Shastry. Fast circuit
simulation on graphics processing units. In Asia and South Pacific
Design Automation Conference, pages 403–408, 2009.

[10] N. Kapre. SPICE2 - A Spatial Parallel Architecture for Accelerating
the SPICE Circuit Simulator. Phd, California Institute of Technology,
2010.

[11] N. Kapre, E. Caspi, and A. DeHon. SCORE. https://github.com/nachiket/
tdfc, 2011.

[12] D. Lewis. Device model approximation using 2N trees. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
9(1):30–38, 1990.

[13] D. Lewis. A compiled-code hardware accelerator for circuit simulation.
In IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pages 555 – 565, 1992.

[14] M. Linderman, M. Ho, D. Dill, T. Meng, and G. Nolan. Towards
program optimization through automated analysis of numerical preci-
sion. In IEEE/ACM international symposium on Code Generation and
Optimization, pages 230–237, New York, New York, USA, 2010. ACM.

[15] L. W. Nagel. SPICE2: A Computer Program to Simulate Semiconductor
Circuits. PhD thesis, University of California Berkeley, 1975.

[16] NVIDIA. Nvidia CUDA C Programming Guide. NVIDIA, 2011.
[17] M. van Ierssel. Circuit Simulation on a Field Programmable Accelerator.

PhD thesis, University of Toronto, 1995.
[18] Q. Wang and D. M. Lewis. Automated Field-Programmable Compute

Accelerator Design Using Partial Evaluation. In IEEE Symposium on
FPGAs for Custom Computing Machines, pages 145 – 154, Napa Valley,
1997.

[19] Xilinx. LogiCORE IP Floating-Point Operator v6.0. Technical report,
Xilinx, 2011.

[20] Zhao Li and C.-J. Shi. SILCA: SPICE-accurate iterative linear-centric
analysis for efficient time-domain Simulation of VLSI circuits with
strong parasitic couplings. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 25(6):1087–1103, 2006.

https://github.com/nachiket/tdfc
https://github.com/nachiket/tdfc

