
GraphNoC: Graph Neural Networks for
Application-Specific FPGA NoC Performance

Prediction
Gurshaant Malik

University of Waterloo, Canada
gsmalik@uwaterloo.ca

Nachiket Kapre
University of Waterloo, Canada

nachiket@uwaterloo.ca

Abstract—We can democratize design of FPGA Network-
on-Chips by replacing slow and expensive conventional NoC
benchmarking tools with highly accurate and fast Graph Neural
Networks based models. FPGA reconfigurability allows for tuning
and designing of NoCs specific to the application being imple-
mented on the FPGA, a facility not afforded to ASIC NoCs. How-
ever, such application-specific NoC designs can require thousands
of incremental updates and customization to the NoC design,
with each resulting NoC configuration needing benchmarking for
packet performance to guide the design process. Additionally,
each of these benchmark runs can take up to minutes with
conventional tools like RTL simulation for modest packet trace
lengths. As a result, tuning and design of a NoC even for a
single FPGA application can last up to days, presenting a critical
bottleneck to developer efficiency and iteration speed. We address
this by presenting a framework to encode any FPGA NoC and
any FPGA application traffic into graphs, called GraphNoC.
We create a dataset of these graphs, comprising of different
FPGA NoCs and applications. We use this dataset to train
GNNs, including foundation models, to predict NoC routing
latencies that can accelerate benchmarking run-times by up to
148× (506× using GPU) with prediction top-20 accuracies up
to 97.2%. We also show these GNNs can accelerate end-to-end
FPGA application-specific NoC design by up to 4.3× (37× using
GPU) while regressing final NoC latency by only 30 cycles.

I. INTRODUCTION

Design of Network-on-Chips (NoCs) has become a critical
component in the success of increasingly complex applications
on FPGAs and ASICs. With the ending of Moore’s Law [1],
application implementations have seen a shift towards pro-
gressively modular sub-systems [2], [3] and exotic data flow
patterns [4]–[6]. NoCs have risen in prominence as a scalable
and resource-efficient interconnect to meet an application’s
bandwidth requirement by supporting the intense and non-
deterministic movement of data packets between these sub-
systems. NoCs now find a prominent place in ASIC and FPGA
designs running State-of-the-Art applications around Machine
Learning [7], Neuromorphics [8], [9], Autonomous Driving
[10]. This means that design of NoCs to meet these varying
workload patterns is now an important engineering challenge.

FPGA NoCs provide a shared interconnect for communica-
tion between endpoints of the application being implemented
on the programmable logic of the FPGA. Unlike ASIC NoCs,
FPGAs’ reconfigurability can be leveraged to design and tune
low-cost and highly performant NoCs specific to the applica-
tion being implemented. However, design of these application-
specific FPGA NoCs will be significantly more time consum-

ing than traditional ASIC NoCs as we must choose various
NoC parameters [11], [12] such as switches, buffer depths,
regulator rates, to best match them for the FPGA application
being implemented. Design and performance optimization of
these NoC parameters can take days of simulation and explo-
ration, with each exploration step requiring computationally
expensive FPGA RTL simulations lasting tens of minutes [13]
for even modest packet traces. In a quest to remove this
bottleneck in the design of application-specific FPGA NoCs
and super-charge the harnessing of FPGA reconfigurability,
quick and accurate performance benchmarking of NoCs can
play a key role by significantly reducing these expensive time
and computational investments.

Current work around alternatives to RTL simulations for
NoC performance prediction can be broadly grouped into 2
categories: 1) Analytical models and 2) Machine Learning
models. Analytical models are tightly coupled to the specific
FPGA NoC’s architecture and cannot be easily applied to other
NoCs. For example, the HopliteBuf analysis tool [11], [12],
[14] only works for FIFO and backpressure based Hoplite
routers. NoC designs like the Backpressure based Butterfly
Fat Trees (BFTs) [15] and HopliteRT [16] provide a provable
upper bound on worst case FPGA routing latencies. But these
bounds are exclusively a function of the NoC architecture
only and not the application being routed. On the other hand,
machine learning based models, enabled by the capacity of
deep neural networks to learn non-linear vector mappings,
can generalise better to a wide variety of NoC architecture
and applications. However most of these models are based on
conventional neural network layers like MLPs and Convolu-
tions. Thus, they can only ingest highly structured euclidean
data [17], [18], in turn limiting their application to only highly
regular NoC topologies like meshes and tori.

To conclude, RTL simulations are accurate and general-
isable but slow and expensive. Analytical models are faster
but tied to a specific NoC design and do not usually take
FPGA applications into account. Conventional machine learn-
ing based techniques are fastest but not generalisable to NoC
architectures with irregular topologies. In this paper, we aim
to democratize and accelerate design of application-specific
FPGA NoCs by introducing a Graph Neural Network (GNN)
based NoC benchmarking framework that combines the best of
RTL simulations, analytical models and conventional machine
learning based models into a single design: 1) Highly accurate

NoC performance estimates, 2) Support wide variety of NoC
architectures and topologies, and 3) Fast run-time. Our frame-
work can encode any FPGA NoC (regardless of its topology
or architecture) and any FPGA application’s traffic into graphs
and leverage GNN [19] based models to accurately and quickly
predict the NoC’s routing latencies for that particular FPGA
application. The key contributions of our work include:
• Framework to encode any FPGA NoC (regardless of topol-

ogy/architecture) and any FPGA application into graphs,
compatible with both soft [14], [15] and hard NoCs [20].

• Creating a dataset to train GNN models, including multi-
modal foundation models, to predict performance of FPGA
NoCs for a given FPGA application. It consists of over 1.5
million samples of FPGA NoCs (HopliteBuf/BP, BFT) and
their ground-truth performance on over 200 synthetic and
real-world FPGA applications.

• Quantification of trained GNNs on FPGA NoCs: Up to
97.2% top-20 accuracy for HopliteBuf/BP NoCs while
being up to ≈148× (≈506× on GPU) faster than RTL
simulations for BFT NoCs. As a result of this quick and ac-
curate NoC benchmarking, application-specific FPGA NoC
design times are reduced by up to ≈4.3× (≈37× on GPU).

• Open-sourcing the entire work, including dataset and trained
GNN models, enabling the FPGA community to leverage
and build on top of our research for their own FPGA NoCs.
Source code: https://git.uwaterloo.ca/watcag-public/graphnoc

II. BACKGROUND

Unlike ASICs, FPGA reconfigurability facilitates design
and tuning of NoCs specific to the application. However, as
discussed above, iterating on the NoC design comes at a cost;
RTL simulations for performance analysis can be a bottleneck.
In this section, we first review existing alternatives to RTL
simulations. Based on this review (summarised in Table I),
we motivate the need of Graph Neural Networks for fast and
accurate performance benchmarking of FPGA NoCs.

A. Limitations of Conventional Alternatives to RTL Simulation

1. Analytical Models: They estimate NoC performance by
building a mathematical representation of a specific NoC’s
architecture into its formulation. FPGA NoCs like HopliteRT
[16] and Flow Control BFTs of [15] can guarantee an upper
bound on the worst case routing latency as a function of the
NoC architecture itself. However, these performance numbers
are a function of the NoC architecture only and do not
account for the application being routed. Analytical models
of the HopliteBuf/BP suite of [12], [14] make use of network
calculus to build application aware models to predict NoC
performance, routability and size of statically allocated FIFO
buffers. However, while the HopliteBuf/BP suite is application
aware, it can only be applied to estimate performance of
overlays built using the HopliteBuf/BP switches connected
in a directed torus topology. Such analytical models are
often hyper-sensitive to even minor perturbations to the NoC
architecture, leading to poor generalization capabilities and
preventing them from being used for any other FPGA NoC.

2. Conventional Neural Networks: Designed by stacking
a large number of linear and non linear layers, they are trained
using supervised learning. The training data is a tuple of: 1)
Input FPGA NoC and FPGA application traffic, and 2) Ground
truth performance numbers extracted from actual simulation.
This bestows said models with powerful capacity to represent
increasingly abstract concepts, foregoing the need for low-
level NoC details to be encoded into the input; these details
can be learnt as part of the training loop. We see commercial
NoC IP vendors offering machine learning based models to
predict performance of their NoC products [21]. [18] leverages
Artificial Neural Networks (ANNs) to achieve a 1500–2000×
speedup over cycle-accurate Booksim NoC simulator [22] with
a predictor error of 5–8% for mesh and torus shaped NoCs.
However, conventional neural networks, regardless of predic-
tion capacity, exhibit high degree of rigidity in their structure.
They can only ingest inputs with a specific shape and thus are
incompatible with the rest. This limits only highly regular and
symmetric NoC topologies (mesh, tori etc) to be compatible
with an ANN model in a straightforward implementation.
Other non-euclidean topologies, while technically possible,
will require inefficient and obtuse tensor manipulation for
seamless composition into inputs. This introduces a strong
inductive bias, which leads to poor generalization to different
NoC topologies. We present evidence for this claim shortly in
Section II-C.

NoC Archs. Irregular Topologies Time to Predict

RTL Simulation Adaptable Compatible Tens of minutes
Analytical Models Fixed Compatible Seconds to Minutes
Conventional NNs Adaptable Incompatible Sub-Seconds
GNNs Adaptable Compatible Sub-Seconds

TABLE I: Comparing alternatives to RTL based simulations.
fn

fn

fn

Ωgn

Fig. 1: Foundation of Message Passing GNNs.
B. Motivating Graph Neural Networks for NoC benchmarking

To summarise our discussions in Table I, RTL simulations
are accurate but slow. Analytical models are faster but tightly
coupled to a specific NoC. Conventional NNs are quick and
generalisable, but only for NoCs with regular topologies.

Graph Neural Networks (GNNs) work directly on graphs.
A graph consists of node attributes, edge attributes and an ad-
jacency matrix specifying graph connectivity. A graph neural
network is composed of a series of differentiable functions
and a message passing scheme [23]. While different types of
graph neural networks [24], [25] apply different combinations
of differentiable functions and message aggregation schemes,
the general mechanics of a layer of graph neural networks
(shown in Figure 1) are similar and can be described as:

hi = gn(Ωj∈Ni(fn(hi), fn(hj))) (1)
where hi are the attributes of the node i. hj are the attributes

of the neighbor node j ∈ Ni. fn and gn are neural network

operations. Ω is the message aggregation operator (like sum,
max, min etc).

NoCs can be represented with high fidelity as graphs; by
encoding NoC topologies into the adjacency matrix while NoC
architecture (switches, flow control etc) can be encoded into
the graph’s nodes and edges. Since graphs are heterogeneous
(different types of nodes and edges within same graph), the
FPGA application can also be richly represented using a
different set of node and edge attributes within the same graph.
Finally, a Graph Neural Network based model (GNN) can
ingest these graphs as inputs, irrespective of graph connectivity
and size. These qualities make GNNs an ideal candidate to
build and train models for NoC performance benchmarking.

C. Motivating Example: GNNs vs Conventional NN Models

We now motivate the use of GNNs over conventional
neural networks by comparing their composability with non-
euclidean NoC topologies. We setup an experiment to compare
their ability to predict worst case routing latency for 2 FPGA
NoCs with extremely different topologies: Torus shaped 4×4
HoptliteBuf/BP [12] and Tree shaped BFT0 [15] with 8 PEs.
We construct 2 models with the same number of parameters:
1) MLP based conventional ANN with 9 layers and 1024
embeddings, and 2) 10 layer GraphSage [26] GNN with
256 embeddings. We train both networks to predict NoC
performance for the same set of FPGA applications.

While encoding these NoCs as inputs, we encounter ANNs’
incompatibility (discussed above in section II-A) with irregular
NoC topologies: an MLP based network can only ingest a
vectorized tensor. As a result, we are forced to unroll and
flatten both NoCs’ switches and traffic traces into a 2D
tensor of shape (numswitches + numtraces, inpsize). This results in
significant loss of information; the NoC’s specific topology is
homogenised and hence not captured in the inputs. In contrast,
the GNN model can ingest the NoC topology, encoded as
graphs, without any loss of connectivity related information.
Hence, GNNs can use message passing [23] (Figure 1, Equa-
tion 1) to leverage the graph’s connectivity in extracting higher
order features more effectively.

0 200 400

1

2

3

Lo
ss

(a) Train

0 200 400

(b) Validation

0 200 400

(c) Test

Fig. 2: Loss (Y axis) over epochs (X axis) for ANN vs GNN
We observe these effects reflected in the quality of training

in Figure 2. Despite training both the models with the same
training recipe (500,000 steps, 128 batch size, 0.1 dropout), we
see that ANN’s loss plateaus at 1.13 whereas GNN’s loss
continues to improve down to 0.39, a ≈2.9× improvement.
Based on these observations, we conclude that GNN based

models are an attractive proposition to accurately predict
routing performance in sub-second run-times for a wide variety
of FPGA NoC architectures and topologies.

GNNs have not been leveraged to benchmark FPGA NoCs,
with previous related works [13] very limited in scope: 1)
Focusing on a single ASIC NoC only which, unlike FPGA
NoCs, has fixed switch architecture, routing and flow-control,
2) Single-channel only application support, and 3) Not open-
sourced. We now summarise a list of key features (and our
objectives) of a GNN based NoC performance predictor:
1) NoC Diversity: The graph encoding framework is com-

patible with any FPGA NoC architecture/topology, by
encoding diverse NoC parameters (switches, flow-control,
topology etc) into richly detailed graphs.

2) Application Traffic Expressibility: In addition to encod-
ing NoCs into input graphs, any FPGA application can be
encoded into a graph with rich detail.

3) Fast and Accurate GNN Models: The trained GNN mod-
els accurately predict NoC performance while significantly
accelerating benchmarking run-time compared to existing
techniques (RTL simulation, analytical models etc).

4) Open to FPGA Community: The framework, dataset and
models are open-sourced for the community to leverage for
their own use-case and make improving contributions.

III. THE GNN BASED GRAPHNOC FRAMEWORK

In this section, for a given FPGA NoC and the traffic
generated by the FPGA application’s endpoints, we present
the 2 key building blocks to using GNNs to predict NoC
performance for that application: 1) Encoding the given NoC
and application into graphs, and 2) Designing a GNN that
ingests this graph and predicts NoC performance.

A. Encoding NoC and Application into Graphs

To use GNNs, we must first encode the given FPGA NoC
and FPGA application into graphs. Our encoding framework
is designed from the ground-up to support any NoC and
application, independent of architecture and topology, and
offers precise control over graph contents. We do this by
leveraging the principles of heterogeneous graphs [27] in a
layered, hierarchical fashion:

• Layer 1: Encoding NoC switches into graphs (Figure 3).
• Layer 2: Encoding NoC topology into a graph by using

layer 1 as building blocks (Figure 4).
• Layer 3: Encoding application’s traffic into graphs, and

overlaying them onto layer 2’s topology graph (Figure 4).
1) Layer 1: Encoding FPGA NoC’s Switches into Graphs:

Note that an FPGA NoC can be composed of a mixture of
switch types. For example, the BFT-1, BFT-2 topologies of
[15] are composed of a mix of pi and t switches. Further, the
mixing of different switches is sometimes central to designing
highly performant NoCs specifically for the FPGA application
[12]. Hence, for every switch (even of different types) of the
NoC, capturing its fundamental properties (physical dimen-
sions, arbitration, flow control etc) is essential.

N

E

SPE

W

(a) HopliteBP

N

E

SPE

W

(b) HopliteBuf

U

RL

(c) BFT-T

UL

RL

UR

(d) BFT-Pi

Fig. 3: Hoplite [12] and BFT [15] switches encoded as graphs.

A graph can be composed of nodes and edges of different
types. To encode a NoC switch as a graph, we use 2 types of
nodes. The port nodes capture the IO ports of the switch.
Figure 3 shows a switch’s ports (with text overlays) encoded as
port nodes, with different shades of the same color capturing
each port’s different properties (numerically represented as
tensors). The central node of a switch sub-graph is used
to represent the architectural properties of the switch (flow-
control etc), as shown in the translucent nodes at the center
of each graph in Figure 3. The port nodes are connected to
each other via the directed route edge () to capture
the available routing data-paths between ports. Finally, the
bidirectional switch edge () connects the central
and port nodes.

2) Layer 2: Encoding NoC Topology into Graphs: We now
present the rules around connecting the NoC switches (layer 1
graphs) to encode the NoC topology into a graph. We introduce
a new directed edge type called topology that connects
together the ports of different switches to reflect the NoC’s
topology. For example, in Figure 4, we connect the different
port nodes of HopliteBP (Figure 3a) and HopliteBuf (Figure
3b) graphs with the topology edge () to encode the hy-
brid HopliteBuf/BP NoC topology. Additionally, the directed
nature of this edge type implicitly captures the direction of
data-flow between switches of the NoC. Finally, note that
the graph’s recursive (i.e topology graph made of switch sub-
graphs) and heterogeneous (i.e graph made of different node
and edge types) properties allows us to encode any NoC
topology into a graph. This is key to GraphNoC supporting
any FPGA NoCs, even hard FPGA NoCs like Versal [20],
irrespective of topology and architecture.

3) Layer 3: Encoding Application Traffic into Graphs: We
now present the methodology to encode an FPGA application’s
traffic into a graph, which is then overlayed onto the encoded
NoC topology graph (layer 2, in turn built using layer 1). This
final graph is then ingested as input by our GNN model.

An FPGA application’s traffic is a collection of individual
traffic traces between 2 NoC endpoints. We aim to encode
any number of traffic traces between 2 endpoints. This allows
for an accurate expression of application behaviour and better
scalability; any new traffic traces can simply be added to the
application graph without modification. Each traffic trace is
represented as a traffic type node, with its numerical value
capturing attributes like injection rate etc. A new directed edge
type application_traffic connects the source NoC port
(entry point of traffic) to the traffic node. Then, another
application_traffic edge connects this traffic node
to the destination NoC port (exit point of traffic). For example,

in Figure 4, the PE ports of switch (1,0) send traffic to the
PE ports of switch (1,1) using the application node and
application_traffic edge (,). Having encoded the
application traffic traces into graphs, they can be overlayed
on the layer 2 NoC topology graph to complete a (NoC,
application) pair’s encoding into a heterogeneous graph, as
shown in Figure 4.

N

E

SPE

W

N

E

SPE

W

N

E

SPE

W

N

E

SPE

W

N

E

SPE

W

N

E

SPE

W

N

E

SPE

W

N

E

SPE

W

N

E

SPE

W

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

Fig. 4: Encoding a 3×3 Hoplite NoC and application being routed.
Notice the different edge types: port routes (), switch (),
topology () and application ().

B. Message Passing Graph Neural Networks

Having encoded the FPGA NoC and the FPGA application’s
traffic into a single graph, we now present the GNN based
model used to predict the performance of that NoC for that
application. As shown in Figure 5, our GNN based model is
composed of 3 sequential stages of transformations:

fe

+
fe

fe

fn

fn

fn

+

GraphSage Classifier

Regression

Input Graph GNN based Model

N
oC

 P
er

fo
rm

an
ce

 P
re

di
ct

io
n

Fig. 5: Design of GNN models: GraphSage, followed by
residual application of classification and regression MLPs.

1) GraphSage GNN Module [26]: As discussed, our input
graph is heterogeneous and is composed of 3 different node
types (port, central, traffic) and edge types (route,
switch, application_traffic). For each node xi and
its neighbor nodes xj over an edge type, the GraphSage
layer implements the in-place operation of Equation 2,
where W1, W2 are the learnt weights. The GraphSage
module is made up of a sequence of such layers, with the
exact recipe detailed later in section V.

x
′

i = W1.xi +W2.mean.xj , xj ∈ ξxi
, xi ∈ X (2)

2) Classification Module: Our GNN model predicts perfor-
mance as a function of classifier and regression (see Figure

5) modules as shown in Equation 3. The classifier predicts
class c, whose cardinality C in Equation 4 is determined
by the resolution of the upper limit on performance pre-
dictions. The classifier is composed of 3 Linear layers,
with the first 2 gated with the ReLU non-linear activation
and layer normalization. The classifier is trained with the
CrossEntropy loss function.

3) Regression Module: The regression module predicts a value
between [0, res) to complete the performance prediction
of Equation 3. To increase it’s predictive capacity, we
add a residual connection [28] to ingest outputs from
both GraphSage and classification modules. The regression
module is composed of 4 Linear layers, with the first
3 gated with the ReLU non-linear activation and layer
normalization. The regression module is trained with the
Huber loss function.

perfNoC
app = res ∗ c+ reg, c ∈ C (3)

|C| = limit

res
(4)

IV. CONSTRUCTING THE GRAPHNOC DATASET

FPGA NoCs and applications are encoded as graphs in
section III-A, which are then ingested as inputs by GNN
models of section III-B to predict any NoC performance
metric (latency, throughput, feasibility etc) for that application.
We now lay the foundations for a community-driven dataset,
consisting of a diverse set of encoded graphs of FPGA NoCs
and applications, that can be used to train GNN models to
quickly and accurately predict NoC routing performance.

Algorithm 1: Framework to add data to GraphNoC
Result: train set, val set, test set
NoCTool = RTL.Sim/Analytical.Model;
for varNoC in NoC.variations do

for app in Application.collections do
data = [];
for rate in Rate.range do

perf = NoCTool.calculate(varNoC , app, rate);
graph = encode(varNoC , app, rate, perf);
dataset.add(graph);

shuffle(data);
train.add(data[:train split]);
val.add(data[train split:train split+val split]);
test.add(data[train split+val split:]);

We now present the steps for adding encoded graphs to the
dataset in a NoC and application agnostic manner in Algorithm
1. We first initialise the NoC tool to calculate performance.
The tool can be RTL simulation or an analytical model (NoC
specific availability; section II-A), depending on use-case. We
loop over all the different variations of the baseline NoC
(eg. mix of Buf/BP switches in HopliteBuf/BP [12]). For
a particular NoC variation varNoC , we consider a range of
synthetic and real-world [29], [30] FPGA applications. For all
combinations of NoC (varNoC) and application (app) pairs, we
evaluate ground truth performance using the NoC tool over
a range of injection rates and encode each pair as a graph.

Finally, this set of graphs is split between train, validation and
test sets.

We position the GraphNoC dataset as an open-sourced
initiative that the FPGA community can leverage and con-
tribute to. This will allow the FPGA community to train
increasingly sophisticated GNN models over time, which will
in-turn enable them to explore design space of their own
FPGA NoCs even faster. To prove GraphNoC’s flexibility with
any FPGA NoC and application, we seed the dataset with 3
different FPGA NoCs, over 200 different FPGA applications
and both RTL simulation and analytical model as ground truth
sources for latency prediction. See Table II for details.

HopliteBuf/BP BFT-TREE BFT-XBAR

Applications 14 real-world, 2 synthetic 100 synthetic 100 synthetic

NoC Variations 500 BFT0 BFT3

Rate (incr=1) [0.1, 25] [1, 100] [1, 100]

NoC Sizes 3x3, 4x4, 5x5, 6x6, 7x7 4, 8, 16, 32 4, 8, 16, 32

Ground Truth Analytical Model [12] RTL Sim. RTL Sim.

TABLE II: Seeding GraphNoC dataset with 3 different NoCs.

V. EXPERIMENTAL SETUP AND TRAINING RECIPES

We author 3 GNN models of varying complexity using
the PyTorch Geometric [31], [32] library: small (GNNs;
1 million), medium (GNNm; 2.9 million) and large (GNNl;
7.7 million). We detail authoring and training recipes in
Table III. Each model is trained and run on consumer grade
hardware with Nvidia 4060 TI GPU, Intel i5-13500 CPU,
32GB RAM. We use EarlyStopping [33] on GraphNoC’s
dataset to predict worst case routing latencies under 1000
cycles. GNN’s tensor based computation is broadcast across
multiple dimensions, called batch size, allowing multiple NoC
samples to be evaluated at once. To ensure fair speedup
calculations, we also parallelize conventional RTL simulations
and analytical models by wrapping each call in a Process

module of python’s Multiprocessing library.

Model ≈Num. Params. Num. Layers Emb. Size Batch Size Rate Schedule Dropout

GNNs 1 Million 20 64 128 5 ∗ 10−7 Hold 0.2

GNNm 2.9 Million 15 128 64 5 ∗ 10−7 Hold 0.2

GNNl 7.7 Million 10 256 64 5 ∗ 10−7 Hold 0.2

TABLE III: Authoring and training recipes of GNN models.

We design experiments to evaluate GraphNoC’s encoding
framework, dataset and trained GNN models for speed, accu-
racy and impact on accelerating the designing and tuning of
application-specific FPGA NoCs. We also train a foundation
GNN model to test GraphNoC’s multi-modal abilities to
predict performance for completely different NoCs. See Figure
5 to refresh on the main learning task for a GNN based model,
along with its inputs and outputs.

VI. EVALUATION

A. Measuring Accuracy of GraphNoC’s GNN Models
Worst case latency is critical in defining service level agree-

ments and guarantying reliable operations of NoCs under all

Train Set Validation Set Test Set

Top Delta Top Delta Top Delta

Type 20 15 10 5 20 15 10 5 20 15 10 5 20 15 10 5 20 15 10 5 20 15 10 5

GNNs 90.2 86.6 79.6 61.9 80.7 77.7 72.5 60.2 90.8 87.6 81.2 63.6 85.2 82.7 77.9 66.0 89.6 85.6 78.3 60.5 76.8 73.6 68.2 55.7

GNNm 95.5 93.1 88.2 73.6 86.4 83.9 79.5 68.4 96.2 94.6 91.2 80.6 90.6 89.0 86.0 77.0 95.6 93.4 89.0 77.2 84.0 81.4 77.3 67.0

GNNl 97.0 95.4 91.9 81.3 88.8 86.6 83.0 73.9 97.8 96.5 94.0 86.5 92.5 91.1 88.6 82.2 97.2 95.4 92.0 83.0 86.5 84.2 80.4 72.2

TABLE IV: Measuring accuracy of differently sized GNNs against GraphNoC dataset for HopliteBuf/BP hybrid NoCs.

operating conditions. In this experiment, we measure Graph-
NoC GNNs’ accuracy in predicting worst case routing latency
for a given FPGA NoC and FPGA application. We setup this
experiment by training GNNs to predict worst case latencies
for different sizes (3×3 to 7×7) of hybrid HopliteBuf/BP [12]
NoCs across a range of real and synthetic FPGA applications
(Table II). Hoplite’s analytical models generate stricter bounds
on latency than RTL simulations [14]. Hence, we measure
the accuracy of GNN predictions against ground truth of the
analytical model for the test subset of GraphNoC dataset. We
study the accuracy through 2 different lenses:

• Precision (Delta-K): Precision is a measure of absolute
difference between the ground truth and GNN predictions,
important for measuring accuracy for routing latencies with
small magnitudes. We measure precision with the Delta-k

metric, defined as the number of predictions within K
absolute cycles of the ground truth. For example, for a
ground truth latency of 80 cycles, the GNN prediction
would have to lie in [75, 85] to be counted for Delta-5
precision. We observe that GraphNoC’s GNNs can achieve
Delta-5,10,15,20 as high as 72.2%, 80.4%, 84.2%,
86.5% for the test set in Table IV (right most column). Addi-
tionally, as we increase GNN size from small to large, the
increase in Delta-20 is only 12.6% whereas the increase is
much higher for Delta-5 at 29.6%, suggesting that larger
GNNs can better address high precision use-cases.

• Scale (Top-K): Scale is a measure of relative difference be-
tween ground truth and GNN predictions. Unlike precision,
scale takes into account the order of magnitude of ground
truth latencies. We measure scale with the Top-K metric,
defined as the number of predictions within K% points of the
ground truth. For example, for a ground truth latency of 300
cycles, the GNN predictions would have to lie in [285,315]
to be counted for Top-5. As shown in Table IV, we note
that trained GNN models can achieve Top-5,10,15,20 as
high as 83%, 92%, 95.4%, 97.2%. Like precision, as we
move from small to large GNNs, scaling benefits from big
increases for Top-5 (37.1%) but not for Top-20 (8%).

To summarise this experiment, GraphNoC’s GNN models
can achieve highly accurate predictions for NoC performance.
We observe high accuracies across different NoC architec-
tures, NoC sizes and FPGA applications. These accurate
predictions are maintained across different latency scales with
high precision, achieving up to 97.2% Top-20 and 86.5%
Delta-20 metrics. Thus, despite analytical models generating
the strictest of upper bounds on latency, GNN can be used
in their place for designing/testing FPGA NoCs. We further

analyze distribution of GNN predictions and measure outlier
deviations vs ground truth in experiment VI-D.

B. Benchmarking Throughput of GraphNoC’s GNN Models

In the previous experiment, we established that GNNs can
accurately predict NoC routing latencies. In this experiment,
we investigate GNNs’ prediction speed; to establish if the
minimal accuracy loss can be tolerated in exchange for sig-
nificant speedups over using conventional RTL simulations
or analytical models. Since Hoplite’s analytical models are
significantly faster than RTL simulations (Table I), we stress
test the potential of GraphNoC’s GNNs to outperform the
already fast analytical models instead. In this experiment,
we measure maximum throughput (input samples per second)
achieved by GNN models (on both CPU and GPU) and
compare it to the analytical model. We vary batch size from 1
to 256 (refer to section V implementation details), for different
HopliteBuf/BP variations and sizes in GraphNoC’s dataset. We
measure throughput for 2 different computation scenarios:

• Constrained Compute: One of the benefits of using GNNs
is to accelerate NoC benchmarking and application-specific
design for compute constrained organizations. Given a
maximum batch size (a function of end-user’s compute
capabilities), we investigate the speedups GNNs offer over
analytical model in Figure 6. We observe that, given a
batch size, GNNs can help increase throughput by up to
≈66× using GPUs and ≈9× using CPUs. We also note
that GNNs benefit from increased utilization of compute
resources with larger batch sizes (x axis). For example,
speedups over analytical model increase from ≈1× (batch
size=1) to ≈14.5× (batch size=64) in Figure 6e. However,
unilaterally increasing batch size hurts GNNs’ throughput,
with the affect more pronounced for larger GNNs or NoC
sizes; a clear sign of saturation of available compute. For
example, as we increase NoC size (Figures 6a → 6e), we
observe that GNNs see a drop in their throughput beyond
a certain batch size, with this affect being observed at
increasingly smaller batch sizes for larger GNNs.

• Unconstrained Compute: We now analyze if GNNs also
maintain their competitiveness when compute is not a bot-
tleneck. To answer, we consolidate the results of Figure
6 by selecting highest achieved throughput per NoC size,
and present them in Table V. We observe that GNNs of
all sizes: small, medium and large outperform Hoplite’s
analytical model by ≈9×, ≈5.8× and ≈3.5× respectively
when running on CPUs. When the GNNs make use of
the GPU, this gap further increases to ≈66×, ≈55× and

1 2 4 8 16 32 64 12
8

25
6

27

29

211

213
Ite

ra
tio

ns
 p

er
 S

ec
on

d

(a) NoC Size=3x3

1 2 4 8 16 32 64 12
8

25
6

(b) NoC Size=4x4

1 2 4 8 16 32 64 12
8

25
6

(c) NoC Size=5x5

1 2 4 8 16 32 64 12
8

25
6

(d) NoC Size=6x6

1 2 4 8 16 32 64 12
8

25
6

(e) NoC Size=7x7
GPU CPU GNNlarge GNNmedium GNNsmall Hoplite Tool

Fig. 6: Throughput (Y axis, log2 scale) as a function of batch size (X axis) for GNNs and conventional tools.

≈34× respectively. We also note that the competitive edge
of GNNs increases as we move from larger NoC sizes
(7×7; ≈1.8× CPU, ≈14.5× GPU) to smaller NoC sizes
(3×3; ≈9× CPU, ≈66× GPU), primarily explained by the
analytical model’s static setup time and flow-dependency
bottlenecks overshadowing any size related throughput gains
(hovering around ≈260).
To summarise this experiment, GraphNoC’s GNNs can sig-

nificantly accelerate FPGA NoCs’ performance benchmarking
for a given FPGA application. This speedup over the already
fast analytical model is maintained for all GNNs over all
NoC sizes. These speedups further increase by an order of
magnitude when GNNs leverage the GPU. This is evidenced
by GNNs outperforming conventional tools by up to ≈9×
on CPUs and ≈66× on GPUs. The high accuracy (section
VI-A), combined with these significant speedups, presents a
potential opportunity for GraphNoC to significantly accelerate
application-specific NoC design/tuning. We investigate this
possibility in the next experiment.

Iterations per Second

Type N=3x3 N=4x4 N=5x5 N=6x6 N=7x7

Hoplite Tool 264 266 266 263 262

GNNs,CPU 2404 1351 887 652 468

GNNm,CPU 1533 907 561 402 291

GNNl,CPU 926 548 344 257 184

GNNs,GPU 17585 10830 7093 5100 3801

GNNm,GPU 14575 8026 5192 3773 2751

GNNl,GPU 9157 5181 3388 2382 1717

TABLE V: Best achieved throughput, across all batch sizes.

C. Application-Specific FPGA NoC’s Design with GraphNoC

[11], [12]’s application-specific design of the FPGA Ho-
pliteBuf/BP NoC exposes the NoC’s switches as a categorical
choice between HopliteBuf or HopliteBP. For a given FPGA
application, this application-specific design results in an op-
timized NoC with the minimum possible routing latency for
this application. The design runs for 100s of epochs. At each
epoch, 100s of HopliteBuf/BP’s variations are generated and
all of them are benchmarked for routing performance on the
given FPGA application. At the end of each epoch, the best
performing variants are used to seed the base configuration
for the next epoch’s variants. In the original work, Hoplite’s

conventional analytical model is used to benchmark all NoC
variants. In our experiment, we swap the analytical model with
GraphNoC’s trained GNN models. We investigate:

1) Speed: If GraphNoC’s GNN can significantly accelerate the
run-time of application-specific NoC design for FPGAs.

2) NoC Quality: If the slight inaccuracy of GNNs’ latency
predictions (compared to the analytical model; section
VI-A), accumulating over multiple epochs, significantly
deteriorates the final NoC’s performance.

To setup this experiment, we target learning switch configu-
ration for a 4×4 HopliteBuf/BP NoC for random and local

FPGA applications’ traffic. For each FPGA application, we
vary the injection rates’ from 0.01 to 0.09. We generate 128
NoC variants in each epoch and run the design process for 100
epochs. The batch size for both GNNs and analytical model is
set to 128. We run GNNs on both CPU and GPU. Summarised
in Figure 7, we investigate 2 different use cases and compare
the final results to the original work:

• GNNs Only: Here, we calculate all the NoC variants’ (128
variants per epoch, 100 epochs total) latency using GNNs
only. At the end of the design process, we compare the
resulting NoC design’s performance (Figures 7a–7c) against
the NoC design generated using original work’s analytical
model (Figure 7d). We observe, that GNN driven NoC
design regresses latencies by up to 19, 24 and 30 cycles,
while accelerating end-to-end runtime by up to ≈4.3×,
≈2.6× and ≈1.4× for small, medium and large GNNs on
CPUs respectively. The speedup increases to ≈37×, ≈30×
and ≈20× when GNNs use the GPU.

• GNNs+Analytical Model: Here, we invest the time saved
by GNN driven runs into 25 additional epochs driven by
analytical models (100 by GNNs, then 25 by analytical
model). We observe, in Figures 7e–7h, that this hybrid
setting finds the most optimized NoC designs at all times.
No latency regressions are observed when compared to NoC
designs generated using original work’s analytical model.
While this hybrid approach is 2.1×, 1.64×, 1.34× slower
than just using GNNs (10×, 8.5×, 6.1× on GPU), it is still
2.05×, 1.57×, 1.02× faster than analytical model for small,
medium and large GNNs respectively (3.57×, 3.5×, 3.2×
on GPU). As a result, even without GPUs, hybrid approach
with small GNNs is a good middle ground that moderately
accelerates application-specific NoC design without any

20 40
20

40

60

80

100

120
M

in
. W

or
st

 C
as

e
La

te
nc

y
(c

yc
le

s)

(a) GNNs Only
25 50 75

(b) GNNm Only
50 100

(c) GNNl Only
184

(d) Model

60 80
20

40

60

80

100

120

M
in

. W
or

st
 C

as
e

La
te

nc
y

(c
yc

le
s)

(e) GNNs-Hybrid
50 100
(f) GNNm-Hybrid

50 100 150
(g) GNNl-Hybrid

184
(h) Model

GPU CPU 0.01 0.03 0.05 0.07 0.09

Fig. 7: Learnt NoC’s latency (Y axis) vs seconds spent (X axis)

performance regressions.
To summarise this experiment, GraphNoC’s GNNs can sig-

nificantly accelerate application-specific NoC designs’ runtime
without sacrificing performance of the resulting NoCs. We
observe that using GNNs accelerates NoC design’s runtime
by up to ≈4.3× on CPUs (increasing to ≈37× with GPUs)
while only regressing up to 30 cycles in routing latency.
Latency regressions can be eliminated completely with the
hybrid approach while maintaining competitive speedups.
Thus, GraphNoC GNNs’ can supercharge the leveraging of
FPGA reconfigurability by streamlining the design of highly
performant NoCs specific to the FPGA application.

D. Building Foundation GNN Models with GraphNoC

In this final experiment, we investigate a GNN based
model’s multi-modal capabilities. We do this by training a
GNN to predict worst case latency for both HopliteBuf/BP
[12] and TREE BFT [15] NoCs. Note that these 2 NoCs
have completely different topology, data routing and arbi-
tration rules. We train a 10-layer, 256 dimension Graph-
Sage+Classifier+Regression GNN model. The model is trained
on encoded graphs of FPGA NoCs and FPGA applications,
distributed equally between TREE BFT (8 PEs) and Hoplite-
Buf/BP (16 PEs; 4×4). We use a batch size of 128 and cyclic
learning rate schedule varying between [10−7, 5 ∗ 10−6].

We now share results of this model’s performance on
the test set. The foundation model is able to achieve a
Delta-5,10,15,20 score of 75.7%, 81.0%, 83.9%, 85.8%
and a Top-5,10,15,20 score of 69.0%, 77.5%, 82.0%,
85.3%. We now plot the distribution of ground truth and
predicted latencies, faceted by NoC type, in Figure 8. Different
topologies, data routing and arbitration rules are evidenced by
starkly different distribution of ground truth latencies between
Figures 8a and 8b. Despite this, we note that the model is

able to maintain high accuracy across the distribution for both
NoCs in Figure 8, even robustly covering the abnormal spike
of distribution around the 28 mark for the BFT in Figure 8b.
In addition to GNN based models’ capabilities to generalise
across different NoCs, this is also evidence that GraphNoC’s
graph encoding framework is able to encode important features
of completely different NoCs and applications into richly
detailed graphs for maintaining model accuracy.

We now also discuss the speed improvements of this GNN
foundation model against the BFT TREE’s RTL simulation
(Hoplite discussed previously in section VI-B). Unlike Ho-
pliteBuf/BP, BFT has no analytical model to calculate laten-
cies, and is thus relegated to using RTL simulations. Despite
20 Process wrapped parallel RTL simulations (maximum
that can be launched without OOM issues), it is only able to
achieve a throughput of ≈4.3 iterations per second. Contrast-
ing this with GNN foundation model’s maximum throughput
of 640 iterations per second on CPU (increasing to 2176
on GPU) at batch size 128, we conclude that BFT TREE’s
latency estimation can be accelerated by up to ≈148× on
CPU (increasing to ≈506× on GPU).

Based on our evaluation, we can conclude that GraphNoC’s
foundation GNNs can continue to become more advantageous
over time. The foundation GNN already achieves high ac-
curacy (Delta-20 85.8%; Top-20 85.3%) and significant
speedup (up to ≈506× on GPU, ≈148× on CPU) for 2 com-
pletely different FPGA NoCs. As the foundation GNN models
are trained on more diverse FPGA NoCs and applications data,
the models will build a richer representation of underlying
NoC routing fundamentals, similar to large language models.
This can allow new NoCs to be on-boarded quicker onto
GNNs, paving the way for foundation GNN models potentially
replacing RTL simulations and analytical models completely
in the future, including for hard FPGA NoCs like Versal [20].

23 25 27 29
0

1

2

3

4

5

6

Pe
rc

en
ta

ge
 D

ist
rib

ut
io

n

(a) Hoplite
24 26 28

0

2

4

6

8

(b) BFT TREE
Ground Truth Predictions Overlapping Coverage

Fig. 8: Distribution of ground truth vs latency predictions.

VII. CONCLUSION

In this paper, we present GraphNoC, a GNN based frame-
work and dataset, to accelerate NoC benchmarking and
application-specific NoC design. GraphNoC can encode any
FPGA NoC, including hard NoCs, and any FPGA application
into graphs with high fidelity. We encode 3 different FPGA
NoCs, over 200 different FPGA applications to create a dataset
of 1.5M+ graphs that is used to train GNNs, accelerating NoC
benchmarking and application-specific design by up to 148×
(506× using GPU) with prediction accuracies up to 97.2%.

REFERENCES

[1] T. N. Theis and H.-S. P. Wong, “The end of moore’s law: A new begin-
ning for information technology,” Computing in Science & Engineering,
vol. 19, no. 2, pp. 41–50, 2017.

[2] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” Ieee Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[3] S. V. M. K. R. Schreiber and H. Kamepalli, “Generating simd instruc-
tions for cerebras cs-1 using polyhedral compilation techniques,” 2020.

[4] D. Abts, J. Ross, J. Sparling, M. Wong-VanHaren, M. Baker, T. Hawkins,
A. Bell, J. Thompson, T. Kahsai, G. Kimmell, et al., “Think fast: a tensor
streaming processor (tsp) for accelerating deep learning workloads,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pp. 145–158, IEEE, 2020.

[5] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive
switching devices,” Nature electronics, vol. 1, no. 6, pp. 333–343, 2018.

[6] A. Samajdar, T. Garg, T. Krishna, and N. Kapre, “Scaling the cascades:
Interconnect-aware fpga implementation of machine learning problems,”
in 2019 29th International Conference on Field Programmable Logic
and Applications (FPL), pp. 342–349, IEEE, 2019.

[7] W. Choi, K. Duraisamy, R. G. Kim, J. R. Doppa, P. P. Pande,
D. Marculescu, and R. Marculescu, “On-chip communication network
for efficient training of deep convolutional networks on heterogeneous
manycore systems,” IEEE Transactions on Computers, vol. 67, no. 5,
pp. 672–686, 2017.

[8] H. Fang, A. Shrestha, D. Ma, and Q. Qiu, “Scalable noc-based neuro-
morphic hardware learning and inference,” in 2018 International joint
conference on neural networks (IJCNN), pp. 1–8, IEEE, 2018.

[9] N. Akbari and M. Modarressi, “A high-performance network-on-chip
topology for neuromorphic architectures,” in 2017 IEEE international
conference on computational science and engineering (CSE) and IEEE
international conference on embedded and ubiquitous computing (EUC),
vol. 2, pp. 9–16, IEEE, 2017.

[10] “Solutions for self-driving cars.” https://www.nvidia.com/en-us/
self-driving-cars/. Accessed: 2023-01-16.

[11] G. Malik, I. E. Lang, R. Pellizzoni, and N. Kapre, “Hopliteml: Evolving
application customized fpga nocs with adaptable routers and regulators,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 15, no. 4, pp. 1–33, 2022.

[12] G. Malik, I. E. Lang, R. Pellizoni, and N. Kapre, “Learn the switches:
Evolving fpga nocs with stall-free and backpressure based routers,” in
2020 30th International Conference on Field-Programmable Logic and
Applications (FPL), pp. 18–25, IEEE, 2020.

[13] F. Li, Y. Wang, C. Liu, H. Li, and X. Li, “Noception: a fast ppa prediction
framework for network-on-chips using graph neural network,” in 2022
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1035–1040, IEEE, 2022.

[14] T. Garg, S. Wasly, R. Pellizzoni, and N. Kapre, “Hoplitebuf: Network
calculus-based design of fpga nocs with provably stall-free fifos,” ACM
Trans. Reconfigurable Technol. Syst., vol. 13, Feb. 2020.

[15] G. S. Malik and N. Kapre, “Enhancing butterfly fat tree nocs for fpgas
with lightweight flow control,” in 2019 IEEE 27th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 154–162, 2019.

[16] S. Wasly, R. Pellizzoni, and N. Kapre, “HopliteRT: An efficient FPGA
NoC for real-time applications,” in F. Program. Technol. (ICFPT), 2017
Int. Conf., pp. 64–71, IEEE, 2017.

[17] J. Silva, M. Kreutz, M. Pereira, and M. D. Costa-Abreu, “An investi-
gation of latency prediction for noc-based communication architectures
using machine learning techniques,” The Journal of Supercomputing,
vol. 75, no. 11, pp. 7573–7591, 2019.

[18] A. Kumar and B. Talawar, “Machine learning based framework to
predict performance evaluation of on-chip networks,” in 2018 Eleventh
International Conference on Contemporary Computing (IC3), pp. 1–6,
IEEE, 2018.

[19] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[20] I. Swarbrick, D. Gaitonde, S. Ahmad, B. Gaide, and Y. Arbel, “Network-
on-chip programmable platform in versaltm acap architecture,” in Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, FPGA ’19, (New York, NY, USA), pp. 212–
221, ACM, 2019.

[21] B. Winefeld, “Using machine learning for characterizations of noc
components,” March 2019.

[22] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E.
Shaw, J. Kim, and W. J. Dally, “A detailed and flexible cycle-accurate
network-on-chip simulator,” in 2013 IEEE international symposium on
performance analysis of systems and software (ISPASS), pp. 86–96,
IEEE, 2013.

[23] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning, pp. 1263–1272, PMLR, 2017.

[24] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds.(2018),”
arXiv preprint arXiv:1801.07829, vol. 222, 2018.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[26] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[27] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data
mining, pp. 793–803, 2019.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition. corr abs/1512.03385 (2015),” 2015.

[29] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra,
“Matrix market: a web resource for test matrix collections,” in Quality
of Numerical Software, pp. 125–137, Springer, 1997.

[30] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” June 2014.

[31] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

[32] “Tutorial on heterogeneous graph learning.” https://pytorch-geometric.
readthedocs.io/en/2.6.0/notes/heterogeneous.html. Accessed: 2024-11-
09.

[33] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient
descent learning,” Constructive Approximation, vol. 26, pp. 289–315,
2007.

