
GraphMMU: Memory Management Unit
for Sparse Graph Accelerators

Nachiket Kapre1, Han Jianglei1, Andrew Bean2, Pradeep Moorthy1, and Siddhartha1

1School of Computer Engineering, Nanyang Technological University, nachiket@ieee.org
2Department of Electrical and Electronic Engineering, Imperial College London, andrew.bean06@imperial.ac.uk

Abstract—
Memory management units that use low-level AXI descriptor

chains to hold irregular graph-oriented access sequences can
help improve DRAM memory throughput of graph algorithms
by almost an order of magnitude. For the Xilinx Zedboard, we
explore and compare the memory throughputs achievable when
using (1) cache-enabled CPUs with an OS, (2) cache-enabled
CPUs running bare metal code, (2) CPU-based control of FPGA-
based AXI DMAs, and finally (3) local FPGA-based control of
AXI DMA transfers. For short-burst irregular traffic generated
from sparse graph access patterns, we observe a performance
penalty of almost 10⇥ due to DRAM row activations when
compared to cache-friendly sequential access. When using an
AXI DMA engine configured in FPGA logic and programmed in
AXI register mode from the CPU, we can improve DRAM perfor-
mance by as much as 2.4⇥ over naı̈ve random access on the CPU.
In this mode, we use the host CPU to trigger DMA transfer by
writing appropriate control information in the internal register of
the DMA engine. We also encode the sparse graph access patterns
as locally-stored BRAM-hosted AXI descriptor chains to drive the
AXI DMA engines with minimal CPU involvement under Scatter
Gather mode. In this configuration, we deliver an additional 3⇥
speedup, for a cumulative throughput improvement of 7⇥ over
a CPU-based approach using caches while running an OS to
manage irregular access.

I. INTRODUCTION

Important graph problems in scientific computing and engi-
neering, such as sparse matrix factorization, learning on con-
textual knowledge-bases, pagerank-style indexing, social net-
work analytics, and neural network simulations are challenging
problems for modern computing architectures. A common pat-
tern in these applications involves repetitive, irregular access
to large, sparsely distributed graph structures. For small graphs
that fit the on-chip memory capacity of modern processors, we
get fast random access even for irregular address sequences.
However, larger graph structures that do not fit the cache must
be stored off-chip. Accessing these structures results in high
cache miss rates when trying to support such irregular accesses
thereby lowering performance. This is inevitable as the access
patterns have neither spatial nor temporal locality. However,
we know that the underlying DRAM interfaces are capable of
supporting much faster data rates. For example, on the Xilinx
Zedboard, when accessing a graph with 32M nodes and edges,
the observed random-access DRAM throughput can drop to as
low at 50 MB/s as opposed to the sustained sequential-access
throughput of ⇡600 MB/s that is possible. While several
projects have explored customizing hardware accelerators for

ACP

AXI-GP

Processor FPGA

DRAM

ARMv7
32b CPU

DRAM
Controller

AXI-HP

L1/L2
Cache

AM
BA

 In
te

rc
on

ne
ct

FPGA
User
Logic

Fig. 1: An Abstract High-Level View of the Zedboard
communication infrastructure showing the AMBA
interconnect and AXI-HP, AXI-GP and ACP ports

graph algorithms, few have attempted to directly optimize the
memory access aspect of this problem. Careful scheduling and
low-level control of the DRAM controls can help us enhance
the observed throughputs even for irregular access.

Modern FPGA-based platforms, such as the Xilinx Zed-
board, often provide hard-IP blocks for DRAM controllers.
This is useful as it helps ensure fast low-latency access
that is otherwise trickier to manage when having to embed
the memory controllers directly in spatial FPGA logic. The
Zedboard platform also supports DMA IPs that can directly
co-ordinate and manage access to the DRAMs from FPGA
logic. On the Zedboard, we also have ARM co-processors that
can help manage control-oriented components of the algorithm
while being directly connected to the FPGA and the off-chip
DRAM. Data transfer from the ARM subsystem and the FPGA
is orchestrated using AXI (ARM bus standard) compatible
ports for high-throughput access. While it is possible to
provide cache-coherent access between the FPGA and the
ARM processor over the ACP port, there are direct AXI
links that bypass the ARM memory subsystem entirely when
feeding data to the FPGA logic. We hypothesize that we can
manage low-level AXI controllers that help support irregular
access patterns more efficiently than the alternatives. Hardened
DRAM controllers, fast ARMv7 CPU support and specialized
AXI-compatible DMA engines can be organized together to
provide a competent memory management solution for sparse
graph access. We first separate the graph data structure into
two components (1) addressing, and (2) data. By sequencing

the addressing through the ARMv7 CPU, the AXI DMA
engines can be directed to effectively get data into the FPGA
logic for processing.

The contributions in this paper can be summarized as
follows:

1) The design and engineering of an AXI_DMA-based mem-
ory management unit (MMU) for supporting irregular
sparse access patterns.

2) Quantification of performance of our design and compari-
son with traditional cache-enabled approach for managing
memory access.

3) Low-level performance optimization of the DMA control
by directly constructing a chain of AXI descriptors that
capture the required access patterns.

II. BACKGROUND

In this section, we provide a brief overview of the Zedboard
platform, the graph memory storage format and a description
of the nature of memory access patterns on sparse graphs.

A. The Zedboard Platform

The Zynq Z7020 SoC [10] is an heterogeneous computing
system that combines an ARMv7 32b CPU with an Artix-
7 series FPGA accelerator on the same chip. It is a unique
platform ideally suited for embedded systems with power
and form factor restrictions. Zynq simplifies the FPGA de-
velopment flow by providing a high degree of IO integration
such as USB, Ethernet, HDMI and DRAM controllers by
directly implementing the interface IPs as hard blocks. Of
particular interest to this study are the embedded DRAM
controllers and a variety of fast AXI interfaces for data transfer
between the ARM CPUs and the FPGA logic regions. We
tabulate the data rates and capabilities of the various interfaces
available [10], [7] in Table I and represent the high-level
block diagram in Figure 1. For graph problems, we need
to support fast, low-latency access to the sparsely distributed
memory structures. Ideally, we want to fit all available data
fully on-chip. However, on-chip memory capacity is limited to
560KB of BlockRAMs (140⇥36Kb BRAMs) for the Zedboard
Z7020 chip. This is barely enough for most interesting graph
problems and even if we consider larger FPGAs, the peak on-
chip storage is still limited to a paltry few MBs of state. In
these circumstances, it is necessary to store the larger graph
structures off-chip in the DRAM. Compared to the on-chip
BRAM bandwidth of 0.3 TB/s, the off-chip DRAM bandwidth
is a miserly 4.2 GB/s (two-three orders of magnitude less).
Hence, it becomes important to consider possible low-level
DRAM optimizations that use the already-constrained band-
width as effectively as possible.

B. Graph Data Storage Format

We can formally define a graph (G) as a collection of
vertices (V) connected by edges (E), i.e. G = (V,E). When
each vertex in the graph is only connected to one or a
few neighbouring vertices, the graph is classified as being
sparse. Figure 2 shows a sparse graph with labeled nodes

Interface description Ports Bandwidth (GB/s)
Total Per-Port

AXI Accelerator Coherency Port (ACP) 1 2.4 2.4
AXI General Purpose (AXI-GP) 4 4.8 1.2
AXI High Performance Ports (AXI-HP) 4 9.6 2.4
External DDR memory 1 4.2 4.2
On-chip memory (OCM) 1 3.6 3.6

TABLE I: Theoretical Zedboard Interface Bandwidths

and edges (label is state on the node or edge). To store the
sparse graph structure in memory we can use an adjacency-
list based mechanism that only stores a list of edges that are
connected. For an optimized storage format, we typically use
the compressed sparse row (CSR) format [5] when the physical
structure is going to remain stable after construction of the
graph. In the CSR format, we store the graph in four arrays
as shown in Figure 3. The first array edge offset holds the
accumulated edge count for all nodes i (number of input edges
of node i is edge offset[i + 1] - edge offset[i]). We use
j = edge offset[i] as an offset to locate state belonging to
edges of node i in the array edge state. We can also locate the
data stored at the input nodes of node i through node index[j]
dereference. This format is commonly used for sparse matrix

B0

B1B2

B3

B4

A10A20

A30

A40

A12

A42

A32

A43

A14

Fig. 2: A representative sparse graph with five nodes and
nine edges, nodes labeled with node weights Bi, edges

labeled with edge weights Aij

M + 1 entries

N edges

M nodes

edge offset

edge state

node state

node index

A10

0

A12

2

A14

4

A20

0

A30

0

A32

2

A40

0

A42

2

A43

3

0 0 3 4 6 9

B0 B1 B2 B3 B4

Fig. 3: Memory layout of the sparse graph in Figure 2

2

Function bsp(node state, edge state)
/* multiple BSP iterations */

11 foreach k = iterations do
/* process all nodes */

22 foreach i = nodes in graph do
/* evalute all input edges */

33 num edges = edge index[i+1]-edge index[i];
4 foreach j = input edges of node i do
55 /* compute read addresses */
6 node = i*sizeof(node state);
7 edge = (edge offset[node]+j)*sizeof(edge state);

/* compute on node/edge data */
8 f(node state[node],edge state[edge]);

/* implicit BSP barrier */

vector multiplication algorithms and can be repurposed with
little adaptation for other static graph structures.

C. Graph Algorithms

A key feature of most graph algorithms is the need to access
nodes and edges in an ordered manner. For graph algorithms
that obey the Bulk Synchronous Parallel (BSP) paradigm [8],
we iterate over the entire graph structure multiple times.
Each node and its neighbours are accessed in a loop-oriented
fashion shown in Function bsp. We know how to design spatial
datapaths for accelerating these kinds of graph algorithms [1],
[4], [6]. The underlying principle is to implement the node
and edge calculation logic as pipelined, streaming datapaths.
As these datapaths operate at high throughputs and can usually
be tiled across the FPGA fabric, we can process multiple node
and edge calculations per clock cycle yielding high processing
throughput. The key challenge in these spatial implementations
is our inability to either hold all active graph data on-chip or
to get data at high rates from off-chip DRAMs to keep the
hardware blocks busy with useful work.

For these scenarios, we can pre-compute the access se-
quences once and reuse them across all iterations. In this paper,
we focus on such algorithms where the access sequences
may be irregular and scattered. A cache-enabled CPU that
implements these loops will suffer high cache miss rates due to
the inability to fully predict the needed edge state[j] locations
and prefetch them in the cache ahead of time. In contrast,
an alternative approach that directs the DRAMs to load the
specified order of addresses will do much better.

The peak rated throughputs shown earlier in Table I do
not capture sustained behavior in the real world. We wrote
a simple microbenchmark modeled on the BSP code sketch
shown in Function bsp and compiled it using gcc-4.8.3
with the -O3 optimization. The goal was to stress the off-
chip DRAM memory access routines to quantify performance
of the Zedboard CPU. We show the sustained sequential access
bandwidth throughput possible on the Zynq CPU running an
embedded Linux OS when compared to scattered irregular
access (generated pseudo-randomly) in Figure 4. It is clear
that there is a performance gap of as much as 10⇥ when

accessing memory in an irregular manner. Caching works
well at predicting sequential accesses resulting in fairly high
throughputs across access counts. Even random access rates
match the sequential access rates when the number of accesses
is in the low 1000s. While we do not expect to completely
close this 10⇥ performance gap, we can certainly bypass the
cache to support enhanced operation by accessing the DRAM
controller in other ways.

0

200

400

600

1e+02 1e+04 1e+06 1e+08
Number of Accesses

Ba
nd

w
id

th
 (M

B/
s)

Random
Sequential

Fig. 4: Comparing Random and Sequential Access
Bandwidth on the Zedboard ARMv7 CPUs running Xillinux

III. DESIGN OF THE MEMORY MANAGEMENT UNIT

We design our MMU for graph operations by (1) using a
sparse graph storage encoding that separates structure from
data, (2) co-designing the manager using the AXI_DMA block
supported by a software driver running on the CPU, and (3)
optimizing the accesses through careful tuning of low-level
AXI operations. The MMU translates virtual graph node and
edge indices into appropriate low-level DMA operations.

A. Graph Storage

We organize the sparse graph storage along the lines of the
CSR format described earlier, but separate physical structure
from the data. As before we need to store edge offset and
node index to identify where the list of edges for each node

AXI-GP

User
LogicAXI-HP

Processor Logic

AXI-
Stream

DRAM

ARMv7
32b CPU

DRAM
Controller

AXI
DMA

Fig. 5: AXI DMA with direct control from CPU

3

AXI-GP

User
LogicAXI-HP

Processor FPGA

AXI- Stream

DRAM

ARMv7
32b CPU

DRAM
Controller

AXI
DMA

AXI-GP

User
LogicAXI-HP

Processor FPGA

AXI- Stream

DRAM

ARMv7
32b CPU

DRAM
Controller

AXI
DMA

Fig. 6: AXI DMA flow for Register-mode operation

is located. This is useful for accessing node state values cor-
responding to the neighborhood of a given node. Such accesses
are useful when implementing sparse graph algorithms such
as shortest-path search that performs summarization operations
on the inputs to a node. In this case, we need to get fixed-size
items of data from a series of scattered addresses. Another
pattern of memory access involves accessing a contiguous
set of items that may be edge properties stored along an
edge to a node. For example, this information is stored in
a sequence as an edge state non-zero vector for the sparse
matrix vector multiplication algorithm. We encode the physical
address of the node and edge structures as base_addr and
the size of the data fetched from that address as length.
For our requirements, we consider a set of fixed-length
transfers from randomly distributed base_addr addresses.
While other DRAM-friendly forms are possible with larger
variable-length transfers, we focus on the harder shorter
fixed-length scenario.

B. AXI_DMA Manager

A common technique to maximize DRAM memory band-
width is to use DMA (Direct Memory Access) protocol. Xilinx
provides a few variations of DMA for different applications
e.g. VDMA for video traffic, and CDMA for shuffling data
between memory-mapped locations. For our graph access sce-
nario, we cannot use these off-the-shelf DMA engines. Instead,
we use the basic AXI_DMA IP core [9] and specialize it for
our purpose. Besides the capability of stream and memory
mapped data conversion, it also provides a high level control
and configuration over the DMA operation.

We use the AXI_DMA IP block, shown as organized in
Figure 5, as the basis of our memory throughput optimization
study. This IP block interfaces directly with the hardened
DRAM controller in the Zynq platform through the AXI-HP
interface. The IP can be customized to support a variable

XScuGic InterruptController;

void InterruptHandler (void) {

// clear interrupt

int tmp = Xil_In32(DMAREG_ADDR + 0x04);
tmp = tmpValue | 0x1000;
Xil_Out32(DMAREG_ADDR + 0x04, tmp);

// queue a new DMA operation

}

int main()
{

// Initialize AXI DMA

u32 tmp = Xil_In32(DMAREG_ADDR);
tmp = tmp | 0x1001;
Xil_Out32(DMAREG_ADDR, tmp);

// Initialize Interrupt

InitializeInterruptSystem();

// Perform DMA

for(i=0;i<GRAPH_ACCESS;i++) {
Xil_Out32(DMAREG_ADDR + 0x18,

base_addr[i]);
Xil_Out32(DMAREG_ADDR + 0x28,

length[i]);
// wait for interrupt

}
}

Fig. 7: Register-Mode AXI_DMA device driver

number of burst sizes to enable efficient use of the DRAM
bandwidth. For our irregular, short-burst access case, we
support burst sizes between 2–16. We can also configure
the irregular memory accesses as a sequence of bursts. The
IP supports programming through (1) register mode, and (2)
scatter-gather mode which we now discuss in more detail.

C. Register-Mode DMA

Register-mode control of the AXI_DMA block is initiated by
the ARMv7 CPU writing DMA-specific metadata to appropri-
ate internal registers of the DMA engine over the AXI-GP
control ports shown in Figure 6. The DMA engine interprets
this register state to extract the operational details of the DMA
task that we intend to perform. Each DMA operation involves
access from base_addr up to a sequence of length
bytes. The AXI_DMA block executes the DMA command over
the AXI-HP port that directly interfaces with the embedded
DRAM controller. Once the operation it competed, the engine
informs the CPU by signaling an interrupt. The host CPU
can the proceed to safely initiate another transfer. For a larger
series of accesses, the CPU supplies the appropriate set of
register commands to the DMA engine in the desired order.

In Figure 6, we show the two-step sequence that is itera-
tively evaluated for irregular access. For a graph traversal, we
show the pseudocode for the device driver in Figure 7. In the
first step, the host CPU sends the appropriate low-level AXI
commands to the AXI_DMA engine to kickstart the transfer.
In the second stage, the engine directly gets the requested data

4

User
Logic

AXI-HP

Processor FPGA

AXI-Stream

DRAM

AXI-GP
AXI-HP

User
Logic

AXI-HP

Processor FPGA

AXI-Stream

DRAM

AXI-GP
AXI-HP

BRAMBRAM
ARMv7

32b CPU

DRAM
Controller

AXI DMA

User
Logic

AXI-HP

Processor FPGA

AXI-Stream

DRAM

AXI-GP
AXI-HP

BRAMBRAM
ARMv7

32b CPU

DRAM
Controller

AXI DMA

BRAMBRAM
ARMv7

32b CPU

DRAM
Controller

AXI DMA

Fig. 8: AXI DMA flow for Scatter-Gather operation

from the off-chip DRAM through the AXI-HP port completely
bypassing the host CPU on-chip memories and delivers it to
the FPGA processing logic. This ability to avoid the caches
and memory subsystem of the CPU, while still using the CPU
to drive complex control-heavy series of DMA commands
is a unique strength of this execution mode. In this mode,
the need to wait for interrupts after each completed DMA
transaction can become a performance bottleneck. While the
register-mode flow is simple and straightforward, the need for
interrupt-locked progress can impose a performance penalty
on the accesses. We can remedy this using the scatter-gather
mode of operation instead.

D. Scatter-Gather DMA

Scatter-Gather DMA mode allows the AXI_DMA engine to
avoid requiring frequent assistance from the CPU and enables
somewhat independent operation. In this mode, instead of
programming the internal registers for each DMA transfer,
the CPU only needs to construct a one-off linked list of
AXI descriptor commands for the complete series of transfers.
This can be done once at the start and reused repeatedly for
iterative BSP-like graph algorithms. The descriptor chain is

XScuGic InterruptController;

struct axi_desc_t {
u32 next;
u32 base_addr;
u32 control;
u32 status;

};

void InitializeDescriptors() {

struct axi_desc_t axi_desc[GRAPH_ACCESSES];

for (i=0; i<GRAPH_ACCESSES; i++) {

// create an entry in linked list

axi_desc[i].base_addr = base_addr[i];
axi_desc[i].control = length[i];

Xil_Out32(BRAM_ADDR +
i*ALIGN + NXTDESC ,
axi_desc[i].next);

// copy other fields to BRAM

}
}

int main()
{

InitializeDescriptors ();

// Initialize DMA

Xil_Out32(DMAREG_ADDR +
MM2S_CURDESC, BRAM_ADDR);

Xil_Out32(DMAREG_ADDR +
MM2S_DMASR, 0x0000000);

Xil_Out32(DMAREG_ADDR +
MM2S_DMACR, 0x5001);

// Perform DMA

Xil_Out32(DMAREG_ADDR
+ MM2S_TAILDESC, BRAM_ADDR +
(GRAPH_ACCESSES-1) * ALIGN);

}

Fig. 9: Scatter-Gather-Mode AXI_DMA device driver

stored locally on the FPGA fabric in BlockRAMs and coupled
to the AXI_DMA engines over an AXI-HP interface.

In Figure 8, we show the slightly more complex three-
step configuration flow for the Scatter-Gather DMA mode.
As before, we still need to instruct the DMA engine to get
length bytes starting from base_addr location. Instead of
forcing an interrupt after each transfer, we are able to perform
a set of back-to-back transfers directly without interrupting the
host until after the full sequence has been transferred. This
ability to avoid frequent CPU interrupts coupled with FPGA-
based storage of AXI descriptor chain provides low-latency
turnaround times between consecutive DMA transactions. In
scatter-gather mode, we represent the irregular list of accesses
as a linked list of <base_addr>,<length> tuples stored
in local on-chip FPGA BlockRAM. This is loaded once at the
start over AXI-GP ports from the CPU. We represent this in
Figure 9 in the InitializeDescriptors function. The
address of the next descriptor is specified in each descriptor.

5

The head and tail descriptors are provided to the DMA engine
and it will process one descriptor after another.

IV. EXPERIMENTAL SETUP

We use the Xilinx Zedboard with the Z7020 Zynq SoC for
our DMA experiments. For most of our experiments, we are
operating the ARMv7 CPU in bare-metal mode without any
operating system and use the AXI_DMA engine under various
configurations. We use the ARMv7 CPU to exercise complete
low-level control of the various system components through
appropriate AXI transactions while the DMA engine provides
a high-performance link to the hardened DRAM controller.
Our experiments consider an AXI-compatible spatial hardware
accelerator reading and writing data within a graph algorithm
to the node state and edge state arrays. Thus, the hard-
ware has exclusive read/write access to the node state and
edge state data items while the software has exclusive read
access to the edge offset and edge index structures which
are needed to build the base_addr and length fields. We
also compare the performance of the memory interface when
using the Xillinux 1.3 OS running on the ARM CPU. In this
scenario, we measure the performance of irregular access from
DRAM to the CPU in one case and via Xillybus FIFOs to
the FPGA logic in another. Thus, we are able to quantify the
effects of various individual components on the performance
of the memory subsystem.

We develop two software libraries that interface with the
AXI DMA engine configured on the FPGA to control access
to the sparse access sequences. These are developed in C
and compiled with arm-gcc with the -O3 optimization. For
scatter-gather mode, we currently configure the DMA engine
to access the descriptor chains stored in a single BRAM. For
larger problems, we can either allocate more on-chip BRAMs
to hold the chains locally or use double-buffered memory
loading to scale to larger graphs. We measure runtime of the
various system tasks using a hardware timer in the Zynq SoC
when running in bare metal mode and get_clock_usec
API from time.h when running Xillinux OS. For all our
experimental measurements we repeat the experiment 100s of
times and report averaged runtime to eliminate any unpre-
dictable noise effects during measurement.

Name LUTs FFs BRAMs Clock
(36KB) (ns)

AXI_DMA Register Mode 3363 4138 0 4.3
(% of Zedboard) 6% 4% 0% -
AXI_DMA Scatter-Gather Mode 6149 7738 4.5 4
(% of Zedboard) 12% 7% 3% -

TABLE II: Resource Utilization of the MMUs
We use Xilinx Vivado 2013.4 to synthesize the hardware

design along with the SDK for configuring the processor. We
use the AXI DMA v7.1 IP core [9] generated using the Xilinx
Core Generator and also use the BRAM builder to synthesize
the BlockRAMs used to hold the AXI descriptor chains. We
summarize the resource utilization of the system elements in
Table II.

V. EXPERIMENTS

In this section, we describe the results of our experiments
on observed bandwidth for sparse graph access. We first
quantify the overheads of an operating system for short-
burst transfers on CPUs as well our initial DMA calibration
experiments. Next, we investigate the performance tuning
results for register-mode DMA operation. We finally show
results for optimized scatter-gather operations.

A. Overheads of an OS and Cache

Caching effects and operating system overheads will limit
the achievable throughput for sparse random accesses in graph
algorithms. In Figure 10, we quantify the overhead of using an
operating-system, and enabling caches on ARMv7 host CPU
when conducting sequential and random read accesses. For
sequential accesses shown in Figure 10a, there is a significant
overhead when using an OS for short transfers, but for larger
transfers the OS throughputs are faster. There is a clear need
for enabling caches due to spatial locality of sequential access.
For sparse accesses, we see a similar gap between OS-based
and cache-enabled bare metal access for short transfers, but
a very small one at larger transfers. Again, disabling caches
results in particularly poor access times for longer accesses
as data can still be prefetched/cached within one access. For
sparse graph problems, we expect length per access to be a low
16–64 bytes per access. The data clearly shows that for short
bursty accesses that are typical of sparse graph operations,
there is significant overhead when using an OS+cache. Hence,
our AXI optimizations are run in cache-enabled bare metal
model for maximum performance.

B. AXI_DMA Calibration

Next, we look at the impact of burst_size on DMA
read performance for the AXI_DMA block as we vary the
length of the data fetched in that access (Figure 11). As
we would expect, longer bursts provide better results, but we
observe performance saturation above 128. Furthermore, for
sparse short-burst accesses, we are primarily interested in short
burst_size results as well as short length accesses in the
16–64 byte range. In these situations, a burst_size of 8–32
perform well.

C. Comparing AXI_DMA Register and Scatter-Gather Mode
Operation

In Figure 12, we show the impact of varying the number
of accesses (aggregate size represented) on runtime of the
computation. We see that longer 16-byte bursts tend to deliver
superior runtimes compared to the shorter 2-byte bursts as
expected. Most graph algorithms’ metadata lies in the 8–32
byte range. The bandwidths measured (size/time) are roughly
25–250 MB/s with the lowest bandwidth for a burst size of 2
and the largest bandwidth for the 32 byte burst designs. For
small graphs with few accesses, the slope (bandwidth) is lower
across all designs.

In Figure 13, we compare the observed throughputs of
the Register and Scatter-Gather modes of operation of the

6

0

200

400

600

4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K

Transfer Size (Bytes)

Ba
nd

w
id

th
 (M

B/
s)

Bare Metal + Cache
 Bare Metal − Cache
Xillybus OS

(a) Sequential Access (Read)

0

20

40

60

4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K

Transfer Size (Bytes)

Ba
nd

w
id

th
 (M

B/
s)

Bare Metal + Cache
Bare Metal − Cache
Xillybus OS

(b) Random Access (Read)

Fig. 10: Comparing the DRAM Read Throughputs of Operating System vs. Bare Metal, Caches vs. No Caches.

1e+01

1e+03

1e+05

16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K
51

2K 1M 2M 4M

DMA Transfer (Bytes)

Ti
m

in
g

(m
ic

ro
se

co
nd

)

burst size = 2
burst size = 8
burst size = 32
burst size = 128
burst size = 256

Fig. 11: Impact of Burst Size on memory performance

AXI_DMA block at a burst_size of 16 for identical access
sequences. It is clear that there is a performance gap of 2–3⇥
in favor of Scatter-Gather mode. We expect this due to the
limited interrupt penalty and localized storage of the descriptor
chains.

Finally, we summarize the best-case observed bandwidths
on the DRAM under various access patterns and operating
modes in Table III. As we can see, sequential access patterns
deliver the highest observed throughputs from the DRAM
interface. However, for random access, when the access is per-
formed from the host CPU with caches and OS involvement,
the peak data rates possible drop to merely 34–37 MB/s. We
are able to deliver substantial 2–3⇥ improvements in random
access bandwidth by using Register mode DMA operation
with a burst size of 16. The best improvements of up to 5⇥ are
possible when we carefully construct AXI descriptor chains for
use with Scatter-Gather mode of the AXI DMA engine for our
randomized sparse graph access. While this is still 2.5⇥ less
than the peak sequential throughput possible (as expected),

10

100

25
6

51
2 1K 2K 4K 8K 16

K

Aggregate Transfer Size (Bytes)

Ti
m

in
g

(m
ic

ro
se

co
nd

)

Register Mode (burst=2)
Register Mode (burst=16)
Scatter−Gather Mode (burst=2)
Scatter−Gather Mode (burst=16)

Fig. 12: Time taken by register mode transfers vs.
scatter-gather mode transfer (memory read)

0

100

200

300

25
6

51
2 1K 2K 4K 8K 16

K

Aggregate Transfer Size (Bytes)

Ba
nd

w
id

th
 (M

B/
s)

Register Mode
Scatter Gather Mode

Fig. 13: Throughput comparison for random access using
Register and Scatter-Gather DMA modes

7

our throughputs are still superior to cache-based and naı̈ve
register-mode DMA operation.

Mode Bandwidth Ratio
(MB/s)

OS Sequential 610 -
Bare Metal Sequential 510 -

OS Random 37 1⇥
Bare Metal Random 34 0.9 ⇥
Register Mode Random 90 2.4⇥
Scatter Gather Mode Random 270 7.2⇥

TABLE III: Best-case observed bandwidths
D. Related Work

The design of specialized accelerators for sparse graph
problems have been studied in the past. Some of them use
graph data that is fully cached inside the chip thereby limiting
the largest size of the problem that can be considered while
others just fetch data from the DRAM without optimization.

[1] proposes a re-configurable graph processing architecture
to address the latency differences between on-chip memory
and off-chip memory with an on-chip memory interconnect
between the logic and on-chip memory. However, this design
is only applicable for a narrow class of graph problems that
do not store weights or states along edges and simply perform
a completely local summarization operation. The GraphStep
system architecture [4] is designed to take advantage of
the larger on-chip memory bandwidth available to store and
concurrently process sparse graphs. Scaling to larger graph
sizes was achieved across multiple FPGAs interconnected
by a custom networking fabric. This may be impractical in
most real-world scenarios as FPGAs are expensive devices.
However, if cost is no concern, this architecture offers the
highest performance reported by keeping all graph data fully
inside the chip. GraphGen [6] is another graph-centric ac-
celerator framework for FPGAs that relies purely on off-
chip DRAM-based graph storage and streaming parallelism
to deliver speedups. However, the memory controller in this
design is not particularly optimized to handle graph-oriented
accesses and performance is ultimately limited by DRAM
bandwidth rather than FPGA parallelism.

CoRAM [3] is a FPGA memory abstraction designed to
support memory accesses from within the programmable logic
through a set of commonly-used memory organization pat-
terns. While this does provide a convenient set of primitives to
compose accelerators and load/unload on-chip memories with
ease, there is no specific support for managing large, irregular
data structures.

Convey Scatter-Gather DIMMs [2] allow fast random access
from the FPGA accelerator organized as 8-byte operations to
overcome the wasted cache bandwidth due to 64-byte cache
lines on x86 systems. While this is an improvement, it is still
a fixed-size access which may not match all graph-oriented
access patterns and only operates with Convey boards and
memory controllers.

Instead of forcing all data to be held on-chip or ignoring the
DRAM bandwidth gap, we specifically focus on developing

a memory management unit that can efficiently fetch data
from the off-chip DRAM for irregular access sequences. Our
GraphMMU is compatible with any AXI-supported board
and IP block (accelerator portion) and is not locked to any
specific platform. We consider a variety of AXI optimizations
and quantify the impact of these optimizations on overall
performance. While we demonstrate this design on a small
Xilinx Zedboard, we can build larger-scale graph accelerators
by splitting computations across multiple Zedboards or by
upgrading the design to a denser FPGA.

VI. CONCLUSIONS

We show how to improve off-chip memory throughput for
sparse irregular access by as much as 7⇥ when compared
to cache-based access on embedded CPUs on the Xilinx
Zedboard. We use low-level optimizations of the AXI DMA
engines by constructing descriptor chain sequences that cap-
ture the sparse irregular access. We are able to improve per-
formance by eliminating caches and host CPU for sequencing
the access for the AXI engines. In our AXI optimizations, we
observe improved scatter-gather DMA throughput by as much
as 3⇥ when compared to register-mode DMA. We expect to
build larger graph accelerators by composing multiple Zynq
SoCs together and use the Zynq SoCs as intelligent scatter-
gather engines for distributed graph data.

VII. ACKNOWLEDGEMENTS AND FOLLOWUP

We wish to thank Mohammad S. Sadri for his Zynq tu-
torials and extensive assistance in supporting us during the
preliminary stages of the project. You may download code
under a BSD license from https://bitbucket.org/nachiketkapre/
graph mmu with commit hash 08a3c4b.

REFERENCES

[1] B. Betkaoui, D. Thomas, W. Luk, and N. Przulj. A framework for FPGA
acceleration of large graph problems: Graphlet counting case study. In
Field-Programmable Technology (FPT), 2011 International Conference
on, pages 1–8, 2011.

[2] T. M. Brewer. Instruction Set Innovations for the Convey HC-1
Computer. Micro, IEEE, 30(2):70–79, 2010.

[3] E. S. Chung, J. C. Hoe, and K. Mai. CoRAM: An In-Fabric Memory
Architecture for FPGA-based Computing. Multiple values selected, Jan.
2011.

[4] M. deLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin, T. E.
Uribe, T. F. J. Knight, and A. DeHon. GraphStep: A system architecture
for sparse-graph algorithms. In Field-Programmable Custom Computing
Machines, 2006. FCCM’06. 14th Annual IEEE Symposium on. IEEE,
IEEE Computer Society, 2006.

[5] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press.

[6] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe, J. F.
Martı́nez, and C. Guestrin. GraphGen: An FPGA Framework for Vertex-
Centric Graph Computation. In Field-Programmable Custom Computing
Machines (FCCM), 2014 IEEE 22nd Annual International Symposium
on, 2014.

[7] M. Sadri, C. Weis, N. Wehn, and L. Benini. Energy and performance
exploration of accelerator coherency port using Xilinx ZYNQ. In
FPGAworld ’13: Proceedings of the 10th FPGAworld Conference. ACM
Request Permissions, Sept. 2013.

[8] L. G. Valiant. A bridging model for parallel computation. Communica-
tions of the ACM, 33(8), Aug. 1990.

[9] Xilinx, Inc. LogiCORE IP AXI DMA v7.1, Mar. 2014.
[10] Xilinx, Inc. Zynq-7000All Programmable SoC, Nov. 2014.

8

