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Abstract—
FPGA-based accelerators can outperform multi-core, GPU and

Xeon Phi based platforms by at as much as 2.8⇥ for 3D Green’s
Function processing in geophysics while delivering superior
energy efficiency. FPGAs can efficiently implement a complex
mixture of compute patterns that include data-parallelism, re-
ductions, dataflow and streaming computations using spatial
parallelism to deliver these speedups and power benefits. Since 3D
Green’s Function is highly-parallel but communication bound, we
optimize the FPGA implementation by considering loop restruc-
turing and tiling optimizations to minimize and regularize off-
chip accesses. Furthermore, we configure the FPGA to implement
the key compute intensive kernels at double-precision as well
as single-precision to exploit the uncertainty in measurements
of earthquake monitoring sensors. For 512⇥512⇥512 problem
size, the Xilinx SX475T (Maxeler MAX3) outperforms the fastest
architecture by 1.1–1.4⇥ (double-precision), 2.2–2.8⇥ (single-
precision) with 1.2⇥ better energy efficiency.

I. INTRODUCTION

Physically-derived computational problems from geophysi-
cal simulations often handle large volumes of data and perform
complex mathematical operations on these datasets. The un-
derlying computations are an abundant source of parallelism
which makes it possible to easily map these computations
to large clusters of multi-core CPUs with relatively modest
programming effort using MPI and OpenMP. However, the
cost of 3D data access and communication between the differ-
ent constituent blocks limits overall achievable performance.
For large problems with a 5123 mesh, a single simulation
can take at least 2–3 hours on parallel 16-thread Xeon
architectures (see an example simulation result in Fig. 1).
For our calculations, inverse modeling of physical parameters
using Simulated Annealing would require about 15 weeks of
calculations on the 16-thread Xeon or occupy a 1K-core cluster
for 2–3 weeks. Accelerators such as NVIDIA GPU, Intel Xeon
Phi and FPGA-based systems offer the potential to improve
performance by keeping data locally on the accelerator cards
and operating on them in parallel. However, in presence
of significant memory access (communication) requirements
for large 3D structures, even highly-parallel problems may
challenges these accelerators.

In this paper, we implement 3D Green’s Function accel-
eration using various accelerators. This is a common kernel

Fig. 1: Perspective of three-dimensional modeling of the
2010 Mw 8.8 Maule, Chile earthquake. The arrows represent
the amplitude and direction of displacement occasioned by

the quake. The central coloured plane represent the
amplitude of slip of the subduction fault during the event.

The megathrust, in the background, represents the plate
boundary between the Nazca plate and the South American

Plate. The simulation is on a 512

3 mesh and takes 2–3 hours
on 16-thread Xeon system

in many geophysical modeling computations that involve es-
timating the elastic deformation of the earth’s crust around
earthquake events and also for modeling hydrological fea-
tures such as the impact of rainfall or dam construction on
geological stability. Proper sampling of geological structure
require small sampling. So to encompass the whole study
area in our numerical simulation requires a large number
of points. In our experience these requirements are achieved
for meshes with 5123 or more elements. To meet scientific
requirements, these large 3D structures (5123) impose sig-
nificant constraints on memory capacity and communication
within the system. The specific computational blocks exhibit
a rich mixture of compute patterns such as data-parallelism,
reduction that can be supported well on parallel hardware. The
data collected for geological monitoring stations that is used
in this analysis is typically delivered with a 5% uncertainty,



which enable cheaper single-precision implementations. The
specific challenges we explore in this paper include composing
and co-ordinating applications as complex as Green’s Function
evaluation that easily exceed the logic capacity of a single
FPGA card, managing the communication of data between
the sub-functions and optimizing performance.

Maxeler DFE [5] (data flow engine) is an accelerator
platform with an associated Java-based programming environ-
ment (MaxCompiler) that permits rapid development of FPGA
accelerated computations. A single MAX3 Vectis FPGA card
contains a Xilinx Virtex SX475T FPGA and 24 GB DRAM
that is large enough to hold intermediate state for multiple
instances of problems as large as 512

3. When programming
this board, the computation is split into several kernels that are
offloaded to the FPGA in a manner mostly similar to GPU
parallelization. We consider single-FPGA designs where we
explore loop restructuring, tiling and streaming optimizations
that allow us to use fit the design into a single FPGA and
optimize memory behavior.

The key contributions of this paper include:
• Implementations of 3D Green’s Function kernels for elastic
deformation for multi-core CPUs (OpenMP), GPU (CUDA),
Xeon Phi (OpenMP pragmas) and FPGA (Maxeler).
• Evaluation of single-FPGA designs with optimizations
for loop tiling, loop restructuring, dataflow streaming and
precision optimization to support real-world problem sizes
of scientific interest.
• Quantification of performance and power usage across
various problem sizes and physical system configurations.

II. BACKGROUND

A. Green’s Function for Elastic Deformation

The deformation of elastic materials under infinitesimal
strain is described by the Navier’s partial differential equation,
whereby the displacement field is related to internal body
forces and surface tractions. For time-dependent deformation,
an equation of the same form relates the velocity field to body
forces and surface tractions per unit time. Many problems
of geophysical interest including poroelasticity, viscoelasticity
and faulting can be modeled in this framework. Solving the
Navier’s equation efficiently is therefore of great practical
significance. Many numerical methods can be used to solve
the partial differential equations in three dimensions, including
the finite element or the finite difference methods. Solving the
partial differential equation in the Fourier domain scales with
N , therefore the efficiency of spectral methods grows with
N logN . A fast solution to the Fourier domain solution opens
the door to many practical applications, including the modeling
of time-dependent nonlinear visco-elasto-plastic deformation
or aseismic creep on faults in three dimensions with hundreds
of time steps. Another application of great significance is the
Bayesian inversion of geophysical data using Monte Carlo
methods. The Green’s function is a mathematical operator that
provides the displacement and stress due to a distribution of
forces in the domain using the fast Fourier approach.

For the geophysical applications considered here, we are
interested in solving for the elastic deformation due to internal
body forces and surface traction in a half space. Mathemati-
cally, this implies that we need to incorporate the free surface
boundary condition (the vertical components of stress are zero
at the surface). In practice the boundary condition at the
surface is of great importance because this is where most
field measurements are usually carried out and the simulation
results must be accurate there for effective comparison with
data.

The spectral solver works as shown in Figure 2. First, we
apply a fast Fourier transform of the body forces f(x) as
shown:

ˆf(k) =
ZZZ 1

�1
f(x)e�i2⇡k·x

dx (1)

For certain kinds of earthquake simulations we can skip the
FFT step entirely with time-independent data in the context of
multiple inverse Monte-Carlo simulations.

We then multiply the three components of the body forces
by a matrix of wavenumber components. Here M(k) repre-
sents the transfer function between forces and displacements
(ˆu) in the Fourier domain.

ˆup
(k) = M(k) ·ˆf(ˆk) (2)

The result is a displacement field that satisfies the conservation
of momentum, but not the free-surface boundary condition.

Next, we compute the stress ˆtp(k1, k2) at the surface. Typ-
ically, geophysical observations are carried out at the Earth’s
surface, so dealing with the free surface boundary condition
is important to simulate data.

ˆtp(k1, k2) =
Z 1

�1
T(k) · ˆup

dk3 (3)

and we add an correction that satisfies the partial differential
equation but cancels out the surface stress. Here, T(k) rep-
resents the transfer function between displacements (ˆu) and
stress in the Fourier domain.

The displacement field that solves the elastic equations with
given stress at the surface is referred to as Cerruti’s solution.
Conveniently, the analytic solution for displacement ˆu(k) can
be formulated in the Fourier domain, so this step can be done
in place.

ˆu(k) = ˆup
(k) + ˆuh

(k;ˆtp) (4)

Only after this correction do we apply the inverse Fourier
transform to obtain a result in the space domain.

u(x) =
ZZZ 1

�1
ˆu(k) ei2⇡k·x

dk (5)

The advantage of this technique is that the solution is
obtained immediately with algebraic accuracy. No iterations
are involved or convergence tests required. The solution is
obtained with an arbitrary distribution of body forces and
surface tractions.
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Fig. 2: 3D Green’s Function Block Diagram
(Time Independent simulations do not need an explicit FFT, Equation numbers correspond to those in Section II)

TABLE I: Runtime breakdown of 1-thread performance on
Xeon E5-2620 (512⇥512⇥512)

Function Time Instructions Memory Miss Rates
(s) FP Ops Ld-Str L1 Miss L2 Miss

FFT 2.78 11 M 2.1 G 20.7 7.6
(13%) (0.15%) (11%) (43%) (44%)

Elastic 2.42 1.4 G 2.7 G 1 0.1
(11%) (20%) (15%) (2%) (0.5%)

Surf. Traction 3.61 1.5 G 5.1 G 0.6 0.1
(17%) (21%) (27%) (1%) (0.5%)

Cerruti 10.02 4.5 G 6.2 G 3.3 3.3
(46%) (59%) (33%) 7(%) (18%)

iFFT 2.94 12,M 2.4 G 22.2 6.3
(13%) (0.15%) (13%) (47%) (36%)

Total 21.77 7.5 G 18.5 G 47.8 17.5
(100%) (100%) (100%) (100%) (100%)

B. Related Work
There is broad and vast existing literature of FPGA acceler-

ation of scientific computing applications in geophysics. [2]
shows the superiority of FPGA-based accelerators over GPUs
and other competing conventional platforms for complex geo-
physics applications. The authors map a large, physically-
inspired dataflow operations to the FPGA accelerator and
deliver speedup and power benefits by exploiting spatial par-
allelism and high-capacity DRAMs to hold intermediate state.
Recent work has also investigated geophysics acceleration
on GPUs [7], [4] by extensive use of optimized CUDA
libraries and auto-tuned CUDA routines. In our approach, we
consider a considerably harder problem for FPGA mapping
that presents a combination of challenges: (1) large size and
orthogonal access patterns of the data being handled, (2) scale
of the computation being implemented exceeding FPGA logic
capacity, (3) consideration for I/O and memory bandwidth
limited performance, and (4) fair evaluation of performance
and power across multi-core CPU, GPU, Xeon Phi and FPGA
accelerators.

C. Performance and Bottleneck Analysis
We first profile the Green’s Function code on a single-

thread implementation on an Intel Xeon CPU to identify
performance bottlenecks. This code is written in Fortran and
makes extensive use of FFTW and Intel MKL libraries.
We also perform multi-core parallelizability analysis of the

different blocks to understand how performance scales with
threads on multi-core CPUs. For this experiment, we use
the same Fortran code with OpenMP pragmas applied to
suitable loops in the different stages of the computation. We
tabulate the distribution of runtime and other statistics across
the various Green’s Function operators in Table I and the
multi-thread scaling trends in Figure 3. We observe that the
Cerruti kernel takes up around 50% of total sequential
time with the rest equally distributed across the remaining
functions. As expected, the FFTs and iFFTs are performance-
limited by high L1 and L2 miss rates and very low floating-
point operation efficiency. In contrast, the rest of the function
have 20–60% floating-point occupancy which is favorable for
parallelism. This bears out in Figure 3, where we see smooth
linear improvements in runtime for most functions up to 16
threads with the exception of the parallel FFTs which start to
saturate somewhat beyond 8 threads. Overall, the high floating-
point occupancy and smooth parallel scalability of the bulk of
the Green’s Function code makes it ideal for parallelization.
However, when solving large inverse problems that use the
Green’s Function kernel at 3D sizes such as 512

3, despite the
abundant parallelism in the problem, overall performance can
still be limited by I/O and memory bandwidth. The abundance
of parallelism in presence of serious I/O concerns shifts the
research focus in this acceleration study towards system-
level strategies and composition of a larger and complex
computation on the accelerator.

III. 3D GREEN’S FUNCTION ON ACCELERATORS

We compare the key capabilities of the different accelerators
evaluated in this study and discuss system-level issues and
parallelization of the Green’s Function on these accelerators.

A. Accelerators
In Table II, we identify the key datasheet specifications

and metrics of the FPGA accelerators. As we see, when
considering the peak floating-point capacity of the different
accelerators, the GPU and the Xeon Phi are able to dominate
the comparison with the CPU and the FPGA by almost 10⇥.
In contrast, when comparing power usage of the platforms,
FPGAs retain a 5⇥ advantage over the GPU and Xeon Phi.
Overall, the capability of a platform depends on other factors
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TABLE II: Datasheet specifications and key metrics of the FPGA, GPU, Xeon Phi and Multi-Core systems

Intel Multi-core CPU Xilinx FPGA NVIDIA GPU Intel Xeon Phi
Processor Xeon E5-2620 Xilinx Virtex-6 SX475T K20c Xeon Phi 5110P
Technology 32nm 40nm 28nm 22nm
Cores 6 x86 cores N/A 2.5K CUDA cores 60 x86 cores
Clock Frequency 2 GHz 200 MHz 732 MHz 1.053 GHz
Peak FLOPs (64b) 96 GFLOPS 116 GLOPS1 1.17 TFLOPS 1.01 TFLOPs
Power2 95 W 40 W 225 W 225 W
On-Chip Memory
Size L1 (per-core) 32 KB L1 38.3 MB (FMEM3) 64 KB L1 32 KB L1
Size L2 (total) 1.5 MB L2 1.25 MB L2 30 MB L2
Size L3 (total) 15 MB L3
B/W L1 (per-core) 256 GB/s L1 10 TB/s (FMEM3) 180 GB/s L14 80 GB/s L15

B/W L2 (total) 190 GB/s L2 750 GB/s L24 40 GB/s L25

B/W L3 (total) 92 GB/s L3
Off-Chip Memory
Capacity 32 GB 24 GB (LMEM3) 6 GB 8 GB
Interface 32b DDR3-1333 48b DDR3-400 324b GDDR5 32b GDDR5
Bandwidth 42.6 GB/s 38.4 GB/s 208 GB/s 320 GB/s

1From http://www.xilinx.com/support/documentation/white papers/wp375 HPC Using FPGAs.pdf 2We measure power as dataheet TDP
numbers for the PCIe cards or the chip as advertised 3FMEM refer to FPGA Block RAMs and LMEM is offchip DRAM in Maxeler

terminology 4From http://gpu.cs.uct.ac.za/Slides/Kepler.pdf (Slide 12) 5From
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner (Fig. 14)
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Fig. 3: Multi-thread performance scaling on 16-threads Intel
Xeon E5-2620 with Intel MKL 2013.5.192 (512⇥512⇥512)

such as onchip memory capacity and memory bandwidth. On
this front, the on-chip FPGA BlockRAMs deliver a staggering
⇡10 TB/s bandwidth that exceeds the on-chip bandwidths of
the competing platforms by 5–10⇥. The large 30 MB L2 cache
of the Xeon Phi enables caching larger portions of the FPGA
accelerator for fast local access. For larger problems that need
to be stored in the off-chip DRAM, the GPU and Xeon Phi
again offer as much as 8⇥ higher bandwidth. Given this
imbalance, for the parallel Green’s Function computation, it
may appear that the accelerators with faster memory interfaces
will better support larger 3D data accesses. We investigate this
assumption in following sections.

B. GPU Parallelization

First, we consider GPU-based parallelization of the Green’s
Function code. GPUs are highly-parallel SIMT (Single In-
struction Multiple Thread) architectures that are organized into
many SMs (symmetric multi-processors). Each SM runs a
warp of threads which take turns executing code on the ALUs.
For our application, we rewrote the individual Fortran routines
of 3D Green’s Function package [1] in CUDA to exploit the
parallel potential of GPUs. This meant the code was split into
separate kernels – one kernel per Green’s function stage shown
in Figure 2. A key system-level design strategy we chose was
to keep the 3D structures resident in the GPU DRAMs between
consecutive kernel invocations. This allows us to exploit the
208 GB/s (See Table II) bandwidth that is available. For the
FFT and iFFT routines, we simply used the optimized cuFFT
libraries supplied by NVIDIA. In the table below, we show
the speedup achieved for each of the individual functions.

FFT Elastic Surface Traction Cerruti iFFT

14 72 82 20 15

In Figure 4, we show the speedup achieved for each
of the individual functions. As expected, acceleration for
memory intensive FFTs and iFFTs was limited to about 2⇥
despite using optimized routines. However, other functions
such as Elastic Response and Surface Traction

were accelerated by greater factors due to available data-
parallelism in the problem. The Cerruti kernel, despite
available parallelism, saturated at a peak speedup of 2⇥ as
well due to excessive register usage per GPU thread.
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Fig. 4: Speedup Breakdown of NVIDIA K20 acceleration of
512⇥512⇥512 Green’s Function vs. 16-thread Intel Xeon

E5-2620

C. Xeon Phi Parallelization

Next, we investigate the potential for Xeon Phi-based paral-
lelization of the Green’s Function code. The Xeon Phi accel-
erator is organized as multiple x86 cores interconnected with
a ring supported by a large 30 MB L2 cache. Each core offers
compatibility with existing x86 software but requires careful
parallelization through suitable use of OpenMP pragmas or
specific MKL functions. For parallelizing Green’s Function
Fortran code, we simply added suitable OpenMP pragmas
for appropriate loops to encourage and guide parallelization
on the Xeon Phi. To ensure the intermediate data resides on
the accelerator memory space, we introduced suitable data
persistence pragmas thereby avoiding a PCIe roundtrip. In
the table below, we shown the speedup breakdown across the
various functions.

FFT Elastic Surface Traction Cerruti iFFT

1 2.3 4.7 2.7 1.3

D. FPGA Parallelization (System-Level)

When parallelizing the Green’s Function computation on the
GPU and Xeon Phi, we split the design down in to individual
kernels while retaining intermediate state on the accelerator
DRAMs. For the FPGA dataflow design, we are (1) unable to
fit the complete compute graph into a single FPGA configura-
tion, and (2) unable to keep reliably data resident in the DRAM
between multiple FPGA reconfigurations. We run the FFT and
iFFT computations on the multi-core CPU as the resulting
kernels are memory-bound and run fast enough on the host
multi-core CPU. FPGA-based 3D FFTs [3] are possible but
occupy a large portion of the FPGA by themselves (80%
DSPs and RAMs on Virtex-7 XC7V200T) while operating on
smaller sizes (643 single-precision vs. 5123 double-precision
required here) as constrained by the device characteristics. We
represent our two system-level approaches in Figure 5.
• Multiple-Bitstream FPGA Design with PCIe Stream-
ing: A naive implementation that mimics the GPU/Xeon
Phi offload model adapted to the FPGA is shown in Fig-
ure 5a. Each kernel is configured on the FPGA in sequence
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FFT/iFFT Elastic CerrutiSurf. Traction
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(a) Separate-Kernel Design Strategy
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(b) Time Dependent Simulations (Streaming over PCIe)
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2 3 4

5
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(c) Time Independent Simulations (Streaming over DRAM)

Fig. 5: Various System-Level Design Strategies for
Composing the Accelerator

thereby needing only a single physical card for the entire
Green’s Function computation. We optimize the kernels to
occupy as much of the FPGA as possible by replicating
the design multiple times until we exhaust capacity. Here,
we copy back intermediate results to the host CPU as the
Maxeler FPGA card is unable to retain DRAM contents
across reconfiguration cycles. Since we expect this design
to perform poorly due to the need to repeatedly transfer data
back/forth to the host CPU, we do not explore this further
but mention the strategy as a consideration for future FPGA
board designs. Apart from keeping DRAMs in self-refresh
state, we will have to be aware of DRAM controller training
phase at bootup.
• Time Dependent Simulations (PCIe Streaming – Fig-
ure 5b). In the time-dependent simulation case, we map
all three functions Elastic, Surface Traction and
Cerruti directly within a single FPGA. We optimize
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dataflow between these kernels using loop restructuring and
tiling optimizations. We choose to stream the data directly
over the PCIe interface from the host CPU, through the
various compute blocks on the FPGA and back to the host
CPU in a streamlined fashion. Since one transfer over PCIe
is unavoidable for time-dependent simulation, we avoid the
DRAM entirely and stream the data to the FPGA fabric.
• Time Independent Simulations (DRAM Streaming –
Figure 5c). For the time-independent scenario for earth-
quake simulations, we can skip the FFT step and load
data directly from the DRAM for various simulations. In
this case, we again map all three functions directly within
a single FPGA but stream the inputs from the DRAM
instead of the host CPU (PCIe). The input structure f(x)
only needs to be copied to the DRAM once across multiple
Monte-Carlo simulations. This allows us to exploit the fast
bandwidth of the local DRAMs on the accelerator card.
We still need to perform the iFFT step on the CPU which
requires that we transfer data back over the PCIe interface
overlapped with the FPGA compute.

E. FPGA Optimization (Kernel-Level)

The key performance challenge with 3D loops nested over
x, y and z dimensions, is the poor memory performance
due to the orthogonal nature of memory accesses in different
iterations. While all platforms are ultimately limited by this
memory access, there are still opportunities to minimize the
number of accesses on suitable architectures. On the FPGA,
it is possible to run each of three core kernels separately
while exchanging data over the DRAM like the GPU, Xeon
Phi and CPU implementations, but instead we can stream the
inter-kernel code directly within the FPGA using dataflow
composition. A similar optimization has poor effectiveness on
the GPU, CPU and Xeon Phi due to limited on-chip register
and cache capacity.

As shown in Fig. 6, we describe the fused kernel in
MaxJava using special Java primitives that are synthesizable
directly to the Maxeler FPGA card without needing to write
low-level RTL code. We compose the three kernels using a
Maxeler Manager that allows flexible integration with PCIe
or DRAM-based modes. We express loop counter chains for
the 3D iteration to feed the memory address generation logic.
The dataflow expressions of the arithmetic capture spatial
parallelism within the numerical evaluations. We reduce the
number of off-chip memory accesses by keeping the data
within the chip using streaming communication. We provide a
high-level dataflow sketch of the various kernels in Listing 7.

We optimize the Maxeler FPGA implementation using two
loop transformations:

• Loop Restructuring: The optimized, fused code is ob-
tained through manual loop restructuring optimization
that ensures the three sequential kernels can be combined
in this manner. While various orders of x, y, and z

indices are possible, the nature of the computation yielded
y-x-z as the performance-optimal order. Here, we are
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Fig. 6: Maxeler FPGA Design Composition

SUBROUTINE fused(REAL f1, f2, f3)

DO y = 0, N

DO x = 0, N

DO z = 0, N

! do elasic here...

! do surface here...

END DO
DO z = 0, N

! do cerruti here...

END DO
END DO

END DO

Fig. 7: Fortran pseudocode for three compute stages in
3D Green’s Function calculation

required to wait one iteration of the z loop before exe-
cuting Cerruti to balance buffering and ensure correct
evaluation.

• Loop Tiling: Due to the 3D!2D reduction operation
in Surface Traction phase, we use loop tiling
optimization to ensure efficient on-chip memory access
for the accumulation. Loop tiling splits the innermost
loop over z into a nested loop and re-organizes memory
accesses to use on-chip buffers with a reuse distance of
C (multiple of 25 cycles). This increases FMEM usage to
fit these buffers to significantly improves performance by
improving memory access time and keeps the datapath
occupied.

IV. METHODOLOGY

We use Relax open-source software package [1], written in
Fortran, for our experiments. Relax is already multi-threaded
using OpenMP pragmas for use on multi-core CPUs. The
CUDA version (Section III-B) is performance tuned with
block-size and threads-per-block exploration, explicit register
allocation control and memory transfer overlapping optimiza-
tions. The Xeon Phi version (Section III-C) is performance
optimized with pragmas for vectorization, multi-threading,
page buffering and offload preloading options. We tabulate the
various environment configurations for the different platforms
in Table III. The FPGA MaxJava implementation is optimized
to run at 120 MHz through loop restructuring, tiling and
pipelining optimizations. We tabulate FPGA resource utiliza-
tion for the various design configurations (precision, interface)
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in Table IV. We use PAPI counters, CUDA timers events to
record the time taken by the accelerated computations aver-
aged across thousands of iterations. We calculate all speedups
when compared against ifort optimized CPU implementa-
tions supported by tuned Intel MKL libraries. We also optimize
GPU and Xeon Phi implementations through a design space
exploration of various tuning parameters (e.g. block and thread
configurations, offload pragmas).

V. RESULTS

We discuss the overall performance and power utilization
results for the different accelerators and simulation scenarios.

In Figure 8, we show overall speedups for the various
accelerators including PCIe transfer times and find that neither
the GPU nor the Xeon Phi outperforms multi-core CPUs for
time-dependent simulations, with the GPU 10% faster for
the time-independent simulations. The FPGA design operates
close to the streaming throughput of the PCIe link bandwidth
offering speedups between 10–40% over the 16-threaded CPU
implementation under both scenarios respectively. The GPU
implementation suffers for poor thread occupancy (less than
50%) due to high number of registers used per thread. Poor
performance of the Xeon Phi is a known issue for non-
regular workloads like 3D FFTs and 3D-problems [6]. For
time-independent simulations, the first transfer is amortized
over multiple Monte-Carlo instances resulting in slightly better
results. The FPGA is now able to exploit the faster DRAM
bandwidth to improve performance when compared to the
PCIe-limited design. Overall, despite abundant parallelism,
when facing communication limits, only the FPGA accelerator
is able to offer a competitive solution that exploits available
link bandwidth.
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Fig. 8: Overall System-Level Speedups
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TABLE III: Platform Configurations across accelerators

Platform OS Compiler+Libraries

Xilinx FPGA CentOS 6.5 MaxCompiler v2014.1.1
Xilinx ISE 13.3

NVIDIA GPU Ubuntu 12.04 CUDA v6, cuFFT
Xeon Phi CentOS 6.0 ifort v13.1.3

composer_xe v2013.5.192

TABLE IV: FPGA Resource Utilization Breakdown

Function LUTs FFs DSPs RAMs

Elastic 55K (19%) 80K (14%) 395 (20%) 0 (0%)
Surface 46K (16%) 69K (12%) 350 (18%) 6 (1%)
Cerruti 107K (37%) 157K (27%) 0.9K (50%) 342 (33%)
Total 213K (72%) 311K (53%) 1.7K (87%) 389 (37%)

Single-Precision, PCIe
Total 81K (28%) 106K (18%) 339 (17%) 191 (18%)

Single-Precision, DRAM
Total 121K (40%) 164K (27%) 334 (17%) 410 (38%)
Total (2-lane)1 186K (62%) 258K (43%) 556 (27%) 737 (69%)

1Here 2-lane design refers to two unrolled copies of the fused kernel
operating in parallel

We clearly separate out the impact of I/O limits on perfor-
mance in Figure 9. Fusing multiple kernels into a single kernel
operates no worse than any single kernel as it is able to run
in a streaming fashion on data sourced from the DRAM (3⇥
32b per dimension ⇥ 120 MHz = 11.5 GB/s). This means all
inter-kernel I/O gets captures within the FPGA fabric allowing
fully pipelined operation. While this is still only ⇡30% of the
DRAM bandwidth, a double-precision design occupies ⇡87%
of FPGA DSP resources preventing logic replication.

Elastic

Surface Traction

Cerruti

Fused

0.00 0.25 0.50 0.75 1.00
Time (s)

DRAM PCIe

Fig. 9: Comparing Time-Dependent Simulation (PCIe) vs.
Time-Independent Simulation (DRAM) Runtime on the

FPGA accelerator

Time Dependent

Time Independent

0 1 2 3

Fig. 10: FPGA Speedups (single-precision) vs. 16-thread
Intel CPU+MKL (single-precision)

In comparison with the double-precision design, the single-
precision design can be unrolled twice to have two concurrent
datapaths that can operate on two sets of inputs streams from
the DRAM. This results in a close to 2⇥ improvements in
runtime and an associated limited impact on accuracy of
1e

�1 (l2-norm of u(x)) which is within accepted tolerance
for geophysics application requirements. We tabulate overall
speedups in Figure 10. Both the GPU and Xeon Phi imple-
mentations are oddly marginally slower when using single-
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precision arithmetic due to misalignment in memory access
(certain functions are faster, but slow overall).

For geophysical simulation scenarios, we consider various
problem sizes from 128

3–5123. As we can see, the GPU-based
design is able to start closing the gap with CPU-based design
and marginally beating it at the largest 512

3 problem size.
The FPGA design always operates close to its I/O potential
(whether using PCIe or DRAM links) and scales smoothly
delivering the fastest design at all sizes. The 1024

3 time-
dependent simulations (not shown), that enable more accurate
scenarios to be processed, are only possible on the FPGA
accelerator (24 GB DRAM) and CPUs.
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Fig. 11: Impact of Problem Size on Performance

In Table V, we show the power-performance tradeoffs across
the different accelerators, and report the energy consumed by
the different systems. As we can see, FPGA-based system
delivers marginally better energy usage of 131 J over the
166 J multi-core CPU implementation. In contrast, the energy
efficiency of GPU and Xeon Phi is 3⇥ and 20⇥ worse,
respectively.

TABLE V: System Power-Performance Results

CPU FPGA GPU Xeon Phi
(tool) maxtop nvidia-smi micsmc

Power (W) 128 143.8 214 263
Time (s) 1.3–1.6 0.92–1.4 1.7–1.9 8.5–15
Energy (J) 166–204 131–201 363–406 2235–3945
Ratio 1–1.2 1 2–2.7 17–19

A. Discussion
When inspecting peak capabilities of the different accel-

erators in Table II, the higher arithmetic throughput and
faster DRAM interfaces on the GPU and the Xeon Phi may
mislead a prospective developer into spending development
and porting effort for those platforms. While they are easier to
program (high-level CUDA or simple OpenMP pragmas), the
architectures suffer I/O bottlenecks and other parallelization
limits due to mismatch with the parallel application. FPGA-
based designs are often harder, require careful design with
a dataflow methodology, but can be configured to operate

close to the I/O bandwidth capacity and logic potential of
the fabric. The Green’s function computation is fundamentally
performance-limited by IO bandwidth. Under these circum-
stances, the accelerator with streamlined processing offers
the best opportunity for acceleration. We present an FPGA
design that occupies 80–90% of the FPGA while processing
data in streamlined fashion limited only by the ability to
access data. A board-level redesign of the FPGA accelerator
card that enables retention of DRAM state offers one way
to overcome the performance constraints imposed by PCIe
IO bandwidth. While this is possible on the NVIDIA GPUs
and Xeon Phi accelerators, the inter-kernel communication de-
pendencies limit performance. The Maxeler FPGA accelerator
even supports streamlined IO over 10G Ethernet that can be yet
another opportunity to overcome PCIe IO limits. The Maxeler
MPC C500 system can be configured to split the Green’s
function across the four FPGA cards and use MaxRing IO for
streamlined operation. While this approach does not entirely
eliminate PCIe streaming requirement by itself, we can use
the extra logic capacity made available to program one of the
cards to generate the 3D data structures entirely on the FPGA.

VI. CONCLUSIONS

We accelerate 3D Green’s Function computation for geo-
physical applications using FPGAs by as much as 1.1–1.4⇥
(double-precision) and 2.2–2.8⇥ (single-precision) when com-
pared to the best multi-core, GPU and Xeon Phi implemen-
tations for problem sizes as large as 512

3. We are able to
deliver these speedups by exploiting spatial parallelism in the
arithmetic expressions, loop restructuring to avoid off-chip
data accesses and loop tiling optimizations. When limited by
communication-bound problems, the FPGA dataflow method-
ology is capable of delivering balanced solutions that are better
capable of using this limited resource more effectively than
competing accelerators such as GPUs, and Xeon Phi.
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