
Heterogeneous Dataflow Architectures for
FPGA-based Sparse LU Factorization

Siddhartha
School of Computer Engineering

Nanyang Technological University
50 Nanyang Avenue, S639798

Email: siddhart005@e.ntu.edu.sg

Nachiket Kapre
School of Computer Engineering

Nanyang Technological University
50 Nanyang Avenue, S639798

Email: nachiket@ieee.org

Abstract—
FPGA-based token dataflow architectures with heterogeneous

computation and communication subsystems can accelerate hard-
to-parallelize, irregular computations in sparse LU factorization.
We combine software pre-processing and architecture customiza-
tion to fully expose and exploit the underlying heterogeneity
in the factorization algorithm. We perform a one-time pre-
processing of the sparse matrices in software to generate dataflow
graphs that capture raw parallelism in the computation through
substitution and reassociation transformations. We customize the
dataflow architecture by picking the right mixture of addition and
multiplication processing elements to match the observed balance
in the dataflow graphs. Additionally, we modify the network-on-
chip to route certain critical dependencies on a separate, faster
communication channel while relegating less-critical traffic to the
existing channels. Using our techniques, we show how to achieve
speedups of up to 37% over existing state-of-the-art FPGA-based
sparse LU factorization systems that can already run 3–4× faster
than CPU-based sparse LU solvers using the same hardware
constraints.

I. INTRODUCTION

Sparse LU factorization is a key computational bottleneck in
many well-known scientific and engineering problems. Due to
memory bottleneck associated with irregular access of sparse
matrix structures, it is often classified as a hard-to-parallelize
challenge problem. Several software packages support sparse
LU factorization (e.g. [1]). A few customized hardware designs
for sparse LU factorization (e.g. [2]) demonstrate non-trivial
speedups over the software solvers. While these speedups are
promising, imbalanced ALU designs and high communication
costs on the dataflow network often limit speedups beyond
what is theoretically possible. In this paper, we propose an
improved heterogeneous design based on an existing token
dataflow architecture used in [2] for sparse LU factorization.
We modify the dataflow processing elements to better reflect
the distribution of add and multiply operations in the graphs.
Our design also focuses on alleviating the communication
bottleneck by adding a faster communication channel for
routing critical dependencies in the factorization graphs. To
exploit this modified design, we develop a graph partitioning
recipe to ensure balanced, locality-aware distribution of com-
pute operations. Figure 1 shows the multiply-to-add ratios in
these dataflow graphs for the bomhof2 benchmark (only non-
zero iterations are plotted). Figure 2 shows the distribution

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600
 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

M
u
lt
ip

ly
-t

o
-a

d
d
 r

a
ti
o

M
u
lt
ip

ly
-t

o
-a

d
d
 r

a
ti
o

Iteration Number

bomhof2

Fig. 1: Multiply-to-Add ratios in bomhof2 benchmark

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
 0

 200

 400

 600

 800

 1000

 1200

F
re

q
u
e
n
c
y
 (

A
d
d
)

F
re

q
u
e
n
c
y
 (

M
u
lt
ip

ly
)

Chain Length

Add Chain Distribution
Multiply Chain Distribution

Fig. 2: Add/Multiply Chain Length Distribution in single
depth-4 transformed iteration (bomhof2)

of the add/multiply chain lengths in one of the iterations in
bomhof2 benchmark. The heterogeneous approach is motivated
by these add/multiply computational patterns observed in
the dataflow graphs when they have been transformed using
substitution and reassociation optimizations. The multiply-to-
add ratios motivate us to decouple add/multiply processing into
heterogeneous add/multiply PE block designs, while the sig-
nificantly longer chain lengths of add operations motivate us to
design a faster communication channel for the add PE blocks.
Thus, deep customization of both compute and communication
subsystems is crucial to delivering high performance for such
challenging parallelization problems.

The key contributions in this paper are:

• Heterogeneous PE design and layout based on add/multi-

x2 = b2 + L21b1

x3 = b3 + L32b1 + L31x2

= b3 + L32b1 + L31b2 + L31L21b1

L31X2 B3 L32B1

+

+

*
Substitution L31L21B1

L31B2

B3 L32B1

+

+

+

Reassociation

L31L21B1

L31B2 B3 L32B1

+

+

+

Fig. 3: x3 row solution dataflow graphs: example of how x2 expression can be substituted in to break sequential
dependencies, and how reassociation of the x3 expression (only add reassociation shown) can save compute latencies

ply profile for each benchmark after they have been trans-
formed using existing techniques known as substitution
and reassociation (Section 3)

• Reducing communication costs via enhanced graph par-
titioning to exploit locality and dual-channel communi-
cation network designs (Section 3)

• Performance results on sparse matrix benchmarks se-
lected from real-world problem domains (Section 4)

II. BACKGROUND

A. Sparse Matrix Factorization

Many numerical problems are composed of iterative loops
where the goal is to solve a set of linear equations A~x = ~b.
This is often achieved by performing an LU factorization in
every iterative loop. This factorization process is a computa-
tional bottleneck in many domains (e.g. circuit simulation).
We start with the KLU solver [1], which is optimized for fast
evaluation of circuit matrices, for our parallelization study.
The KLU solver performs a one-time spatial reordering of
rows and columns in the matrix at the start of the first
iterative loop. This makes it possible for the non-zero structure
in the intermediate matrices to remain static for subsequent
iterations. This feature allows us to pre-allocate data structures
at the start of an iterative phase. This can also help with
arranging the sparse matrix in memory for faster access. More
importantly, it makes it possible to expose dataflow parallelism
in the resulting unrolled compute graph for a token dataflow
FPGA implementation. At the heart of the KLU solver is the
Gilbert-Peierels (GP) algorithm, which takes in a sparse matrix
A and outputs its L & U factors. In the GP algorithm, a
front-solve is called repeatedly in every iteration of the for-
loop, which is the significant bottleneck in this algorithm. One
way to speed up this front-solve is by breaking sequential
dependencies using recursive depth-limited substitution, and
subsequently rearranging the computation into an efficient
compute order through a step known as reassociation.

B. Recursive Depth-Limited Substitution & Reassociation

In this subsection, we describe two existing optimization
techniques that are used to reduce sequential dependencies
and introduce opportunities for parallelism in highly sequential
dataflow graphs of sparse LU kernels.

In Figure 3, we see how we can apply a substitution
transformation to a single row solution (from x2 into x3)
of a front-solve. By recursively substituting expressions in
the downstream row expressions, we can transform the entire
front-solve such that there are no data dependencies between
each row. This is advantageous since, with sufficient paral-
lelism, we can now evaluate each row in parallel. However,
the downside to this approach is the increase in computational
work, as we are recomputing the same expressions in down-
stream row solutions. This results in an exponential explosion
in the number of nodes and edges, and we typically observe
> 30× growth in the graph size for most sparse benchmarks.
To control the work-parallelism balance, a recursive depth-
limited substitution can be used instead. In this approach, only
a fixed number of rows, dsub, are transformed at a time. This
reduces the sequential dependencies to between every dsub
rows. This is a work-parallelism tradeoff that enables us to
match the amount of work with the amount of parallelism we
are able to offer.

Despite the reduction in the sequential dependencies and
increased potential for parallelism, we need to combine sub-
stitution with reassociation in order to achieve compute path
latency savings to offset the growth in required work. On
applying the substitution transformation, we obtain row so-
lution expressions which are long sums of multiply chains
(see expression of x3 in Figure 3). Due to mathematical
associativity, we can rearrange the compute order of these
expressions to a more efficient reduction tree structure (see
dataflow graph in Figure 3). Due to rounding and truncation
errors from finite precision hardware, we must ensure that the
final solutions are within an acceptable range of accuracy from
the original solutions. We compute the residue of the final
solution vector and compare it with the original residue. We
find that there is negligible difference, if any, between the
two residues, and hence, reassociation transformations are not
corrupting the final solutions.

These optimizations on the dataflow graphs are the starting
point in our experimental design of heterogeneous networks.

C. Token Dataflow Architecture

A token dataflow architecture was used to do a sparse matrix
solve in [2], [3]. In this design, the authors perform a full

2

MULT MULTADD

ADD MULT MULT

sb

sb

sb sb sb

sb sb sb

Graph Graph Graph

Graph Graph Graph

Fig. 4: Heterogeneous Packet Switching Network on an
FPGA (2:1 multiply-to-add PE ratio)

unroll of the for-loop in the GP Algorithm. The unrolling
produced large dataflow graphs that are very irregular and
unbalanced, with majority of the compute bottleneck occur-
ring in every front-solve inside each iteration of the for-
loop. This large dataflow graph was then partitioned across
a 2D homogeneous network of processing elements (PEs) and
each PE was designed to handle any addition, multiplication
and division operations. The PE obeyed dataflow firing rules
instead of a procedural design with program counters. Under
these dataflow firing rules, each node arriving at the input
of the PE is handled independently and asynchronously. An
add/multiply/division operation is fired when all the inputs
for that instance have been received. The result is then com-
municated over a 2D network using switchboxes via packets
that contain the relevant information. The graph memory in
each PE stores information about all these nodes and their
fanout node(s) locations. This graph memory is implemented
using local BRAMs in each PE. This homogeneous token
dataflow architecture [4] is used as a basis for our starting point
to construct more complex, heterogeneous and benchmark-
customized token dataflow network designs.

III. HETEROGENEOUS NETWORK DESIGN

In this section, we explain the key ideas that allow us to
implement a heterogeneous processor and network architecture
for dataflow computations. This design better matches our
hardware design with the observed compute graphs trans-
formed using substitution and reassociation.

A. PE Design & Placement Challenges

In previous packet-switching NoC designs, each PE is able
to handle all types of compute operations observed in the
graphs, as they are sharing the same design. Such homoge-
neous designs are suitable for problems that have balanced
compute type requirements (e.g. number of additions = number
of multiplies). This was the observed case in the original
front-solve, as every row had at most one extra multiply
and an extra addition/subtraction from the preceding row.
However, with the new transformations, we see the number
of multiplications increase much more quickly than number
of additions. Figure 1 shows the new multiply-to-add ratios
in the depth-4 transformed graphs for bomhof2. With this
information, we can now design heterogeneous packet NoC
designs, where each PE can be customized to compute either
an add or a multiply and where the frequency distribution

of each PE type is related to the multiply-to-add distribution
seen in bomhof2. Figure 4 shows an example of such a
heterogeneous PE design, where the multiply-to-add PE ratio
is 2:1.

With this new design, however, graph partitioning and node
placement has to be designed to match the requirements of
the new heterogeneous designs (e.g. only multiply nodes in
multiply-PEs). To address this problem, we employ a two-
part graph partitioning approach. We first obtain a high-quality
homogeneous placement using MLPart-5.2.14. This gives us a
high-level placement that minimizes the critical path latency as
best as possible for a given PE configuration on a 2D plane. We
then do a local, cluster-level, re-placement where all multiply
nodes in add PEs are moved to multiply PEs in the same
cluster. We define a cluster as a group of PEs that represent the
simplest repeating pattern in the heterogeneous design (e.g. in
Figure 4, PEs (0,0),(0,1), and (0,2) are in one cluster). We do
the same for add nodes that were initially placed into multiply-
PEs. We do this relocation of nodes based on size of each
graph memory in each PE, such that all PEs have close to an
equal number of nodes to process. Since there are many more
multiply nodes than add nodes, we cluster the constant nodes
in add PEs as well.

B. Dual-channel heterogeneous network design

In addition to graph transformations, we also customize
the communication network of our NoC. Figure 2 shows the
add/multiply chain length distribution for a single iteration
in the bomhof2 benchmark, when substituted at depth 4.
We observe that long compute latencies are due to the add
chains while all multiply chains are relatively shorter, with a
maximum of length 5. Hence, we design a new, faster com-
munication channel between add PEs that allow shorter packet
communication times when evaluating long add chains. This
customization reduces our critical path latency in hardware,
since our critical path lies along the long add chains. Figure
4 shows the new communication channel between add PEs,
connected by switch boxes colored in red. We route results of
the multiplication node on the less critical (slower, more hops)
network while the results of the additions are routed on the
critical network (faster, fewer hops). This dual-channel design
is analogous to the segment length concept in FPGA routing.

IV. METHODOLOGY

In this section, we describe our experimental setup and
methodology to test our new heterogeneous design to the
homogeneous design in [2]. We evaluate the performance of
both network designs on the same dataflow graphs that have
been transformed using substitution and reassociation.

A. Experimental Setup

We develop a software cycle-accurate simulator that enables
us to do fast prototyping and testing of our new hardware
designs. We utilize the standard Matrix Market format (.mtx)
as input matrices and develop preprocessor modules to perform
substitution and reassociation on the original dataflow graphs.

3

TABLE I: Benchmark Performance Cycles

Benchmark Sub. Configuration

FST PE Ratio Cycles SA SB

bomhof1 WS - 4x4 - 1.4m - -

D4 25% 8x8 - 1.09m 1.22× -

D4 11% 12x12 1:1 957k 1.32× 1.12×
D4 9% 12x12 1:2 977k 1.30× 1.10×
D4 8.6% 12x12 1:3 979k 1.30× 1.10×

bomhof2 WS - 4x4 - 2.0m - -

D4 84% 8x8 - 1.59m 1.21× -

D4 79% 12x12 1:1 1.57m 1.22× 1.01×
D4 77% 12x12 1:2 1.60m 1.20× 1.00×
D4 77% 12x12 1:3 1.61m 1.20× 0.99×

simucad WS - 4x4 - 5.2m - -

D4 84% 8x8 - 3.65m 1.30× -

D4 75% 12x12 1:1 3.27m 1.37× 1.10×
D4 74% 12x12 1:2 3.34m 1.36× 1.09×
D4 73% 12x12 1:3 3.42m 1.34× 1.06×

Ratio = Multiply-to-Add ratio, Sub. = Substitution, D4 = Depth 4
WS = Without Substitution [2], SA = Speedups over WS baseline
SB = Speedups over homogeneous networks with substitution optimization

We calibrate our PE design and switching latencies to meet
the 250MHz operating frequency target on an FPGA. Due to
the substitution transformation, there are significantly fewer
division operations than add/multiply operations and hence,
we restrict our division operator to just one PE. For this
study, we target the Xilinx Virtex-6 SX475T FPGA device. We
can fit an 8x8 homogeneous network/PE design configuration,
and a 12x12 heterogeneous design configuration (since each
PE is now smaller) on this FPGA. The design in [2], in
contrast, is only able to fit up to 4x4 configurations on the
same FPGA due to each PE having logic to compute all
add, multiply and division operations. The target FPGA has
approximately 37MB available BRAM memory, which based
on a conservative estimate, can fit almost 5 million non-zero
floating-point node values. In the benchmarks tested, we need
to store at most 3.3 million nodes, and hence, we can fit the
entire graph onto the FPGA on-chip memory.

B. Optimal Design Point

We observe that benchmarks tested in this study have a
multiply-to-add ratio between 2:1 and 1:1. Hence, we do a
design space search over a small set of feasible multiply-to-
add ratio configurations – 1:1, 2:1 and 3:1 – to show how
performance is affected when different optimal/non-optimal
points are selected instead. We kept the depth of substitution
fixed at 4. The experiments were repeated at varying PE con-
figurations, valid for each ratio. All the front-solve iterations in
the GP algorithm were tested, and we use the MLPart-5.2.14
partitioner in all our two-part placement approach.

V. RESULTS & DISCUSSION

In this section, we present and discuss our observed results.
Table I shows the performance results when we evaluate these

benchmarks with different heterogeneous network design ratio
configurations. We observe a best speedup of 12% and a mean
speedup of 8% across all 3 benchmarks that we tested in this
study (column SB in Table I). These speedups translate to
about 20–40% improvements (column SA in Table I) over
work in [2], where neither substitution/reassociation optimiza-
tions were used, nor any heterogeneous design concepts were
explored.

A. Front-solve transformations (FST)

Small dataflow graphs have insignificant communication
costs and by creating extra work from substitution, we incur
extra communication costs that may offset any advantage
gained from parallelization. Hence, we only implement these
optimizations on graphs that are sufficiently large and demon-
strate speedup over the original graphs. The percentage of
all iterations that are transformed at each configuration is
displayed under the FST column in Table I.

B. Multiply-to-Add Ratio

From Figure 1, we note that the preferred ratio configuration
for bomhof2 is closely tied to the multiply-to-add ratio. Most
of the iterations lie between 1:1 and 2:1 multiply-to-add ratio
spectrum, and we observe best speedups when employing
these same 1:1 or 2:1 PE distribution configurations on our
heterogeneous network designs. This behavior is also similar
for the other two benchmarks, bomhof1 & simucad, tested in
this study. Since we evaluate some of the iterations without
substitution and reassociation transformations, a more tightly
clustered, i.e. 1:1 instead of 2:1, would be naturally preferred
as the dataflow graphs are small. This causes the slight
performance advantage of using the 1:1 ratio configuration
than the 2:1 configuration, observed in this paper.

VI. CONCLUSIONS

We show how to accelerate sparse LU factorization on a
heterogeneous dataflow architecture by as much as 37% over
state-of-the-art designs that are already 3–4× faster than CPU-
based solvers. This is achieved through a modification of
the dataflow architecture to support heterogeneous processing
elements as well as a dual-channel network design that reflect
dataflow properties in the LU factorization graphs.

REFERENCES

[1] T. A. Davis and E. Palamadai Natarajan. Algorithm 907: KLU, A Direct
Sparse Solver for circuit simulation problems. ACM Trans. Math. Softw.,
37(3):36:1–36:17, Sept. 2010.

[2] N. Kapre and A. DeHon. Parallelizing sparse Matrix Solve for SPICE
circuit simulation using FPGAs. In Field-Programmable Technology
(FPT), 2010 International Conference on, 2010.

[3] N. Kapre and A. DeHon. SPICE2: Spatial Processors Interconnected
for Concurrent Execution for Accelerating the SPICE Circuit Simulator
Using an FPGA. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 31(1):9–22, 2012.

[4] Siddhartha and N. Kapre. Breaking Sequential Dependencies in FPGA-
based Sparse LU Factorization. In FCCM ’14: Proceedings of the
2014 22nd IEEE Symposium on Field Programmable Custom Computing
Machines, pages 1–4, Mar. 2014.

4

