
Learn the Switches: Evolving FPGA NoCs with
Stall-Free and Backpressure based Routers

Gurshaant Malik
gsmalik@uwaterloo.ca

Ian Elmor Lang
ielmorlang@uwaterloo.ca

Rodolfo Pellizoni
rpellizz@uwaterloo.ca

Nachiket Kapre
nachiket@uwaterloo.ca

Abstract—We can overcome the pessimism in worst-case
routing latency analysis of timing-predictable Network-on-Chip
(NoC) workloads by single digit factors through the use of a hy-
brid FPGA-optimized NoC. Timing-predictable FPGA-optimized
NoCs such as HopliteBuf integrate stall-free FIFOs that are sized
using offline, static analysis of a user-supplied flow pattern and
rates. For certain bursty traffic and flow configurations, the
static analysis delivers very large, sometimes infeasible, FIFO
size bounds and large worst-case latency bounds. Alternatively,
backpressure-based NoCs such as HopliteBP can operate with
lower latencies for certain bursty flows. However, they suffer from
severe pessimism in the analysis due to the effect of pipelining
of packets and interleaving of flows at switch ports. As we show
in this paper, a hybrid FPGA NoC that seamlessly composes
both design styles on a per-switch basis, delivers the best of
both worlds with improved feasibility (bounded operation), and
tighter latency bounds. We select the NoC switch configuration
though a novel evolutionary algorithm based on Maximum
Likelihood Estimation (MLE). For synthetic (RANDOM, LOCAL)
and real world (SpMV, Graph) workloads, we demonstrate ≈2–
3× improvements in feasibility, ≈1–6.8× in worst-case latency
while only requiring LUT cost ≈1–1.5× larger than the cheapest
HopliteBuf solution. We also deploy and verify our NoC (PL) and
MLE framework (PS) on a Pynq-Z1 to adapt and reconfigure
NoC switches dynamically.

I. INTRODUCTION

With the growing communication demands of modern
FPGA system-level interfaces like HBM stacks, high-speed
networking, and multi-chip module IOs, it is imperative
that we support data movement using resource-shared, high-
performance NoCs. The Xilinx Versal NoC [18] is a hard
network-on-chip that is permanently embedded in the FPGA
fabric with fixed bandwidth and routing features that are
tailored for distributing high-speed HBM and high-speed IO
interface bandwidth across the FPGA fabric. Hoplite [9], CMU
CONNECT [16], and Penn Split-Merge [7] switches are soft
network-on-chip architectures that can be implemented using
existing FPGA LUTs and interconnect. A combination of both
styles of NoCs will be necessary to address data movement
requirements that span the entire FPGA die including last-mile
connectivity. Regardless of the style of NoC used, there is a
need for mapping tools and analysis techniques for making
efficient use of these communication structures. In this paper,
we develop mapping tools targeting soft NoCs or configurable,
hard NoC switches that allow customization of NoC operation
on a per-switch basis.

The Hoplite [9] FPGA NoC is a LUT-optimized network-
on-chip architecture targeting fracturable Xilinx FPGAs for

high-speed, low-cost operation. Several variants of Hoplite
targeting efficient implementations with different cost-feature
tradeoffs such as HopliteRT [19], and HopliteBuf [4] have
been published. These designs eliminate the livelock limi-
tations of the original Hoplite design and provide provable
upper bounds on packet latency. This is crucial for safety-
critical real-time systems, where timing properties of the
underlying hardware are used to ensure that applications
meet their scheduling deadlines, and performance isolation
between different communicating components is required [8].
Of particular interest is the HopliteBuf variant that adds stall-
free SRL32 FIFOs to the switch and uses static analysis tools
to prove upper bounds on FIFO sizes and worst-case routing
latency (wclatency). However, under certain scenarios, the
static analysis exaggerates FIFO and latency bounds making
them impractical for real designs. Under these circumstances,
a different variant of the NoC with lightweight backpressure,
HopliteBP [5] may be preferred. If the entire NoC adopts
a backpressure-based routing style, the blocking effects of
backpressure due to pipelining and interleaving of flows will
severely limit provable NoC performance [5]. Furthermore,
the FPGA implementation requirements of flow control, how-
ever lightweight they may be, were a primary motivation
for the deflection-oriented design of Hoplite. Instead of a
homogeneous NoC design, a carefully selected hybrid NoC
architecture that combines both HopliteBuf and HopliteBP
styles in a fine-grained fashion yields a superior solution than
either alternatives alone.

We show a set of three network flows on a 4×4 NoC
interacting in prescribed ways in Fig. 2. HopliteBuf provides
better worst-case latency for the horizontal traffic in Figure 2a,
as HopliteBP suffers from backpressure propagated on the
horizontal connections. However, for vertical traffic in Fig-
ure 2b, HopliteBP delivers 1.5× better worst-case latency. The
cyclic loop of dependencies between flows shown in Figure 2c
further affects HopliteBuf, reducing its range of statically
analyzable rates, while HopliteBP is less affected. We analyze
this example in further detail in Section II-B. Based on these
observations, it is clear that one-style-fits-all approach will
not work and we need to configure each switch in the NoC
carefully by learning the effect of interactions between the
conflicting traffic flows of the application. As the interference
pattern of the network flows can be quite complex, and a brute-
force approach not feasible for large NoC sizes, we develop
a evolutionary strategy to discover high-quality solutions for

2:1

3:1

W
E

N

SPEi

PEo

FI
FO

(a) HopliteBuf (FIFO)

2:1

Ctrl

3:1

W
E

N

S

BPiBPo

PEi

PEo

s
r
e
g

bp

(b) HopliteBP (Backpressure)

Fig. 1: Block diagrams of HopliteBuf and HopliteBP designs.

a given QoR function. We formulate a Maximum Likelihood
Estimation solution where we adjust the probabilities of each
switch configuration based on iterative analysis trials. The key
contributions of this paper include:
• Design of a hybrid FPGA NoC architecture that combines

HopliteBuf and HopliteBP switches to exploit the best of
both worlds.
• Development of an evolutionary strategy to learn switch

configurations for a defined QoR function using Maximum
Likelihood Estimation (MLE), scalable to large NoC sizes.
• Quantification of worst-case latency, feasibility, cost and

optimization runtime across real and synthetic applications,
demonstrating a ≈1–6.8× reduction in worst-case latency
and ≈2-3× improved feasibility.
• We implement and verify our entire framework on a Pynq-

Z1. We implement the MLE optimization tool on the Cortex
A9 processor (PS) to configure the FPGA NoC switches
dynamically, while realizing the NoC itself on the FPGA.

II. SWITCH DESIGN

In this section, we discuss the design of the existing
HopliteBuf and HopliteBP networks, motivating examples for
a hybrid design, and details of FPGA implementation.

A. Background: HopliteBuf and HopliteBP

The FPGA NoC switches (see Fig. 1) explored in this
paper are based on the Hoplite [9], [10] design. It is an
FPGA-optimized switch that is integrated in a unidirectional
torus topology and routes packets using deflections rather
than buffering flow control. Packets use DOR (dimension-
ordered routing) policy where they traverse in the X-dimension
(W → E) first before turning (W → S) into the Y-dimension
(N → S). The possibility of routing livelock and out of order
packet delivery are significant limitation of Hoplite, making
it unsuitable for systems requiring guarantees on worst-case
packet latencies.

HopliteBuf (FIFO in Fig. 1a) [4] is a variant of Hoplite that
introduces stall-free FIFOs on the turns in the NoC. We buffer
packets turning from W → S if a N → S packet is present in
that cycle. Following DOR routing policy, we allow N packets
to travel S while W packets must wait for an empty cycle to

progress further. The 2:1 East mux chooses between W , and
PE packets while the South mux chooses between W ′ (FIFO
output), N , and PE packets. We assume that packet delivery
to a PE is not stallable allowing unrestricted N→S traffic.

HopliteBP (Backpressure in Fig. 1b) [5] supports
lightweight backpressure in the horizontal ring. N → S
packets have the highest priority; thus foregoing a need
for backpressure along the vertical dimension. Only packets
turning W → S in the network may be subject to contention
and thus require a backpressure interface. We insert shadow
registers on the W port which provide an ability to store
stalled packets in place and propagate the backpressure control
upstream in the opposite direction of packet flow [15].

HopliteBuf+BP is a unified switch that includes both switch
components and supports runtime configuration of mode. This
mimics the behavior of a configurable hard NoC, and allows
soft NoCs the ability to adapt dynamically to new application
needs without requiring full FPGA bitstream reconfiguration.

Both HopliteBuf and HopliteBP switches are complemented
with a static analysis and traffic regulation component [5].
We leverage this analysis to prove feasibility (bounded la-
tencies and FIFO sizes), compute worst-case FIFO size (for
HopliteBuf), as well as worst-case bounds on latency (injec-
tion+routing) of packets. The analysis computes composable
latency bounds, that is, the bounds do not depend on detailed
information about activity of unrelated PEs. To this end, it
limits the maximum number of packets that a PE can inject in
the network in any interval of time using a network regulator.
In this way, to compute the latency for flow fi, it only needs
to know the regulation parameters and source/destination PEs
for every other flow in its set of interfering flows. The
analysis employs a leaky bucket regulator [13], which uses
two parameters, regulation rate fi.ρ and data block size fi.b:
data block is the maximum number of consecutive packets
that the flow can send through the regulator, while the rate is
the maximum long-term throughput of the regulator in packets
per cycle. For a more in-depth discussions of regulation and
bound mathematics, please refer to [5].

B. Motivating Example

To discuss how the switch configuration affects the results
of the analysis for different flow patterns, we perform a set
of analyses for the three flow sets Horizontal (a), Vertical (b)
and Cyclic (c) shown in Figure 2. We assume that all flows
have the same block size fi.b = 8 and are equally important,
hence we use the same value of regulation rate fi.ρ across all
flows.

In Figure 2d, we then plot the maximum analytical latency
of the NoC while varying fi.ρ. We consider two network
configurations, one where all switches use stall-free FIFOs
(HopliteBuf), and one where all switches use backpressure
(HopliteBP). We stop plotting the latency whenever the net-
work declares infeasibility due to unbounded latencies or the
size of any buffer under HopliteBuf exceeds 32 (as this enables
one-LUT per bit FIFO implementation).

0,3

0,2

0,1

0,0

1,3

1,2

1,1

1,0

2,3

2,2

2,1

2,0

3,3

3,2

3,1

3,0

(a) Horizontal

0,3

0,2

0,1

0,0

1,3

1,2

1,1

1,0

2,3

2,2

2,1

2,0

3,3

3,2

3,1

3,0

(b) Vertical

0,3

0,2

0,1

0,0

1,3

1,2

1,1

1,0

2,3

2,2

2,1

2,0

3,3

3,2

3,1

3,0

(c) Cyclic

●●

●●

●●
●●

●● ●● ●
●

●

●

●

●

●

●

●

●

●●

●●

●●
●● ●

●
●
●

●
●

●

●

●

●

●●

●●

●● ●
●

●

● ● ●
●

●

●

●

Horizontal Vertical Cyclic

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

100

300

1000

Regulation Rate

W
or

st
 C

as
e

La
te

nc
y

● ●BP FIFO

(d) Worst-Case Latency Scaling Trends

Fig. 2: Interacting network flows on a 4×4 NoC arranged to
show the benefits of mixing FIFO and Backpressure switches.

• Effect of regulation rate: As we increase regulation rate,
latency initially decreases for all cases in Fig. 2d. This
is because decreasing the regulation period (1

fi.ρ
) affords

each PE increased opportunity to inject its packets into
the network. However, past a certain regulation rate, the
latency starts increasing due to increased contention caused
by conflicting flows, which dominates any benefits of a
reduced regulation period. Increasing the regulation rate past
such point can still be useful, as it allows the flows to inject a
higher number of packets in the average case. In this paper,
we focus on optimizing the network configuration’s QoR
assuming that the importance, and thus regulation rate, of
each flow is given by a system designer.
• Horizontal: For the set of flows shown in Fig. 2a, we note

that HopliteBuf (fifo) delivers lower worst-case latency. This
is because under HopliteBP, f1 () suffers interference
not only from f2() but also f3 () indirectly due to
horizontal backpressure stalls originating from switch (3, 1);
thus increasing latency compared to HopliteBuf.
• Vertical: Here, HopliteBP achieves lower latency. This

is due to the effects of buffering: since f2 () suffers
interference from f1 (), HopliteBuf will accumulate its
packets at switch (3, 1). Hence, the maximum number of
consecutive packets that f2 () can inject south at (3, 1)
becomes larger than its data block size f2.b. In turn, this
means that the queueing delay of f3 () at switch (3, 2)’s
FIFO can exceed injection delay at the source of f3 ()
due to backpressure induced stalls in HopliteBP.
• Cyclic: The negative effects of vertical buffering are mag-

nified in a cyclic flow pattern and the HopliteBuf designs
show significantly worse latency than HopliteBP, as shown
in Fig. 2d.
A user-supplied set of network flows can contain a com-

bination of these three patterns, among others. The key idea
explored in this paper is to learn the effect of these flowset
interactions on routability and hardware costs to make a
determination between HopliteBuf and HopliteBP on a per-
switch basis. The use of such hybrid NoC switch configura-
tions allows to optimize both analytical flow latency as well
as hardware cost. This in-turn allows us to tailor our NoC
offerings to the application at-hand and QoR requested, by
learning the effects of the provided flows on a per-switch basis.

C. Xilinx FPGA Mapping

The muxes of the original Hoplite switch [19] can be
efficiently mapped to a single fracturable 6-LUT for one bit of
switching datapath. For the HopliteBuf design, we are unable
to exploit that degree of compactness as the south mux needs
to select between three inputs: N , FIFO output and PEi. To
realize these FIFOs, we can make use of the SRL32 primitive
on Xilinx FPGAs that repurposes LUTs as Memory elements.
For HopliteBP, the DOR routing logic must be adapted to
account for the presence of backpressure signals. The control
logic and shadow registers are more expensive to implement
on the FPGA than SRL-based FIFOs. They result in a 1.2–
1.8× increase in LUT and FF usage over HopliteBuf switches
as shown in Table I. We also build a unified HopliteBuf+BP
switch that not only permits propagation of backpressure
when composing a mixture of HopliteBuf and HopliteBP
switches, but also provides runtime adaptability to choose
either operating mode.

Hoplite HopliteBuf HopliteBP HopliteBuf+BP

LUTs 59 161 189 247
FFs 86 91 167 175

TABLE I: Resource utilization of Hoplite based switches on
Xilinx Virtex-7 for 32b datawidth and 32-deep SRL32 FIFOs.

III. EVOLUTIONARY LEARNING OF NOC SWITCHES

The key idea explored in this paper is the use of hybrid
NoC switch configurations that mix HopliteBuf and HopliteBP
styles in a single NoC. Depending on the interference pattern
of network flows, each switch configuration may be tailored in
an application-specific manner. In Figure 3, we show the best
switch configuration for a simple 3×3 NoC with a fixed set
of nine flows (shown in red in the leftmost NoC subfigure).
We vary the block size b and regulation rate ρ for each
flow (identically). At very low rates and data block sizes,
HopliteBuf offers the cheapest and best-performing design,
while at larger rates and blocks, the design starts to migrate
to HopliteBP-dominated solutions. Given that an N ×N NoC
will have N2 switches, each with a boolean decision to make,
the design space grows exponentially with problem size.

Now, we discuss the optimization technique we use to
learn the switch configurations for a particular set of flows.
Specifically, given the regulation rate and data block size of
each flow, we determine whether each switch in the network
implements a stall-free FIFO or backpressure logic to optimise

ρ=0.01, b=1 ρ=0.01, b=32 ρ=0.15, b=1 ρ=0.15, b=32

Fig. 3: FPGA NoC Switch Configuration for a 3×3 NoC for a
set of nine flows (shown in leftmost subfigure) with identical
but four combinations of rate ρ and block size b characteristics.
At low rates and block sizes, most switches tend to be cheap
HopliteBuf variants, while a growing number convert to
expensive HopliteBP variants with increasing rate+size.

for the user defined QoR (wclatency*cost, wclatency,
etc).

Note that an N × N NoC has N2 switches, each with
a boolean decision to make. This O(2N

2

) solution space
necessitates the use of a scalable approach rather than brute-
force exploration (a 7 × 7 NoC can have ≈562 trillion
solutions). We choose to model this as a Maximum Likelihood
Estimation algorithm. We model each switch of the NoC
as an independent random variable from a 2-point Bernoulli
distribution Bi. This means that there are two outcomes
possible for each switch: 0 represents a HopliteBuf and a
1 represents HopliteBP. For each switch i, we represent the
probability of choosing a Backpressure configuration as pi
while the FIFO choice becomes 1− pi. We seed each switch
with zero bias by ensuring that the skew of each switch’s
distribution Bi, 1−2pi√

(pi(1−pi)
, is 0 by starting with pi = 0.5 ∀ i.

We aim to evolve the optimal NoC configuration by produc-
ing multiple candidates solutions for the gth generational step
for each switch sgi of the N×N NoC. Unlike conventional
neural networks with a known training set, we generate our
training set on-the-fly based on the results of the generational
search. Unlike Naı̈ve Bayesian inference strategies explored
by InTime [11], our approach directly aims to minimize
an objective function rather than train with a binary clas-
sifier. For our setup, we evolve by sampling each switch’s
Bernoulli distribution Bgi (p

g
i) to produce either a FIFO (0)

or a Backpressure configured (1) switch. For each generation
step g, we produce C potential candidate NoC configurations
Hg
C ∈ (0, 1)N

2×C , as shown below in Equation 1. For our
experiments we chose C=100.

Hg
C =

 sg1,1 sg2,1 · · · sgC,1
...

...
. . .

...
sg1,N2 sg2,N2 · · · sgC,N2

︸ ︷︷ ︸

Each column is a flattened NoC configuration (hn)

(1)

We test each candidate configuration hn for fitness on a
user defined function and filter out the top λ=25% performing
candidates Hg

λ:C ∈ (0, 1)N
2×λ. This is a greedy step but

the memory of previous iterations is reflected in the existing
probabilities of the switch configurations. We then adapt each

switch’s Bernoulli distribution in the general direction of the
chosen candidates. We aim to increase the likelihood that
the top performing candidates Hg

λ:C of this generation were
sampled from it. For each switch sgi at generation g, we define
a likelihood function as follows:

f
(
sg1:C,i,...s

g
λ:C,i|p

g+1
i

)
= P

(
sg1:C,i, s

g
2:C,i..., s

g
λ:C,i|p

g+1
i

)
= P (x1, x2..., xλ|p̂)︸ ︷︷ ︸

substitute

= p̂x1 · (1− p̂)1−x1 ...p̂xλ · (1− p̂)1−xλ

= p̂
λ∑
x · (1− p̂)λ−

λ∑
x (2)

Equation 2 is the likelihood of a Bernoulli distribution for
switch i generating the best performing λ samples from
a distribution with probability parameter pg+1

i . Remember,
sgλ:C,i refers to the top λ (out of total C) performing switch
configurations for switch i at generation g. The final ex-
pression of Equation 2 can be differentiated to find the
value of p̂ = pg+1

i that maximizes this likelihood. We first
apply a logarithmic transformation on this equation before
differentiation, as shown below:

ln(f) = ln(p̂) ·
λ∑
x+ ln(1− p̂) · (λ−

λ∑
x)

d
(
ln(f)

)
dp̂

=

λ∑
x

p̂
− λ−

λ∑
x

1− p̂
= 0

λ∑
x− p̂ ·

λ∑
x = λ · p̂− p̂ ·

λ∑
x

p̂ =

λ∑
x

λ
(3)

Hence, the updated probability parameter p̂ = pg+1
i for each

switch si’s Bernoulli distribution Bi can simply be written as
an average over the λ best performing candidates in generation
g. We formalize this in Equation 4 below:

p̂ = pg+1
i =

λ∑
k=1

sgk:C,i

λ
. (4)

Finally, in Figure 4, we first show the high-level represen-
tation of a single iteration of the MLE algorithm. Given a
set of probabilities associated with the distributions Bg , we
generate Hg

C samples of possible NoC configurations. We then
select the top-K best-performing solutions Hg

λ:C to revise the
distributions as Bg+1 for the next iteration. We also represent
an actual trace of probability evolution across a complete MLE
evolution for a 2×2 NoC in Figure 5. We note that the first 20
iterations show the results of a sampling when the pi ≈ 0.5
for the switches. With subsequent iterations learning from the
combinations that worked well in the first phase to converge
towards the best-performing switch configurations for each
round. While MLE can also be used for Bayesian inference [2]

with respect to how samples are generated and probabilities
updated, for our scenario we directly minimize an objective
function rather than performing a classification.

Multiple trails of various NoC configurations to extract best performing Hgλ:C

Flattened NoC

Config. (HgC)

0.2Bg0 0.66 Bg+1
0

0.5Bg1 0.5 Bg+1
1

0.3Bg2 0.5 Bg+1
2

0.1Bg3 0.25 Bg+1
3

Back-Pressure Stall-Free FIFO

Fig. 4: Evolution of switch type probabilities for a 2×2 NoC
using Maximizing Likelihood Estimation (MLE). On the left,
one MLE iteration is shown which has a candidate size
C=8 (each column is a candidate) and elite size λ=4.
Only bold NoC configurations are used to generate the
new Bernoulli distribution Bg+1.

MLE Iteration

Sw
itc

h

20 40 60 80 100 120
4

3

2

1

Fig. 5: The complete MLE algorithm is shown for a regulation
rate of 0.5 and a block size of 16. Switch colors that settle for
white are Backpressure switches while those that are Black
are FIFO-based.

IV. EVALUATION

A. Methodology

Our MLE optimizer is written in Python3. We implement
the latency and buffer analysis in Matlab, and convert it to C
code using Real Time Workshop; the optimizers communicate
with the analysis tool using direct data transfer based on the
Python ctypes APIs. We run all experiments on a 16-core
Intel Xeon E5-2697A CPU and parallelize our search across
32 threads. We measure our algorithm to be 50-500× faster
when compared against open-source Python implementations
of black-box optimizers CMA-ES [6] and RBFOPT [3], while
exploring the solution space just as effectively.

We evaluate our framework across a range of 100
synthetically-generated communication workloads with
RANDOM and LOCAL communication patterns. For RANDOM
patterns, each PE chooses destinations via uniform sampling

of other PEs. For LOCAL patterns, sampling is restricted to
a +/- 2 radius of neighbouring PEs. We run our analysis
across various data block sizes to mimic the diversity of
communication interfaces and endpoints like DRAM, PCIe,
and Ethernet. Furthermore, we also test for optimizing
real-world applications designs for FPGA accelerators such
as Sparse matrix vector multiplication (SpMV [1]) used by
many deep learning kernels [17] and Graph [14] analytics.
The extracted traces exhibit a rich diversity of bandwidth
requirements; with load factors of 37-92% between the
benchmarks.

In addition to the static analysis above, we also implement
and verify the entire NoC on a Pynq-Z1 board, with unified
HopliteBuf+BP switches in the FPGA fabric (PL), and config-
uration tools for the NoC switches and regulators running on
the ARM A9 (PS). For the unified NoC, the software layer
on the ARM configures the switches dynamically over an
AXI bus, depending on the application requirements, without
the need for complete bitstream reconfiguration. For a 6x6
network, the runtime of the MLE optimization on the PS is
9-60s, and the reconfiguration of the switches instantiated in
the PL takes 850ms.

B. Results

In this section, we present the results of the static analysis of
our hybrid FPGA NoC under various system sizes, data block
sizes, and optimization methods. We are primarily interested in
determining network feasibility (bounded latency), FIFO size
needed, worst-case latency, fitness of the solution, and time
required to optimize the NoC. We use the HopliteBP (bp) and
HopliteBuf (fifo) cases as baselines where all switches in the
NoC are configured one way or another.

1) Learning for Feasibility: In Figure 6, we determine the
subset of the 100 synthetic RANDOM and LOCAL flowsets that
can be routed feasibly on the NoC, that is, with bounded
latencies and fit within the 32-deep FIFO capacity limits of an
SRL32 structure. We configure MLE to produce feasible NoC
configurations for provided flowset. As we vary system size,
regulation rate, and data block size, we note several interesting
trends:
• First, we observe that feasibility rate drops from 100%

to 0% as we increase regulation rate (x-axis), with steeper
losses observed for larger system sizes. This is understood
as there are more flows competing for bandwidth that does
not scale linearly with system size. For a torus, doubling of
system size increases bisection bandwidth by only

√
2.

• As we increase data block lengths from 1–16 (figures
along a column), we note a counter-intuitive effect. Now the
HopliteBP and MLE designs show the highest feasibility
envelopes while HopliteBuf loses severely. HopliteBuf is
unable to maintain feasibility as the SRL32 FIFOs run out
of capacity for larger data blocks. It is possible to increase
feasibility by increasing FIFO sizes, but that impacts LUT
cost and causes HopliteBuf to exceed the footprint of the
HopliteBP switches.

• As we increase system size, we note that HopliteBP
designs start to lose feasibility quickly due to pessimism in
the analysis for backpressure-based designs. For pipelined
backpressure-based switches, the analysis must account for
the cascading effect of network flows, which significantly
depresses sustainable rates. LOCAL pattern suffers a greater
loss in feasibility due to the short distances traversed by the
flows and resulting larger conflict set of flows.
• Finally, we observe that MLE-optimized NoC smoothly

navigates the entire design space to deliver the highest
feasibility rates across all combinations. This confirms that
neither extreme solution works best in all cases, and a mix-
and-match approach is necessary to get the best outcomes.
Importantly, by mixing and matching switch configurations,
MLE NoCs exceed the potential of either NoCs in isolation,
achieving ≈2–3× higher feasibility over vanilla designs.

3x3 5x5 7x7

1
4

8
16

0
50

100

0
50

100

0
50

100

0
50

100

F
ea

si
bl

e

fifo mle bp

(a) RANDOM

3x3 5x5 7x7

1
4

8
16

0.
0

0.
1

0.
2

0.
3

0.
0

0.
1

0.
2

0.
3

0.
0

0.
1

0.
2

0.
3

0
50

100

0
50

100

0
50

100

0
50

100

Injection Rate

F
ea

si
bl

e

(b) LOCAL

Fig. 6: Feasible set of RANDOM and LOCAL flowsets on system
sizes 3×3–7×7 (columns) and data block sizes 1–16 (rows)

2) Learning for Worst-Case Latency: Next, in Figure 7, we
show the effect of varying regulation rate of a 5×5 NoC when
routing feasible LOCAL traffic traces. We configure the MLE
to learn switch configurations to minimise wclatency. We
summarise our observations with varying regulation rates and
block sizes:
• First, we note that as the rate increases and reaches an

inflection point, we see an increased spread in latencies
across all configurations. This is due to the traffic regulation
model dominating cycle counts below this inflection rate,
forcing the network congestion effects to take a backseat.
Second, as we increase data block sizes, the latencies
increase and the spread shift upwards. We also note that

1 4 16

0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2

100

1K

10K

Regulation Rate

W
or

st
 C

as
e

La
te

nc
y

fifo mle bp

Fig. 7: Worst-case latency as a function of regulation rate for
100 synthetic LOCAL flowsets for various data block sizes.

there is noise around the calculation of mean curves due to
the shifting feasibility combinations of the flowsets.
• HopliteBuf NoCs are competitive at lower regulation rates.

At higher regulation rates, the worst-case latencies can
be quite large for certain flowsets. This is a direct result
of deeper FIFOs and associated head-of-line blocking ef-
fects [12] for those scenarios. Also, HopliteBuf NoCs do
not scale to large block sizes (=16) because they run out of
stall-free FIFO capacity.
• The HopliteBP NoCs initially start with higher latency at

the lower rates, but become competitive at larger regulation
rates. At higher rates, HopliteBP NoCs suffer from loss of
feasibility and cease to scale. At higher data block sizes,
HopliteBP NoCs continue to scale beyond HopliteBuf for
higher rates but saturate below MLE.
• MLE-optimized NoCs deliver competitive latencies across

all rates and block sizes. At lower rates, the MLE-optimizer
prefers reducing FIFO size and mimics HopliteBuf solutions
as the regulation dominated latency is a fixed effect. At
increased rates, MLE can strategically replace congestion
hotspots with HopliteBP designs and avoid the increased
buffering effects that cause high latencies for HopliteBuf
designs. At large data block sizes and rates, MLE-optimized
NoCs are the only feasible combinations outperforming
both HopliteBuf and HopliteBP NoCs.
3) Learning for Cost Constrained Worst-Case Latency:

For the next set of experiments, we configure the MLE
to optimise for the cost constrained latency function of
wclatency*cost, with an aim to analyse its ability to
balance the growth of the two negatively correlated terms
while simultaneously minimising their product. In Figure 8,
we look at cost-latency tradeoffs when considering feasible
RANDOM and LOCAL flowsets that are routed at a system size
of 4×4 and a regulation rate of 0.17. At small data block
sizes, MLE-optimized NoCs end up occupying the cost range
closer to the lower-cost HopliteBuf designs. As block sizes
increase, vanilla FIFO designs run out of capacity and declare
infeasibility and MLE-optimized NoCs consume increasingly
more LUTs. This suggests that MLE will replace HopliteBuf
switches with the more expensive HopliteBP/HopliteBP+Buf
versions in exchange for feasibility or proportionate latency
gains. We also note the narrower spread of HopliteBP latencies

1 8 16

50 10
0

15
0

20
0

10
0

20
0

30
0

40
0

50
0

20
0

40
0

60
0

80
0

2.5K

3K

3.5K

Worst−Case Latency

LU
T

 C
os

t
fifo mle bp

(a) RANDOM

1 8 16

40 80 12
0

16
0

10
0

20
0

30
0

40
0

50
0

20
0

40
0

60
0

2.5K

3K

3.5K

Worst−Case Latency

LU
T

 C
os

t

(b) LOCAL

Fig. 8: LUT Cost-Worst Case Latency tradeoffs for a 4×4
NoC with 0.17 regulation rate for 100 synthetic RANDOM and
LOCAL flowsets across various block sizes.

which is a direct result of having fewer feasible combinations
at that rate and block size.

We also quantify the extent of latency improvement dis-
tribution over HopliteBuf and HopliteBP switches in Figure 9
for 100 LOCAL flowsets at 0.13 regulation rate across different
data block sizes on a 4×4 NoC. When compared to HopliteBuf
designs, we note latency reduction by as much as 2× with little
sensitivity to block sizes. When compared against HopliteBP,
the latency wins can be as much as 15×. This larger win is
attributed to pipelining effects in backpressure-based networks
that can cause the analysis to include a large number of flows
in the conflict set to produce safe upper latency bounds.

0

5

10

15

1.0 1.1 1.2 1.3
Latency Improvement Ratio

C
ou

nt

1
4
8
16

(a) vs. HopliteBuf

0.0

0.1

0.2

0.3

5 10
Latency Improvement Ratio

1
4
8
16

(b) vs. HopliteBP

Fig. 9: Cumulative distribution of improvements of worst-case
latency MLE NoC over HopliteBuf and HopliteBP.

4) Routing Real World FPGA Applications: We now show
the effect or regulation on worst-case latency of realistic FPGA
workloads running on a 16-client NoC. In Figure 10, we
study the effect of regulation rate on worst-case latency of
flows with a data block size of 4. With low congestion at
low rates, all NoC designs exhibit similar characteristics. As
we increase injection rates, we notice increased worst-case
latencies across most workloads. In particular, we note greater
feasibility and lower worst-case latencies for MLE-optimized
NoCs. For smaller data block sizes (See Table II), MLE prefers
HopliteBuf NoCs as most conflicts can be absorbed in the
shallow SRL FIFOs. However, smaller blocks sizes require
extremely wide NoCs with hundreds of bits of payload sent
as a single block. We conclude that MLE-optimized hybrid
NoCs are at par or better than either designs by sustaining 1-
9× higher rates while achieving 1-6.8× lower latency across
all real application benchmarks and block sizes.

stanford ram2k memplus roadnet

0 1 2 0 1 2 0 1 2 0 1 2

5K

10K

15K

Regulation Rate x 100

W
or

st
 C

as
e

La
te

nc
y

 fifo mle bp

Fig. 10: Latency Scaling of a 4x4 NoC for Graph/ SpMV
traces

Rate×103 Latency Rate×103 Latency
F B M F B M F B M F B M

w
i
k
i 1 17 8 17 743 6.7K 743

g
o
o
g
l
e 1 17 8 17 789 6.7K 789

4 – 8 8 – 16.2K 16.2K 4 – 8 8 – 16.1K 16.1K

s
t
n
f
d 1 23 11 23 1310 6K 1310

s
o
c 1 17 8 17 789 8.5K 789

4 – 11 11 – 14.5K 3.2K 4 – 8 8 – 20.2K 20.2K

d
a
c 1 19 10 19 1238 10.6K 1216

r
d
n
e
t 1 37 19 37 1661 1609 1635

4 – 10 10 – 25.6K 25.6K 4 3 19 27 1.4K 3.9K 3.4K

r
a
m
2
k 1 28 14 28 998 2K 998

m
m
p
l
s 1 27 14 27 2K 3.2K 2K

4 2 14 15 2.1K 4.8K 3.5K 4 – 14 16 – 7.6K 6.1K

g
e
n
e
2 1 17 8 17 789 11.3K 789

b
m
h
f
3 1 25 14 25 1.5K 1.9K 1.5K

4 – 8 8 – 27K 27K 4 – 14 14 – 4.7K 4.6K

b
m
h
f
2 1 25 12 25 1.6K 10.5K 1.5K

b
m
h
f
1 1 20 9 20 720 5.2K 720

4 – 12 12 – 26.2K 3.8K 4 – 9 9 – 12.4K 12.4K

a
m
z
o
n 1 17 8 17 789 11.3K 789

a
d
d
2
0 1 19 9 19 898 5.2K 898

4 – 8 8 – 27K 27K 4 – 9 9 – 12.4K 12.4K

TABLE II: Application Performance over block size of 1,4 for
Graph/SpMV traces. (F: FIFO, B: Back-Pressure, M: MLE)

5) Analysing Efficiency of MLE: Finally, we turn our at-
tention to the MLE optimization flow and try to understand
how the solver discovers good solutions. In Figure 11, we
plot the solution quality (LUT cost × worst-case latency)
and time taken to discover the solutions across a range of
100 synthetic RANDOM workloads targeting a 5×5 NoC at a
regulation rate of 0.1. The HopliteBuf and HopliteBP NoCs
are one-shot solutions that do not need any search and are
hence observed in the left corner of the space. MLE’s highly
composable binary decision making proceeds in an iterative

●●

●●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

● ●●

●●

●

●

●

●
●

●
●

●

●

●
●

●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●●●

●

●●

●
●

●

●

●

●
● ●

●

●

●

●●

●
●

●
●

●●

●

●

● ●

1e+05

3e+05

1e+06

100 u 100 m 100

Time Taken (s)

O
bj

ec
tiv

e
Fu

nc
tio

n ● fifo

mle

bp

cma

rbf

Fig. 11: Solution quality and time taken by MLE optimizer
across flowsets mapped to a 5×5 NoC with 0.1 regulation
rate.

fashion before it stabilizes. We observe a narrower spread of
objective function values after 1–10 s. CMA-ES [6] explores
the space just as effectively but takes ≈5–10× longer due to
the necessary but obtuse integer quantization of real-valued
distributions used by the optimizer. We also use RBFOPT [3],
that generates marginally inferior solutions and is 50–500×
slower than our MLE approach. While RBFOPT claims to
require fewer explorations, the number crunching after each
sample is compute intensive and dominates the fast analysis
process for our problem.

V. CONCLUSIONS

In this paper, we show how to evolve hybrid FPGA NoC
switch parameters to deliver a combination of feasibility,
worst-case latency, and cost improvements over homogeneous
FPGA NoCs. We demonstrate this by combining Hoplite-
Buf, a stall-free FPGA NoC, with HopliteBP, a lightweight
backpressure-based FPGA NoC using a fine-grained per-
switch static configuration model. We use Maximum Likeli-
hood Estimation technique to evolve NoC configurations that
offer ≈2-3× improvements in feasibility, ≈1–6.8× in worst-
case latency over synthetic and real world applications.

Source Code: https://git.uwaterloo.ca/watcag-public/
hoplite-ml

REFERENCES

[1] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra.
Matrix market: a web resource for test matrix collections. In Quality of
Numerical Software, pages 125–137. Springer, 1997.

[2] B. P. Carlin and T. A. Louis. Bayes and empirical Bayes methods for
data analysis. Chapman and Hall/CRC, 2010.

[3] A. Costa and G. Nannicini. Rbfopt: an open-source library for black-box
optimization with costly function evaluations. Mathematical Program-
ming Computation, 10(4):597–629, Dec 2018.

[4] T. Garg, S. Wasly, R. Pellizzoni, and N. Kapre. Hoplitebuf: Fpga nocs
with provably stall-free fifos. In Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA
’19, pages 222–231, New York, NY, USA, 2019. ACM.

[5] T. Garg, S. Wasly, R. Pellizzoni, and N. Kapre. Hoplitebuf: Network
calculus-based design of fpga nocs with provably stall-free fifos. ACM
Trans. Reconfigurable Technol. Syst., 13(2), Feb. 2020.

[6] N. Hansen. The cma evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772, 2016.

[7] Y. Huan and A. DeHon. FPGA optimized packet-switched NoC using
split and merge primitives. In Field-Programmable Technology, pages
47–52, Dec. 2012.

[8] S. Jeon, J. Cho, Y. Jung, S. Park, and T. Han. Automotive hardware
development according to iso 26262. In 13th International Conference
on Advanced Communication Technology (ICACT2011), pages 588–592,
Feb 2011.

[9] N. Kapre and J. Gray. Hoplite: Building austere overlay nocs for fpgas.
In Field Programmable Logic and Applications, pages 1–8, Sept 2015.

[10] N. Kapre and J. Gray. Hoplite: A deflection-routed directional torus noc
for fpgas. ACM Trans. Reconfigurable Technol. Syst., 10(2):14:1–14:24,
Mar. 2017.

[11] N. Kapre, H. Ng, K. Teo, and J. Naude. Intime: A machine learning
approach for efficient selection of fpga cad tool parameters. In Pro-
ceedings of the 2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’15, pages 23–26, New York, NY,
USA, 2015. ACM.

[12] M. Karol, M. Hluchyj, and S. Morgan. Input versus output queueing on
a space-division packet switch. IEEE Transactions on Communications,
35(12):1347–1356, 1987.

[13] J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Springer-Verlag, 2001.

[14] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection, June 2014.

[15] G. S. Malik and N. Kapre. Enhancing butterfly fat tree nocs for
fpgas with lightweight flow control. In 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 154–162, 2019.

[16] M. K. Papamichael and J. C. Hoe. Connect: re-examining conventional
wisdom for designing nocs in the context of fpgas. In Proceedings of
the ACM/SIGDA international symposium on Field Programmable Gate
Arrays, pages 37–46. ACM, 2012.

[17] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally. Scnn: An
accelerator for compressed-sparse convolutional neural networks. ACM
SIGARCH Computer Architecture News, 45(2):27–40, 2017.

[18] I. Swarbrick, D. Gaitonde, S. Ahmad, B. Gaide, and Y. Arbel. Network-
on-chip programmable platform in versaltm acap architecture. In Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’19, pages 212–221, New York, NY,
USA, 2019. ACM.

[19] S. Wasly, R. Pellizzoni, and N. Kapre. HopliteRT: An efficient FPGA
NoC for real-time applications. In F. Program. Technol. (ICFPT), 2017
Int. Conf., pages 64–71. IEEE, 2017.

https://git.uwaterloo.ca/watcag-public/hoplite-ml
https://git.uwaterloo.ca/watcag-public/hoplite-ml

