


segmentation in the NoC links to tackle these challenges.

Segmentation of the NoC allows the routers to be partitioned

into isolated sub-NoCs. In Figure 1, we show a high-level

view of the FPGA NoC fabric configured for segmentation.

By controlling the isolation multiplexers in the 16×16 NoC,

we can partition the NoC into 4×4 as desired. Within an

application, this may allow reducing deflection penalties by

statically partitioning the workload requirements into local and

global phases. For multiple applications using the same NoC

at the same time, this can help statically isolate NoC traffic

and prevent interference between the workloads. The isolation

interfaces also serve as a natural boundary for configuring Par-

tial Reconfiguration regions in the FPGA CAD flow. Finally,

we can choose to drive the segmentation using packet address

information on a per-cycle basis in a fully dynamic fashion.

The key contributions of this work include:

• Design and implementation of a segmented FPGA Ho-

plite NoC that can be dynamically configured to fracture

into sub-NoCs.

• Performance evaluation of the NoC configuration under

synthetic traffic for patterns such as LOCAL, RANDOM,

TRANSPOSE, and TORNADO.

• We also consider multi-processor traces extracted

from SniperSim [3] for PARSEC: blackscholes,

bodytrack, canneal, dedup, fluidanimate,

freqmine, swaptions, vips, x264.

• Characterization of FPGA implementation costs of seg-

mented design including PR support on the Xilinx VC709

board (Xilinx XC7V690T FPGA).

• Experimental evaluation of the fractured NoC for dy-

namic segmentation and its application to the GRVI

Phalanx 30×7 NoC topology.

II. BACKGROUND

FPGA overlay NoCs such as Hoplite [8] allow FPGA

developers to compose large accelerators in a scalable manner

by combining multiple optimized compute units (Clients or

Processing Elements, i.e. PEs). Developers can focus engi-

neering and optimization effort on the small repeating com-

pute units and rely on the NoC to interconnect many of

these together. This divide-and-conquer approach works well

when the accelerator task has sufficient parallelism and can

expose communication dependencies in the form of packets.

Furthermore, the NoC also provides access to system-level

services such as DRAM controllers, PCIe links, Ethernet ports,

and other monitoring and management interfaces. With the

increasing density of modern FPGAs, we can easily fit 100s-

1000s of such small compute units. One example of such a

design is the GRVI-Phalanx [6] architecture that is able to fit

1680 RISC-V processors onto a Xilinx VU9P FPGA. Very few

applications could possibly scale to use all these processors

at the same time. Additionally, the deflection penalty when

traversing such large system sizes may cripple performance

scalability. Datacenter FPGA operators may want to virtualize

such a large compute fabric across multiple customers to

reduce costs and maximize utilization. Under this scenario,

the application mix that is mapped to such a multiprocessing

FPGA fabric would change over time. For instance, we could

partition the 1680 processor fabric into rectangular regions

assigned to different customer applications. The NoC back-

bone would retain connectivity to system-level interfaces while

applications are loaded or unloaded at runtime.

To summarize, we need to consider NoC adaptation to

handle scenarios where:

• applications may not have enough parallelism to use the

entire FPGA multiprocessing fabric,

• deflection penalty of routing packets over Hoplite may

limit performance scalability for application that do have

adequate parallelism,

• the FPGA may be partitioned across multiple separate

applications to meet customer requirements in a datacenter

environment, and

• we need to safely reconfigure portions of the FPGA while

allowing rest of the NoC-connected FPGA to continue safe

operation.

In this paper, we show how to modify Hoplite to support

configurable segmentation and satisfy these four requirements.

A segmented NoC can be dynamically fractured into multiple

smaller NoCs in such a way that no packets can travel

across the fracture boundaries. Segmenting the NoC can be

naturally tolerated by the deflection-routing function used in

Hoplite. However, this comes at extra multiplexing cost The

engineering challenge is to choose the appropriate amount of

segmentation that balances cost and deliver improved perfor-

mance and utilization.

III. SEGMENTED NOC DESIGN

In this section, we introduce the idea of segmentation to

the design of FPGA overlay NoCs like Hoplite. We describe

the high-level idea, and then discuss specific implementation

considerations for FPGA mapping.

Fig. 2: Segmentation of NoC links to support flexibility-

cost tradeoffs in the NoC infrastructure. Showing a 6-ring

with segment lengths of 6, and the effect of disabling and

enabling fracturing. When the segmentation is disabled, the

ring works as the regular 6-hop NoC, but when its enabled

it works as two 3-hop NoCs.

Idea: In Figure 2, we show the intuitive idea behind

segmentation. For deflection routed NoCs, if a packet is not

allowed to turn in its intended direction, it is deflected along

the arriving link to retry later. For a NoC with
√
N ×

√
N

routers, this results in a latency penalty of O(
√
N) for each

deflection. Segmentation splits the NoC into sub-NoCs at pre-

defined intervals. For instance, a bisected link will require



5

LUT
5

LUT

5

LUT
5

LUT
3:1

MUX

5:1

MUX

W
PE E

S/PE

DOR Logic

sel0 sel1,2

N

Ewrap

Swrap

Esplit

Ssplit

Ewrap

Swrap

5

LUT
5

LUT

5

LUT
5

LUT
2:1

MUX

3:1

MUX

W
PE E

S/PE

DOR Logic

sel0 sel1,2

N

5

LUT
5

LUT
2:1

MUX

5

LUT
5

LUT

5

LUT
5

LUT
2:1

MUX

3:1

MUX

PE

E

S/PE

DOR Logic

sel0 sel1,2

5

LUT
5

LUT
2:1

MUX

W

Ewrap

N

Swrap

Esplit

Ssplit

Fig. 3: Segmented Hoplite NoC switch architecture to allow turn-back. Leftmost figure (a) shows the original Hoplite design

with non-blocking South exit. The middle figure (b) shows the two isolation multiplexers at both N and W inputs suitable

for implementation in static region for PR support. The right figure (c) shows a collapsed design without PR support that

could use fewer LUTs for implementation.

a programmable multiplexer in the middle of the link for

steering packets back within the sub-NoC. This keeps packets

within the sub-NoC resulting in a latency penalty of O(
√
N/2)

per deflection. We can apply this recursively along the link

until a satisfactory granularity for segmentation is achieved.

We can do this for workloads that have localized traffic

patterns, communication that can be split into local and global

phases, or multi-application workloads mapped to distinct NoC

regions and are guaranteed to not have any cross-application

communication dependencies.

It is worth noting that while the idea of segmentation is

primarily useful for deflection-routed NoCs and unidirectional

torus topologies, it can also be applied to other NoCs as well.

You may want to do this to dynamically partition a large NoC

into smaller NoCs to suit application requirements. In this

paper, we restrict our attention to adapting Hoplite.

Modifying the Hoplite router: In Figure 3, we show a

deflection-routed Hoplite FPGA NoC switch with the proposed

modifications. In the original design, we consider a Hoplite

switch with full internal connectivity supporting Dimension

Ordered Routing (DOR). In this case packets can turn from

West to South (horizontal traffic can move into vertical dimen-

sion if required) but not from North to East (vertical traffic

stays in vertical links). This baseline design requires a 6-LUT

and a 5-LUT per bit of bandwidth through the switch. To

enable isolation, we introduce Ewrap and Swrap connections.

These correspond to the inputs of the multiplexers shown

earlier in Figure 2. If desired, the turn-around inputs can be

absorbed into the existing multiplexers that are driving one of

the switch outputs to keep LUT costs low. The multiplexer

control signals Esplit and Ssplit are driven be configuration

registers which are programmed as needed by the application.

It is worth noting that for static segmentation the state of the

configuration bits will stay constant for 1000s of cycles cor-

responding to application phase, and will change infrequently.

Partial Reconfiguration (PR): If we desire support for

Partial Reconfiguration, then the isolation multiplexers must

be implemented separately and kept in the static region of

the design. It is important to understand that the PR region

boundary when using this approach will include the Hoplite

router as well as any Processing Element logic. By retaining

the multiplexer in the static region, we allow safe reconfig-

uration at NoC link interfaces without disrupting rest of the

NoC. Furthermore, we ensure that the NoC itself is not forced

into the static region, freeing the developer into adjusting and

adapting the routing function for the new logic as desired. This

is in contrast with the approach adopted in HRMPSoC [9]

where the NoC is entirely in the static region of the chip.

This is useful to (1) achieve better chip utilization by avoiding

fragmentation effect of static-dynamic partitioning, (2) reduce

wirelength between static and dynamic regions, and (3) allow

easier composability of a large number of rectangular dynamic

region tiles in a 2D chip geometry.

Static Routing Function: Hoplite uses dimension-ordered

routing in the switches to reduce the cost of the output

multiplexers. We can continue to use this routing function

in the modified router without danger of deadlock or packet

loss. When using PR, it is possible that the X→Y path taken

by a packet has been disrupted by an NoC quadrant being

configured. Under these circumstances, the packet will deflect

at the configuration quadrant boundary, and will continue

to deflect until reconfiguration is complete. This guarantees

eventual delivery, but may cause a temporary livelock that lasts

for the duration of the reconfiguration phase. It is possible to

adapt the routing function to be tolerant of reconfiguration and

route around such barriers [5], but it is out of the scope of

this paper. When not using PR, the chip can be partitioned into

separate isolated regions with a distinct application mapped to

each region. In this scenario, packets are entirely localized

within a region and we do not have to worry about trapped

packets.

Cost Considerations: In the extreme case, we support

fracturing of the NoC by modifying each switch to provide

complete control over the region boundaries. This provides

greater flexibility but doubles the cost of the NoC and in-

troduces latency in the wrap-around links. This is because

each of the 2:1 multiplexers will require an FPGA LUT and

potential pipelining for performance. Often, we do not need



complete flexibility, and we can stagger these turn-enabled

switches at specific intervals. Thus, to control costs, we may

add switches with only Ewrap links, or Swrap links alone,

or together. We can choose the staggering (or GAP) between

these isolation multiplexers to expose a coarser-grained design

for reconfiguration.

IV. DYNAMIC SEGMENTATION AND SHORTCUT ROUTERS

With static segmentation of the NoC, the isolation mul-

tiplexers may be programmed to partition the NoC rings

into regions for prolonged periods of time before they are

reconfigured, potentially thousands of clock cycles. Instead of

(or in addition to) such static segmentation, a NoC overlay may

also be designed with dynamic segmentation that automatically

partition rings into segments on a packet-by-packet basis per

cycle. A dynamic shortcut router that implements this behavior

will selectively convey packets between ring segments when

necessary, or else reflects them back into their current ring

segments, a kind of “Maxwell’s demon” that improves NoC

routing outcomes.

In contrast to the programmed segmentation of the prior

section, dynamic segmentation still allows delivery of a packet

to any destination across the full NoC. However, this comes

at the cost of more LUTs for determining routing conditions

dynamically based on packet addresses as well as making par-

tial reconfiguration support more complicated. We also need

to pay an extra two cycle of latency for each dynamic router

in the ring. We can use the router microarchitectures shown

in Figure 3(b) and (c) with the only modification to drive the

Esplit and Ssplit mux control signals based on packet addresses

instead of configuration registers (static segmentation).

When designing the shortcut routing function, we must

take care of one contention scenario to avoid livelock. When

packets arriving at a segment junction from either direction

of the ring are destined for a client in the same side of the

segmented ring there is output port contention. We resolve this

in favour of the segment-crossing packet so that it is given

right of way. The other packet is forced to continue along

the ring and will incur additional delivery latency, but never

livelock. This is because, it is sure to loop around the whole

ring and arrive at the segment junction with a higher priority

should we have a contention again.

V. METHODOLOGY

In this section, we describe our evaluation methodology and

present implementation details relevant for understanding the

experiments.

RTL Implementation: We compile the various configura-

tions under an identical NoC linkwidth of 256b to match the

throughput of DRAM/PCIe interfaces of the VC709 FPGA

board. Our test setup includes a static region (shown in

Figure 1 earlier) that interfaces our NoC with external system-

level interfaces. We tabulate the resource costs and implemen-

tation metrics of the various NoC configurations in Table I.

Here we only consider NoC cost and do not include other costs

(PE logic, static region). It is clear that segmentation adds an

overhead to each router, particularly the number of registers.

We also introduce PR region boundaries around the NoC

router which constrains place and route freedom in the CAD

tools. This does not add much resource overhead (<1%) but

does reduce clock frequency by ≈20–50 MHz. We use Vivado

2016.4 installed on a 64 GB Ubuntu 16.04 platform (higher

memory recommended for larger NoC size compilations) for

our implementation experiments and evaluate correctness on

the VC709 board. For enabling Partial Reconfiguration we use

a custom ICAP controller [12] that can reconfigure the FPGA

at ≈380 MB/s. For a 2×2 region with 7.2K LUTs, 14.4K FFs

40 RAMB18 and 40 DSP48s it takes 1.2 ms to reconfigure that

portion of the FPGA. The static region of the design contains

DyRact v4.1, PCIe Gen3 v3.2, MIG v2.4, and AXI Datamover

v5.1 rev9 IPs to provide system-level IO interfaces.

CONNECT Torus reference: We also compare our imple-

mentation with the CMU CONNECT [10] Torus router. Unlike

the original Hoplite comparison [8], we do not compare against

a Bidirectional Mesh with Virtual Channels, but generate a

Unidirectional Torus router with Simple Input Queues that is

structurally similar to Hoplite. We use the online NoC Verilog

generator at the CMU CONNECT site to produce RTL for

the following configuration: (1) Torus topology, (2) System

sizes from 2×2 to 12×12 (upper limit of the CONNECT tool),

(3) Simple Input Queues (no virtual channels for simplicity),

(4) Peek Flow Control, (5) flit datawidth of 256b, and (6)

flit buffer depth of 8. From Table I, we observe that this

CONNECT configuration requires 6.8–7.2× more LUTs than

equivalent Hoplite NoCs. This is expected as the Flit buffers,

and complex switch control logic occupy substantial area

on the chip. But it is worth noting that this gap is smaller

than the 20–25× resource savings possible when comparing

Hoplite to the Bidirectional Mesh CONNECT router. We

believe this new ≈7× resource advantage for Hoplite is a

fairer comparison against the CONNECT NoC generator1. In

addition, the Hoplite NoC does use 10–12× more FFs than

CONNECT due to the inter-router 4-stage pipelining for faster

performance. This is necessary for die-spanning layouts of the

NoCs particularly for smaller sizes. As expected, this reduced

FF cost comes at the expense of a significantly slower design

that runs as much as 2.4–3× slower than Hoplite.

NoC Traffic: We consider synthetic workloads for different

traffic patterns such as LOCAL, RANDOM, TRANSPOSE and

TORNADO for our study. We consider 100% injection rates to

saturate the NoC and sweep various PE counts from 2×2, to

32×32 in powers of 2. We also consider segmentation sizes

from 1×1 (full segmentation), to 32×32 (no segmentation).

We use RTL simulations to evaluate these different traffic

patterns and record overall sustained throughputs (packets/-

cycle/PE) and per-packet latency metrics in the simulation.

When reporting performance compared to CONNECT NoC,

we consider frequency and resource costs. In addition to

synthetic benchmarks, we also extract communication traces

1A smaller version of Hoplite can be compiled with 1 LUT6 2 per bit
by cascading E→S mux. This will be 2× smaller, and have slightly lower
performance, than the Base Hoplite used in this paper





●

●

●

●

●

0.25

0.50

0.75

1.00

2 4 8 16 32
NoC Ring Dimension

S
u
s
ta

in
e
d
 R

a
te

 (
p
a
c
k
e
ts

/c
y
c
/P

E
) ● LOCAL RANDOM TORNADO TRANSPOSE

Fig. 5: Quantifying the effect of segmentation mismatch for

2×2 synthetic applications mapped to different NoC sizes.

16x1616x1616x1616x1616x1616x1616x1616x1616x16

[8x8][8x8][8x8][8x8][8x8][8x8][8x8][8x8][8x8]

[4x4][4x4][4x4][4x4][4x4][4x4][4x4][4x4][4x4]

[2x2][2x2][2x2][2x2][2x2][2x2][2x2][2x2][2x2]

8x88x88x88x88x88x88x88x88x8

[4x4][4x4][4x4][4x4][4x4][4x4][4x4][4x4][4x4]

[2x2][2x2][2x2][2x2][2x2][2x2][2x2][2x2][2x2]

4x44x44x44x44x44x44x44x44x4

[2x2][2x2][2x2][2x2][2x2][2x2][2x2][2x2][2x2]

●

●

●

0.00

0.05

0.10

0.15

0.20

0 50K 100K 150K 200K

Area (LUTs)

S
u
s
ta

in
e
d
 R

a
te

 (
p
a
c
k
e
ts

/P
E

/n
s
)

● Hoplite Segmented Hoplite

Fig. 6: Area-Throughput Tradeoffs when comparing Seg-

mented Hoplite to Base Hoplite. Grey diagonal lines rep-

resent the set of area-proportional performance tradeoffs.

Every segmented solution delivers sustained rates that ex-

ceed the prediction of simple proportional scaling.

proportional scaling lines are shown as grey diagonal lines

in the plot. Furthermore, performance scales mostly linearly

with extra levels of segmentation. Thus, if the developer can

afford segmentation, it should be deployed to the fullest extent

possible.

Evaluating Latency Trends: We consider the effect of

segmentation on packet latency distribution in Figure 8 for a

16×16 NoC. At segment length GAP of 16, the performance

is identical as there is no segmentation in the NoC. As we

increase segment lengths, the latency distributions shift to the

left (lower values) across all traffic patterns. Recall, we are

routing the exact same traffic workload for all scenarios for a

given GAP length, and we see a slight reduction in routing

latencies even when segmentation is disabled (red curves).

This is purely due to the localization of destination addresses

in the workload to within the sub-NoC. When segmentation

is enabled, the curves shift to the left (blue curves) sub-

●

●

●

●

● ●
●

●

● ●

●

LOCAL RANDOM TORNADO TRANSPOSE

10K 100K 10K 100K 10K 100K 10K 100K

0

1000

2000

3000

Area (LUTs)

P
a
c
k
e
ts

/P
E

/n
s

CONNECT Hoplite Segmented Hoplite

Fig. 7: Comparing Hoplite with CONNECT Torus Router

for different traffic patterns, PE counts. CONNECT PE

sizes scale from 2×2 to 10×10 (FPGA area saturation

limit), while Hoplite sizes scale from 2×2 to 16×16. We

include router area and speed in these calculations. We

consider Segmented Hoplite where GAP=PE/2.

stantially, thereby highlighting the benefit of segmentation on

performance. For the TRANSPOSE pattern, the localization of

traffic in NoC regions actually worsens performance without

segmentation (red curves shift right). For TORNADO pattern at

segment length of 2, we see no distribution as all packets take

exactly the same amount of time and there is no conflict in

the network. We saw this earlier in Figure 4 when TORNADO

traffic achieved a sustained rate of 1.0 in both cases.

We tabulate the ratio of worst-case, and mean packet routing

latencies for various traffic patterns on 16×16 Hoplite NoCs

in Table II. We see that the worst case latencies reduce by

1.4–9.5× while mean latencies reduce by 1.4–9.9× over Base

Hoplite. The savings are proportional to ratio of the length of

the segment to original length of the ring. While we expect

savings, the linear scaling behavior shows the effectiveness of

this segmentation approach. High worst-case routing latencies

were a known limitation of deflection routed NoCs such as

Hoplite, and the use of segmentation alleviates this problem

significantly.

TABLE II: Latency Ratios when comparing Segmented and

Base Hoplite NoCs for 16×16 size with varying segment

lengths GAP, 2.5K packets/PE.

Pattern GAP Ratio

Worst-Case Mean

LOCAL 2 8.90 9.09
4 4.98 5.05
8 2.15 2.15

RANDOM 2 9.56 9.92
4 4.51 4.54
8 2.07 2.05

TORNADO 2 1.00 1.00
4 2.42 2.45
8 1.47 1.41

TRANSPOSE 2 7.99 5.78
4 4.67 3.14
8 2.86 1.96

ALL 16 1.00 1.00



16

LOCAL

16

RANDOM

16

TORNADO

16

TRANSPOSE

8

LOCAL

8

RANDOM

8

TORNADO

8

TRANSPOSE

4

LOCAL

4

RANDOM

4

TORNADO

4

TRANSPOSE

2

LOCAL

2

RANDOM

2

TORNADO

2

TRANSPOSE

0 5
K

1
0

K

1
5

K

2
0

K

2
5

K

0

1
0

K

2
0

K

3
0

K

4
0

K

0

1
0

K

2
0

K

3
0

K

4
0

K

5
0

K

0

1
0

K

2
0

K

3
0

K

0 5
K

1
0

K

1
5

K

2
0

K

2
5

K

0

1
0

K

2
0

K

3
0

K

4
0

K

0

1
0

K

2
0

K

3
0

K

0

1
0

K

2
0

K

3
0

K

4
0

K

5
0

K

0 5
K

1
0

K

1
5

K

2
0

K

0

1
0

K

2
0

K

3
0

K

0 5
K

1
0

K

1
5

K

2
0

K

2
5

K

0

1
0

K

2
0

K

3
0

K

0 5
K

1
0

K

0 5
K

1
0

K

1
5

K

2
0

K

1
.6

1
.8 2 2
.2

2
.4 0 5
K

1
0

K

1
5

K

2
0

K

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00
0.01
0.02
0.03
0.04

0.016

0.018

0.020

0.022

2.8
3.0
3.2
3.4
3.6

0.000
0.005
0.010
0.015
0.020
0.025

0.010

0.015

0.020

0.014

0.016

0.018

0.01

0.02

0.004

0.008

0.012

0.016

0.005

0.010

0.015

0.005

0.010

0.015

0.01

0.02

0.03

0.000
0.005
0.010
0.015
0.020
0.025

0.000
0.005
0.010
0.015
0.020

0.000

0.005

0.010

0.015

Latency of transaction (cycles)

P
e
rc

. 
o
f 
P

a
c
k
e
ts

 (
%

)
Hoplite Segmented Hoplite

Fig. 8: Histogram of Packet Latencies for various traffic

(columns) and segmentation lengths (rows) for 16×16

Hoplite NoC. Bottom row is base Hoplite so there is no

difference with segmentation.

CONNECT vs. Segmented Hoplite: We compare the

performance of CONNECT [10] and Hoplite in Figure 7.

Here, we show the effect of system size (LUTs) on sus-

tained rates (packets/PE/ns) of the NoC. We consider the

operating frequency difference, and physical area costs when

performing the comparison. We previously show the size of

the various configurations in Table I. At system sizes above

8×8, the CONNECT Torus suffers a deadlock for RANDOM

and TORNADO patterns and the scaling curves stop there.

CONNECT is unable to compete with even Base Hoplite

configuration in all cases for different traffic patterns. With

segmentation enabled, the performance wins can be as high

as 10× over CONNECT. For the LOCAL pattern, CONNECT

performs better than other patterns at large system sizes of

10×10 where it already occupies 93% of all LUTs on the

Virtex-7 690T FPGA. In contrast, Hoplite scales to 16×16

NoC sizes but still leaves ≈70% of the FPGA for user logic.

SNIPER message-passing workload: We also evaluate

the effectiveness of NoC fracturing on message workloads

extracted from Sniper multi-processor simulations of PARSEC

workloads. We consider multiple instances of the parallel

applications mapped to different regions of an 8×8 NoC. As

we see in Figure 9, across a range of workloads, we see

speedups from 1.2–1.9× (for 4×4 subregion) and 1.6–2.7×
over the original Hoplite NoC without fracturing. These wins

suggest a need to separate traffic from independent communi-

cating regions of the NoC. Message interference across region

boundaries cause performance slowdowns in unrelated regions.

Applications that benefit less from fracturing either have (1)

low network traffic (bodytrack, freqmine) or (2) scale

poorly with PEs (x264).

0

1

2

3

blackscholes

bodytra
ck

canneal

dedup

flu
idanim

ate

fre
qmine

swaptio
ns

vips
x264

S
p
e
e
d
u
p

2x2 4x4

Fig. 9: Speedups for Sniper multi-processor message-

passing workloads for 8×8 NoCs with fracturing at 2×2

(16 regions) and 4×4 (4 regions) region sizes. As expected

2×2 segmentation provides better throughput.

VII. RESULTS (DYNAMIC SEGMENTATION)

In this section we evaluate dynamic segmentation as in-

troduced in section IV. In the previous section, synthetic

workloads target statically segmented NoCs so all packet

(source,destination) pairs fall within a NoC segment. Here, we

consider synthetic traffic patterns that may span a full NoC,

and measure the effects of automatic dynamic segmentation

upon packet latencies and NoC throughput.

Latency and Throughput Trends: In Table III, we summa-

rize the highlights of the dynamic segmentation experiment.

In key use cases, adding automatic dynamic segmentation,

improves sustained packet throughput (hence, packet latency

under load) as well as unloaded packet latency. We see the

greatest improvements for the largest NoCs, with smallest NoC

segment sizes, on LOCAL traffic. We expect most such packets

to stay within one or a few NoC segments corresponding to

a packet’s source/destination routers. For LOCAL traffic, we

see throughput improvements of 1.5–3× for different system

sizes and segmentation, while RANDOM traffic improvements

are only 1.1–1.3×. Packet latency improves by 1.3–2.5× for

LOCAL traffic across different system sizes but by a modest

<1.4× for RANDOM traffic. In contrast, dynamic segmentation

impairs performance on TORNADO traffic. By design, all such

traffic is halfway across the NoC in x and y, so the dynamic

routers never shortcut, but add latency. For static segmentation,

since traffic stays within the region, we see improvements even

for TORNADO pattern.

VIII. DISCUSSION

The idea of segmented wiring for improving the imple-

mentation of communication in circuits has been long es-

tablished in the FPGA community [1]. FPGAs ship with a

programmable interconnect fabric with segmented wires that

can travel several LUT distances before a switch hop. This

allow longer wires to use faster wire segments and avoid

traversing a switch at each LUT hop. Our paper discusses



TABLE III: The impact, for LOCAL, RANDOM, and

TORNADO traffic, of dynamic segmentation (ring shortcut

routing) on the Rate of sustained packets routed per cycle

(100% injection rate) and MUPL, the mean unloaded (1%

injection rate) packet latency, in cycles. In the last row, six

NoC segments (tiles) are 5×4 and six are 5×3.

NoC Tile Local Random Tornado

Size Size Rate MUPL Rate MUPL Rate MUPL

8×8 8×8 10.0 6.0 6.8 8.4 16.0 7.3

4×4 14.3 4.6 8.0 8.1 13.1 8.7

16×16 16×16 20.0 11.5 13.1 17.4 32.0 16.4

8×8 31.1 7.2 15.6 14.9 28.2 17.6

4×4 46.6 5.3 18.6 13.8 12.8 17.2

30×7 30×7 13.8 13.0 9.7 19.6 11.7 19.2

10×7 24.9 7.0 10.8 15.5 10.5 18.1

5×7 34.3 5.6 11.6 14.6 11.3 18.3

5×4/3 39.2 5.1 12.9 14.5 9.0 18.9

a different approach designed for use with deflection-routed

FPGA overlay NoCs that achieves similar outcomes through

NoC partitioning.

FPGA-based NoCs have also been shown to be useful

in supporting partial reconfiguration in various studies [11],

[4], [9]. In [4], the authors propose using partial dynamic

reconfiguration to modify the NoC topology and routing

algorithms to reflect changing communication requirements of

a Xilinx Virtex-II FPGA design. The NoC interfaces provide

a natural boundary for establishing a reconfiguration region.

In our work, we do not modify the routing algorithm, but

do change the topology to the extent of partitioning a larger

NoC into multiple smaller NoCs. However, the change on

topology is determined dynamically through multiplexer con-

trols rather than through partial reconfiguration of the FPGA.

CoNoChi [11] is a similar FPGA design of a dynamically

configurable NoC targeting Virtex-II FPGAs. Packets are

routed on the NoC through offline scheduling. This requires

the reconfiguration graph to be made available to the com-

munication scheduler at runtime to rebuild the routing tables.

In addition to adding or removing NoC switches, it is also

possible to replace processing modules. Our design does not

require offline scheduling of the PR regions, and allows unified

replacement of router+PE tiles as required by the application.

In HRMPSoC [9], the authors show how to use a NoC to

identify reconfigurable regions with compute accelerators or

FPGA soft processors on a Xilinx Virtex 6 FPGA. They do this

by extracting the memory elements, and NoC components into

the static region of the FPGA. In contrast, our paper allows

the PR region to include the NoC as well as the accelerator.

Only the isolation multiplexers need to be in the static region.

This is possible because we do not need the NoC to stay

contiguously connected in the reconfiguration phase.

IX. CONCLUSIONS

In this paper, we present a segmented Hoplite NoC design

that improves throughput over base Hoplite NoC by 4–9×
for synthetic workloads (static segmentation), 1.2–2.7× for

real-world multi-processor PARSEC workloads (static seg-

mentation), and 2.5× for synthetic workloads mapped to

a 30×7 GRVI-Phalanx NoC (dynamic segmentation). This

throughput win is accompanied by a 2–8× improvement in

latency under various conditions. We are able to do this

by redesigning the Hoplite switch to include programmable

isolation multiplexers at pre-determined intervals along the

NoC links. These locations also serve as convenient Partial

Reconfiguration region boundaries to enable dynamic recon-

figuration of the user application while keeping rest of the

logic untouched. We demonstrate an 8×8 NoC implementation

with 4×4 segmented regions mapped to a Xilinx VC709

FPGA board occupying 39.5K LUTs and 170K FFs (7% more

resources than Base Hoplite) and operating at ≈200 MHz.

Even with complete segmentation, our design is 4–7× larger

and 2–3× faster when compared to CONNECT torus NoCs.

We also support fully dynamic segmentation at <1% of the

device LUTs of the Xilinx VU9P FPGA when mapping a

GRVI-Phalanx 30×7 NoC onto the chip.

REFERENCES

[1] V. Betz and J. Rose. FPGA routing architecture: Segmentation and
buffering to optimize speed and density. In Proceedings of the 1999

ACM/SIGDA Seventh International Symposium on Field Programmable

Gate Arrays, FPGA ’99, pages 59–68, New York, NY, USA, 1999. ACM.
[2] C. Bienia and K. Li. Parsec 2.0: A new benchmark suite for chip-

multiprocessors. In Proceedings of the 5th Annual Workshop on

Modeling, Benchmarking and Simulation, 2009.
[3] T. E. Carlson, W. Heirmant, and L. Eeckhout. Sniper: Exploring the level

of abstraction for scalable and accurate parallel multi-core simulation.
In 2011 International Conference for High Performance Computing,

Networking, Storage and Analysis (SC), pages 1–12, Nov 2011.
[4] S. Corbetta, V. Rana, M. D. Santambrogio, and D. Sciuto. A light-weight

network-on-chip architecture for dynamically reconfigurable systems.
In 2008 International Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation, pages 49–56, July 2008.
[5] M. Fattah, A. Airola, R. Ausavarungnirun, N. Mirzaei, P. Liljeberg,

J. Plosila, S. Mohammadi, T. Pahikkala, O. Mutlu, and H. Tenhunen.
A low-overhead, fully-distributed, guaranteed-delivery routing algorithm
for faulty network-on-chips. In Proceedings of the 9th International

Symposium on Networks-on-Chip, NOCS ’15, pages 18:1–18:8, New
York, NY, USA, 2015. ACM.

[6] J. Gray. GRVI-Phalanx: A Massively Parallel RISC-V FPGA Accelera-
tor Accelerator. In Proc. 24th IEEE Symposium on Field-Programmable

Custom Computing Machines, pages 17–20. IEEE, 2016.
[7] Y. Huan and A. DeHon. FPGA optimized packet-switched NoC using

split and merge primitives. In Field-Programmable Technology (FPT),

2012 International Conference on, pages 47–52, Dec. 2012.
[8] N. Kapre and J. Gray. Hoplite: Building austere overlay nocs for

fpgas. In Field Programmable Logic and Applications (FPL), 2015

25th International Conference on, pages 1–8, Sept 2015.
[9] T. D. A. Nguyen and A. Kumar. PR-HMPSoC: A versatile partially re-

configurable heterogeneous multiprocessor system-on-chip for dynamic
FPGA-based embedded systems. In 2014 24th International Conference

on Field Programmable Logic and Applications, pages 1–6, Sept 2014.
[10] M. K. Papamichael and J. C. Hoe. CONNECT: re-examining conven-

tional wisdom for designing nocs in the context of FPGAs. In the

ACM/SIGDA international symposium, page 37, New York, New York,
USA, 2012. ACM Press.

[11] T. Pionteck, R. Koch, and C. Albrecht. Applying partial reconfiguration
to networks-on-chips. In 2006 International Conference on Field

Programmable Logic and Applications, pages 1–6, Aug 2006.
[12] K. Vipin and S. A. Fahmy. Dyract: A partial reconfiguration enabled

accelerator and test platform. In Field Programmable Logic and

Applications (FPL), 2014 24th International Conference on, pages 1–7.
IEEE, 2014.


