
Implementing FPGA overlay NoCs using

the Xilinx UltraScale memory cascades

Nachiket Kapre

University of Waterloo

Waterloo, Ontario, Canada

Email: nachiket@uwaterloo.ca

Abstract—

We can enhance the performance and efficiency of deflection-
routed FPGA overlay NoCs by exploiting the cascading feature
of the Xilinx UltraScale BlockRAMs. This allows us to (1) harden
the multiplexers in the NoC switch crossbars, and (2) efficiently
add buffering support to deflection-routing. While buffering is
not required for correct operation of a deflection routed NoC,
it can boost network throughputs for large system sizes under
heavy load and allow functional support for fixed-length, multi-
flit NoC traffic. Since the multiplexer controls of the cascaded
RAMs can be driven from user-logic, the NoC routing function
can be implementing in LUTs while the data is steered across
the dedicated cascade multiplexers and links. Thus, our approach
uses hard resources in the BlockRAM architecture to absorb the
bulk of the cost of a NoC in the form of crossbar multiplexing,
as well as packet queuing. For the XCVU9P UltraScale+ FPGA,
we show how to map the 72b Hoplite NoC router at a cost of 3
FIFO blocks, 64 LUTs, and 40 FFs per switch while operating at
≈727 MHz (400 MHz in 60×12 grid). This reduces LUT count by
1.4× and FF cost by 2× over a pure LUT-based implementation
while also being 1.2× faster. For uniform RANDOM traffic, we
boost throughputs of a 16×16 NoC by 50–60%, reduce worst-
case packet latency by ≈40%, and lower energy use by 10–40%
over classic bufferless deflection-routing at injection rates of 15–
20% and higher with 16-deep buffers. When compared to hard
NoC router designs, our BRAM-based soft NoC also closes the
area gap to under a factor of two instead of the 20–23× gap
claimed in earlier studies.

I. INTRODUCTION

FPGA-based overlay NoCs (networks-on-chip) have a long

and rich history of design evolution that has improved through-

puts, latencies, and resource requirements. These NoCs, called

soft NoCs or overlay NoCs, are implemented on top of an

FPGA fabric using programmable resources such as LUTs,

FFs, and general purpose interconnect. Some NoCs such

as [13], [8] are specifically tailored for FPGA embodiment

so as to exploit the wire-rich FPGA substrate with high-

arity topologies [13], or to deliver high-performance routers

through modularity and localization of control [8]. More

recent NoCs such as Hoplite [10] are substantially smaller

than these earlier designs by compromising certain NoC

performance metrics through the use of bufferless deflection

routing. The high resource costs or poor performance of

soft NoCs makes it attractive to consider hard NoC routing

infrastructure in FPGAs [1]. Unlike soft NoCs that use existing

FPGA resources, hard NoCs use dedicated silicon resources

to implement specific NoC routers as well as using dedicated

Fig. 1: Embedding Hoplite NoC router functionality

within the PARALLEL FIFO cascade mode of the Xilinx

UltraScale FPGA.

interconnect links between the routers that does not interfere

with the programmable resources of the FPGA. While the

performance, and efficiency advantages of a hard NoC are

evident, the engineering cost of adding the NoC fabric to the

FPGA and associated CAD tools may be years away from

actual product deployment. Additionally, the architecture of

the hard NoC may be inflexible for varied FPGA workloads.

If a user application needs NoC functionality today, or is

unlikely to benefit from a fixed configuration of a hard NoC

in the future, we need to satisfy these user requirements by

improving the cost and performance of a soft NoC. In this

paper, we consider the use of UltraScale BlockRAM cascades

(1) to reduce soft logic resource requirements of the Hoplite

NoC, (2) to demonstrate improvements in throughput through

the use of buffering instead of deflections when possible, and

(3) to close the gap with clean-slate hard NoC routers by

exploiting existing hard resources in the FPGA. We show a

high-level diagram of our proposed router in Figure 1.

Use of cascade resources: We consider the use of RAM

cascades in the Xilinx UltraScale FPGAs to support a portion

of NoC functionality using dedicated resources. Xilinx Ultra-

Scale FPGAs [3] use a novel architecture tailored to the new

20 nm manufacturing technology. Among the various changes

to the FPGA organization, it is now possible to cascade

BlockRAM resources to construct larger RAM structures and

FIFOs from small 18 Kb and 36 Kb blocks using specialized

programmable structures. This is supported with the help of



fast vertical cascade links which are similar to carry chains

between LUTs and cascading links between DSP48 blocks.

The RAM tile internally provides dedicated multiplexers to

steer data busses to adjacent RAM blocks. Importantly, the

multiplexer selection controls and read-write logic is exposed

to user logic. How does the generation of these controls affect

the implementation cost of the deflection routing function?

Avoiding deflections: We also consider the use of FPGA

BRAMs for buffering to reduce the overheads of deflections

in Hoplite. Hoplite [10] is small, lean design that requires a

single Xilinx 6-LUT for each bit of the NoC link along with

a few extra LUTs for route decoding. However, the penalty

of deflections can be high and result in lower throughputs at

large system sizes and under heavy load. A known technique

to overcome this limitation is to use buffering within the

NoC to absorb conflicting packets and to reduce the deflection

counts in the network [7]. For the Xilinx UltraScale FPGA,

when using the BRAM cascade, the RAMs can be configured

as FIFOs with hardened control logic to serve precisely this

role. How much buffering is adequate to balance the positive

improvement in throughput with any negative impact on packet

latency due to head-of-line blocking [6] which is a known

problem with buffered NoC routers?

We enumerate the important contributions of this paper:

• We modify the Hoplite NoC router to use dedicated hard

BlockRAM resources and associated cascading features on

the Xilinx UltraScale FPGA. This requires redesigning the

routing function to account for the unique pipeline structure

of the cascade. We also generate FIFO access controls.

• We quantify the impact of FIFO buffering on the NoC

links to hold packets in conflict instead of deflecting them

along long round-trips in the NoC lanes. We conduct a

performance analysis of the NoC under various synthetic

workloads, system sizes, and injection rates.

• We map Hoplite NoC configurations spanning the com-

plete chip fabric on the XCVU09P UltraScale+ FPGA card

using XDC location constraints for the BRAMs alone.

II. HOPLITE REVIEW

In this section, we describe the features of the Hoplite router

implemented using fracturable Xilinx 6-LUTs. Abundant de-

tails of the Hoplite NoC switch are available in [10], [9], [4],

[5], but we summarize important characteristics here.

Hoplite [10] is a lightweight, FPGA-optimized NoC that

uses bufferless deflection routing, unidirectional torus topol-

ogy, and port sharing to reduce the resource costs of a NoC

in a manner well-suited to an FPGA implementation. Hoplite

has been shown to outperform classic buffered FPGA NoCs

such as CMU Connect [13] and the Penn Split-Merge [8] on

performance by 1.5–2.5× (under certain conditions). It also

lowers the resource needs by 20–30× be eliminating buffering

and complex controls. When using deflection routing, all

arriving packets must be routed to some outbound destina-

tions. Buffering is not mandatory as all arriving packets are

guaranteed to be processed, sometimes along an undesirable

5
LUT
5

LUT

5
LUT
5

LUT
5

LUT

5
LUT

W

N

PE E

S/PE

DOR Logic

sel0 sel1

Fig. 2: Hoplite NoC switch design optimized for

fracturable dual 5-LUT Xilinx FPGA CLB organization.

deflection. The performance penalty of deflection is the price

we pay for a low-cost FPGA implementation.

In Figure 2, we show a resource-optimized version of

the Hoplite switch that uses internal multiplexer chaining

to better fit the Xilinx fracturable LUT CLB organization.

In this design, we have two NoC inputs from the torus

(North, and West) and two NoC outputs (South, and East).

We also have a separate PE (Processing Element) connection

that is allowed to inject new packets and remove packets

from the network. The connection to the PE can be back-

pressured due to contention within the network. As Hoplite

uses simple Dimension-Ordered Routing (DOR), packets are

allowed to turn from the X-dimension to the Y-dimension

but not vice versa i.e. packets arriving on the North input

cannot turn East. This observation makes it possible to use

a multiplexer cascade as shown in Figure 2 instead of a full

internal switching crossbar that is typically required in NoC

switches. Under this arrangement, the first multiplexer level

chooses a packet between the West input and the PE input.

This may either exit along the East output or be routed to

the South exit through the next multiplexer stage. This second

multiplexer stage arbitrates between the North input and this

previous multiplexer output. The output of this multiplexer is

destined for the South exit, or an exit to the PE. This port

sharing is disambiguated with appropriate valid signals. A

limitation of this approach is that the first multiplexer stage

can potentially block packets from the PE whenever packets

are present on the WEST input. Additionally, output sharing

for the South and PE exits can also cause performance loss.

We can eliminate this bottleneck by supporting a full crossbar

without the multiplexer cascade (doubling of LUT cost), and

by providing separate output for both South and PE exist

(additional bank of LUTs required, tripling cost of original

design). For many designs, the simple output shared, fractured

LUT implementation is often adequate.

When mapping the Hoplite router to hardened FPGA re-

sources we look for circuit structures that can embed the

functionality of the design in Figure 2. In Hoplite-DSP [4], it

was possible to support full crossbar operation of the Hoplite

router inside a DSP48 block at the cost of doubling the

internal DSP operating frequency. Instead, for this paper, we

investigate the UltraScale RAM cascade configuration which

(1) naturally permits the fractured design, (2) does not steal



DSP resources from the user, and (3) is able to use the BRAM

FIFOs for packet buffering to reduce deflections.

III. NOC DESIGN WITH ULTRASCALE CASCADES

In this section, we show how to configure the UltraScale

BlockRAM cascades to support Hoplite NoC operation.

A. Cascade Modes

As described in UG573 [14], UltraScale memory blocks

(18Kb or 38Kb blocks) can be internally cascaded to construct

complex RAM structures without needing programmable logic

or routing resources. For the BlockRAMs, the data ports can

be cascaded either serially or in parallel to build a variety of

memory configurations. This configurability can be used to

configure deeper memories (larger than 18/36Kb) or systolic

arrangements as required by the user design. When configured

as FIFOs, cascading is useful to construct deeper FIFOs or to

combine data from multiple FIFOs into a single output stream.

It is this Parallel FIFO cascade mode that is of relevance to

the Hoplite NoC design.

As shown in Figure 3, we use three RAM blocks configured

as FIFOs to implement the Hoplite NoC switch with the

CASCADE_ORDER attribute set to PARALLEL.

• The lowermost FIFO is connected to the PE and the

existing handshake signals are connected to the FIFO write

enable, and FIFO full flags. The FIFO is useful to absorb

packets coming from the PE that are unable to enter the

NoC due to network congestion. The CASDO output is the

Cascade Output port that is directly wired to the CASDI

input of the middle FIFO block.

• The FIFO in the middle is connected to the WEST input

from the NoC and also uses the CASDI (Cascade Input)

connection from the lower FIFO. The multiplexer select is

driven by the DOR (Dimension Ordered Routing) logic to

determine which packet is forwarded to the output EAST

port. The multiplexer (shown in blue) is the first level of

multiplexing shown earlier in Figure 2.

• The topmost FIFO is connected to the NORTH input from

the NoC, as well as the CASDI (Cascade Input) connection

from the middle FIFO. As before, the DOR logic drives

the multiplexer selection. The multiplexer (shown in blue)

is the second level of multiplexing shown in Figure 2.

B. Adapting Routing Function for Buffering

Deflection-routed NoCs have to route each incoming packet

to available output ports. For an FPGA implementation sce-

nario no buffering is provided to (1) reduce distributed

RAM costs when implementing on top of FPGAs and (2)

to simplify the handshake signaling to a single valid per

link. Buffered switches require complex flow control that is

expensive on FPGA fabrics and often unnecessary for multi-

processor message-passing workloads with other mechanisms

to achieve synchronization and ordering.

Hoplite uses Dimension Ordered Routing (DOR) where

packets are allowed to change from X to Y dimension but

not vice versa to avoid deadlock. If the desired output port is

Fig. 3: FIFO cascade PARALLEL mode shown overlaid

with (1) ports labeled to match Hoplite router, and (2)

data flow within the cascade highlighted to match router.

not available, then the incoming packet must deflect along an

undesired output port. There is no flow control, and all arriving

packets must be forwarded to some output port. However,

the penalty of deflections limits throughputs (packets/cycle)

particularly at high injection rates and large system sizes. It is

possible to use buffering along the links to reduce the number

of deflections in the network. When there is a conflict at an

output port, one of the conflicting packets can be buffered

in the FIFOs instead of being penalized with a deflection.

The DOR routing function needs to be adapted to generate

the FIFO read/write signals to account for this condition.

When the FIFOs are full and the desired output ports are

still unavailable, we have to resort to conventional deflection

routing until the congestion clears. Even when using FIFOs,

no flow control information is allowed to cross the switch

boundary i.e. a switch cannot communicate FIFO full/empty

status to connected routers. This simplifies the logic design

of the arbiter and avoids long-distance flow control signals on

the FPGA. In the original Hoplite design, the PE can already



TABLE I: Hoplite+Buffering Routing function. Added

support for queuing of deflection-vulnerable packets.

Inputs Outputs FIFOs

(arriving packet)1 (mux select) (read enable)
N W PE S/PE E N W PE

N→S/PE None None N 0 RD 0 0
None W→E None 0 W 0 RD 0
None W→S/PE None W W 0 RD 0
None None PE→E 0 PE 0 0 RD
None None PE→S PE PE 0 0 RD

N→S/PE W→E x N PE RD RD 0
N→S/PE None PE→E N PE RD 0 RD
None W→E/S/PE PE→E/S W? W 0 RD 0

1Preferred turn directions are computed on arriving packets rather than those
at the head of the FIFO as the cascaded FIFOs do not provide peek

behavior at FIFO read head.

be stalled when output ports are busy. For our FIFO-based

design, we can locally export the FIFO full state to the packet

generation logic within the PE to achieve identical behavior

with no logic cost. Deep FIFOs can absorb multiple packets

and limit deflection penalties, but they can block downstream

packets (head-of-line blocking [6]) and affect packet latencies

as well. Through appropriate sizing of the NoC buffers, we

can aim to deliver balanced performance.

The UltraScale FIFO cascades do not expose internal read-

side data ports to user logic directly. They have to pass through

the cascade multiplexers and registers (in DO PIPELINED

mode) before they are visible to user logic. However, routing

decisions must be made on packets at the head of the FIFO,

even if these signals are not exposed to user logic (See

Figure 3). Hence, we are required to pre-compute decisions

at the time the packet is committed to the FIFO. These

decision bits need to be stored in distributed RAMs that mimic

the packet delays in the FIFO. The routing function then

generates FIFO read controls (RDEN), and multiplexer select

(CASDINMUX) signals. The cascade pipeline structure also

forces different input to output delays for different packet

paths, which must be accounted for when generating the

control signals for the FIFOs. This makes the DOR logic

more complicated to implement than the original Hoplite

implementation. We show the modified routing decision matrix

in Table I. Here, the pre-computation logic will indicate

the preferred routing direction of the packets when they are

entering the FIFO. The post-computation logic will determine

exact routing direction (multiplexer control) after taking into

account conflict conditions and FIFO full states. The sequential

multiplexer ordering assigns the highest priority to packets

arriving along the NORTH direction first, WEST direction

next, and the PE direction the last. As indicated earlier, if

NORTH and WEST FIFOs are approaching FULL state, the

router falls back to deflection routing mode until they return

to non-full state.

C. Store-Forward Routing

Deflection routing typically works with single-flit packets.

It is possible to support multi-flit packets while maintaining

TABLE II: Queueing capacity of packets from FPGA

interfaces for deflection-routed store-forward scenario.

Interface Burst Description FIFO36E2 (72b-flit)
Length Fill

PCIe x16 TLP of 512 bytes 57 11%
DDR4 DRAM 64 byte cache-line 8 1.5%

72-b interface 1 0.1%
1Gbps Ethernet 9000 byte jumbo packet 1000 190%

1522 byte regular packet 170 33%

compatibility with deflection routing under certain conditions

with store-forward routing. For store-forward routing (also

used in the old DimeTalk [12] FPGA NoC router), network

traffic must consist of fixed pre-determined packet lengths that

are injected and switched at the interval of packet length.

This allows the packet to be fully stored at each switch hop

before traversal. This helps use the spare BRAM capacity in

the NoC router, reduce addressing overhead per packet, and

enable support for FPGA system-level traffic.

This can be achieved as follows:

• We can statically configure physically separate networks

for distributing data with unique packet lengths within

FPGA regions as desired.

• Alternatively, the NoC can be dynamically reprogrammed

at runtime to support a particular packet length tailored

to an active interface.

• Some combination of spatio-temporal partitioning com-

bining above two properties.

In Table II, we enumerate the PCIe, DRAM, and Ethernet

packet sizes under a burst-oriented mode and observe lengths

between 8–1000 flits long for 72b flits.

IV. RESULTS

We run cycle-accurate simulations of the RTL using iverilog

(git hash 063ae77 github.com/steveicarus/iverilog.git). In our

simulations we route fixed-sized workloads 1024 packets/PE

to completion, allowing sufficient warm-up time in the NoC,

when calculating throughput and latency metrics. We sweep

various buffer depths (4–256), system sizes. We use cycle-

accurate Verilog models for the FIFO18E2/FIFO36E2 and

SRLC32E blocks from Vivado 2016.3 distribution. (2×2–

16×16), traffic patterns (LOCAL, RANDOM, TORNADO,

BITREV, TRANSPOSE), and injection rates (1–100% in

multiple increments).

A. FPGA Realization

We compile the RTL to Xilinx UltraScale FPGAs using

Vivado 2016.3 edition. A single instance of our 72b switch

takes 64 LUTs and 40 FFs along with three FIFO32E2 blocks

while operating at 727 MHz. This is ≈1.4× smaller in LUT

count and 2× smaller in FF cost when compared to LUT-based

72b Hoplite. The somewhat high LUT cost of the RAM-based

Hoplite is due to the SRL-based FIFOs to delay matching the

direction decoded signals. This is a limitation of the cascaded

FIFO organization that prevents peeking the FIFO read heads

to determine desired turn directions. It may be possible to



4

8

16

32

64

128

256

0.0 0.2 0.4 0.6

Bandwidth (packets/cycle/PE)

P
E

s
Bufferless Hoplite Hoplite with 16−deep FIFOs

Fig. 4: Sustained bandwidth for 100% injection rate for

uniform RANDOM traffic across various NoC

configurations (PE sizes) with 16-deep FIFOs.

reduce the SRL costs if we had peeking ability on the raw

FIFO outputs rather than the cascaded outputs.

We generate layout for the VU9P UltraScale+ FPGA chip

used in the Amazon AWS F1 Developer Preview platform.

This FPGA has 2160 RAMB36 blocks organized as 180×12

grid of RAM blocks. This gives us a maximum NoC con-

figuration size of 60×12 = 720 switches assuming 3 RAMs

allocated per switch. Under this arrangement, we use 100%

of the BRAM resources for the buffered NoC while leaving

the denser UltraRAM for user design. The complete NoC

takes up 49.6K LUTs (4%) and 68K FFs (3%) including

pipelining costs between routers and dummy PE packet in-

jection logic while operating at 385 MHz. This system-level

frequency is roughly 1.2× faster than equivalent LUT-based

Hoplite implementations. Smaller NoC system sizes that do

not use all Block RAM resources are, of course, possible.

When generating layout, we take care to avoid straddling

the three BRAM switch across clock region and SLR (super

logic region) boundaries. While it is possible to use vertical

cascades for routing NoC traffic between the switches, we

do not use this feature in our design. This is because the

multiplexer ordering forces the NoC links to be generated in a

non-cascadable order (East exit first, South/PE exit next). If the

vertical UltraScale RAM cascades were redesigned to allow

static bypassing of certain RAM stages, this can be simplified.

B. Bandwidth Trends

In Figure 4, we show how the presence of buffering (16-

deep FIFOs) improves the sustained throughput by ≈50-

60% over pure bufferless solution. In this plot, the sustained

throughput is measured per PE, and we observe a reduction

in this figure as we increase the number of PEs as expected

due to increased network congestion. The total communication

throughput (multiplied by the number of PEs) increases as

we would expect with parallelism. The quantum of benefit

is visible only above 8 processors. This is due to the longer

latency of packet propagation through the FIFOs which domi-

nates overall runtime. At larger system sizes >8 PEs, buffering

starts to deliver measurable improvements.

0.02

0.04

0.06

0.08

0.00 0.25 0.50 0.75 1.00

Injection Rate

S
u
s
ta

in
e
d
 R

a
te

1

2

4

8

16

32

64

128

Fig. 5: Impact of buffer depth (colors+shapes) on

throughput at various injection rates for 16×16 NoC

under uniform RANDOM traffic.

C. Impact of Buffering

In Figure 5, we show the impact of buffering depth of

performance (sustained throughput) at various injection rates

for a 256 processor NoC. When the network is lightly loaded

<8–10% injection rate, the bufferless network (depth of 1 is

equivalent to bufferless routing with input registers) is able to

match the performance of the buffered networks. However, as

we increase injection rates, the performance starts to separate

and at >16-deep buffers the network starts to saturate. We

observe the stabilized sustained rates increase from 0.05 (5%)

for bufferless routers to 0.08 (8%), an almost 60% increase

in throughput. We achieve diminishing returns above 16-deep

FIFOs due to the routing constraints of the arbitration function.

There is limited freedom in steering packets under contention

as the BRAM multiplexer cascades only flow in one direction.

This restriction prevents packets arriving along the NORTH

dimension to steer EAST, and also forces the EAST port to

get blocked for (1) all packet injections from the PE, and (2) all

FIFO reads from WEST FIFO. Despite this limitation, we are

still able to deliver 50–60% improved throughput with shallow

16-deep FIFOs. As explained in Section III-C, the deeper

FIFOs also permit transmission of fixed-length packets with

multiple flits (keeping packets per BRAM to 8–16 as desired)

which is useful for suitably aligned DRAM transactions, PCIe

bursts, and Ethernet frames.

D. Effect of FIFO sizing

To better understand the effect of FIFO sizing, we plot the

FIFO blocking rates which are a ratio of number of FIFO

full events as a function of total cycle count in Figure 6. As

we can see, the PE port is blocked most often as it has the

lowest priority in the multiplexer cascade. Additionally, this

is the only port in the NoC that has flow control and allows

the FIFO fullness to stall the packet generation logic in the

PE. The West and North FIFOs are blocked considerably less

often as they have a higher priority. The full status flags on

these FIFOs result in the router resorting to regular deflection

routing and there is no further increase in the occupancies of

those FIFOs. Fortunately, this fallback to deflection mode is



PE FIFO Deflection Mode

North FIFO West FIFO

1 2 4 8 16 32 64128 1 2 4 8 16 32 64128

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Buffer Depth

F
IF

O
 F

u
ll 

R
a
te

s
1 5 10 25 50 75 100

Fig. 6: FIFO Full rates for 16×16 NoC at various buffer

depths (x-axis) and injection rates (colors + shapes).

very rare and happens <25% of the time for very shallow

buffer depths of <4, and practically never for larger than >4

buffer depths. Among the switch FIFOs, the North port has

the higher priority in the cascade and is blocked slightly less

often than the WEST FIFO. For both these NoC directional

FIFOs, we observe negligibly rates of FIFOs going full above

FIFO depths of 16–32. Thus the FIFOs are able to absorb the

network traffic at these sizes. Under these conditions, larger

buffers do not contribute to throughputs, but improve energy

efficiency by avoiding unnecessary deflections to reduce en-

ergy (Section IV-F), and also reduce worst-case latency (Sec-

tion IV-E). We note, however, that the 512-deep FIFO36E2

and FIFO18E2 blocks can still be used for transmitting larger

multi-flit packets (Section III-C).

E. Worst-Case Latency Trends

In Figure 7, we observe the improvement in latency distribu-

tion due to FIFO buffering for a 16×16 NoC routing uniform

RANDOM traffic under 100% injection rate. As we observe,

packets now spend less time in the NoC, but spend most of

it waiting in FIFOs rather than deflecting. In this particular

instance, we observe an almost 40% decrease in the worst-

case packet latency when using buffered routing with 128-

deep buffers. This latency improvement stays steady even at

lower injection rates. Above a depth of 64, the reduction in

worst-case latency slows down and the benefits saturate.

In Figure 8, we show the impact of buffering depth on

the bandwidth (left plot) and worst-case latency (right plot)

at 256 PEs and 100% activity rate. A buffer depth of 16–32

delivers a good balance between improved throughputs and

worst-case latency improvement. Above a depth of 32, the

improvements in bandwidth and worst-case latency saturate

and deliver diminishing returns.

F. Power

As shown in Table III, the use of BlockRAM resources

increases the dynamic power use of the switch block by almost

0.000

0.025

0.050

0.075

0.100

0.125

2.5K 5K 7.5K 10K

Latency of transaction (cycles)

P
e

rc
. 

o
f 

P
a

c
k
e

ts
 (

%
)

1
16
32
64
128

Fig. 7: Improvement in packet latencies due to buffering

for 16×16 NoC configuration, uniform RANDOM traffic,

and 100% injection rate for various buffer depths.

Sustained Rate Worst Case Latency

1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

0.5

0.75

1

1.25

1.5

1.75

Buffer Depth

N
o

rm
a

liz
e

d
 M

e
tr

ic

1 2 4 8 16 32 64

Fig. 8: Evaluating tradeoffs between normalized

bandwidth (left) and normalized worst-case latency (right)

for 16×16 NoC configuration, uniform RANDOM traffic,

and 100% injection rate for various buffer depths.

2.2× over a LUT-based implementation for injection rates

<75%. This is to be expected as the buffers consume physical

area and power. At high activity rates ≥75, the RAM-based

routers are more marginally more efficient. The multiplexers

and the buffers together account for 90% of the total power.

As shown in Figure 9a, the reduction in activity rate in

the RAM-based routers is visible for injection rates below

10%. At higher rates, the faster completion time of the NoC

workload results in 5–8% higher activity rate. At low injection

rates, the FIFOs easily absorb deflections, but the resulting

reduction in NoC activity is low resulting in only 10% energy

improvement. At high injection rates, FIFOs avoid deflections

to a greater extent to deliver ≈45% reduction in NoC activity

but a higher activity rate due to faster throughput. Despite this,

the slower NoC workload completion time for the LUT-based

NoC results in an energy improvement of ≈40% in favor of

the BRAM-based router.





TABLE IV: Comparing BRAM-based router with ASIC

hard router (65 nm TSMC + Stratix-III baseline).

Datawidth Hard Router BRAM-based Router Ratio

mm2 LABs mm2 LABs

36-bit 0.23 10.9 0.26 12 1.3×
72-bit 0.3 14 0.48 21.8 1.8×

our measurements in Figure IV. From [2], the cost of a

9kbit RAM is 0.0635mm2 while that of a 144kbit RAM is

0.5897mm2. From this data, assuming a linear fit, we estimate

an 18kbit RAM to need 0.073mm2 (1.15× scaling factor)

while a 36kbit RAM to need 0.146mm2 (2.3× scaling factor).

18kb FIFO + 36b mode: For our router, we use 3

18kbit Block RAMs which cost 3×0.073mm2=0.219mm2

of physical area. This is equivalent to 9.9 Stratix-III LABs (1

LAB = 0.0221mm2). For our FPGA implementation, both

the BRAMs and the crossbar (implemented as a cascaded

multiplexer) are hard blocks. We use programmable logic

resources to implement the decoder itself which accounts

for ≈64 6-LUTs which roughly equivalent to 6 Stratix-III

LABs (each LAB = 10 ALMs or LUTs). Thus, we estimate

our 36b router occupied 11.9 LABs (0.219 + 6×0.0221 =

0.35mm2) worth of silicon area on the FPGA die with the

buffers accounting for 62% of router area. This is much larger

than the ≈50% requirement for input module seen in Figure

10 from [2]. Furthermore, the total area of a 36b hard router

with the 10-deep 2-VC design from [2] is 0.23mm2 which is

roughly equivalent to 10.9 LABs. In contrast, our 36b router is

1.3× larger ≈15 LABs but offers 256-deep×36b input FIFOs

which are 10× larger than the 10-deep×2-VC FIFOs available

in the reference hard router.

36kb FIFO + 72b mode: If we use the 36kbit Block RAMs

instead, we get twice the capacity (36kb vs 18kb) and also

twice the datawidth (72b vs. 36b). This increases the total cost

of our BRAM-based router to 3×0.146mm2=0.438mm2.

This is equivalent to 0.438mm2/0.0221mm2 = 19.8 LABs

yielding a total router cost of 25.8 LABs (silicon area of 0.438

+ 6×0.0221 = 0.57mm2). For a 72b hard router, we project

a total cost of approximately 0.20mm2 (input/output buffers

and crossbar from Figure 10 in [2]) + 2.25×(0.009mm2 +

272×13µm2 + 260×120µm2) (wiring and fabric port costs) =

0.3mm2. Here, we scale wiring costs and fabric port costs by

2.25× when going from 32b to 72b width. Thus, we estimate

the total cost of the hard router to be roughly 14 LABs. In

this case, the BRAM-based router is ≈1.8×. We attribute this

increase to the differential increase in router components when

increasing data width of the links. While the input module

and crossbar costs will increase linearly with data width, they

account for <65% of total router area. Thus the overall router

area does not increase as aggressively as our BRAM-based

router, where the buffer costs are a large percentage (76%,
0.438

0.57
) of total router area.

Thus, our BRAM-based router improves throughput, la-

tency, and energy use of the deflection-route FPGA soft NoC

while closing the area gap with the hard NoC router to within

1.3–1.8× (less than a factor of 2). This is significantly smaller

than the 20–23× area gap claimed in [2].

VI. CONCLUSIONS

We show how to exploit Xilinx UltraScale BRAM cascade

structures to implement buffered deflection-routed NoC on

FPGAs. While buffering is not strictly required for correct

implementation of deflection routing, it is useful for boost-

ing performance. For 16×16 NoCs, we deliver throughput

improvements of 50–60%, worst-case latency reduction of

≈40%, and energy reduction of 10–40% for uniform RANDOM

workloads while using only 16-deep buffers. Our router occu-

pies 64 LUTs, 40 FFs, and 3 RAM blocks per instance while

operating at 727 MHz per instance. This is 1.5–2× smaller

than the equivalent LUT-based implementation of Hoplite. On

the VCU9P UltraScale+ FPGA board, we can fit the largest

60×12 NoC configuration that operates at 400 MHz while

requiring less than 4% of LUT/FF resources on the chip. Our

design also significantly closes the physical area gap over hard

FPGA NoCs from the previously claimed 20–23× to under a

factor of two.

Acknowledgements: The authors would like to thank Jan

Gray for providing access to Hoplite RTL source code.

REFERENCES

[1] M. S. Abdelfattah and V. Betz. Design tradeoffs for hard and soft FPGA-
based Networks-on-Chip. In Field-Programmable Technology (FPT),

2012 International Conference on, pages 95–103, 2012.
[2] M. S. Abdelfattah and V. Betz. Networks-on-Chip for FPGAs: Hard,

Soft or Mixed? ACM Trans. Reconfigurable Technol. Syst., 7(3):20:1–
20:22, Sept. 2014.

[3] S. Chandrakar, D. Gaitonde, and T. Bauer. Enhancements in UltraScale
CLB architecture. In Proceedings of the 2015 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, FPGA ’15, pages 108–
116, New York, NY, USA, 2015. ACM.

[4] K. H. B. Chethan and N. Kapre. Hoplite-DSP: Harnessing the Xilinx
DSP48 multiplexers to efficiently support nocs on fpgas. In 2016 26th

International Conference on Field Programmable Logic and Applica-

tions (FPL), pages 1–10, Aug 2016.
[5] K. H. B. Chethan, A. Shubham, and N. Kapre. Deflection routing for

multi-level FPGA Overlay NoCs. In 2016 International Conference on

Field Programmable Technology, pages 1–8, Dec 2016.
[6] W. Dally and B. Towles. Principles and Practices of Interconnection

Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003.

[7] C. Fallin, G. Nazario, X. Yu, K. Chang, R. Ausavarungnirun, and
O. Mutlu. Minbd: Minimally-buffered deflection routing for energy-
efficient interconnect. In Networks on Chip (NoCS), 2012 Sixth

IEEE/ACM International Symposium on, pages 1–10, May 2012.
[8] Y. Huan and A. DeHon. FPGA optimized packet-switched NoC using

split and merge primitives. In Field-Programmable Technology (FPT),

2012 International Conference on, pages 47–52, Dec. 2012.
[9] N. Kapre. Marathon: Statically-scheduled conflict-free routing on FPGA

Overlay NoCs. 2016 IEEE 24th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), 00:156–
163, 2016.

[10] N. Kapre and J. Gray. Hoplite: Building austere overlay NoCs for
FPGAs. In Field Programmable Logic and Applications (FPL), 2015

25th International Conference on, pages 1–8, Sept 2015.
[11] J. Kwa and T. M. Aamodt. Small virtual channel routers on FPGAs

through block ram sharing. In 2012 International Conference on Field-

Programmable Technology, pages 71–79, Dec 2012.
[12] Nallatech Inc. Dimetalk 3.1 reference guide. Technical report, Nallatech

Inc.
[13] M. K. Papamichael and J. C. Hoe. CONNECT: re-examining conven-

tional wisdom for designing nocs in the context of FPGAs. In the

ACM/SIGDA international symposium, page 37, New York, New York,
USA, 2012. ACM Press.

[14] Xilinx Inc. Ultrascale architecture memory resources user guide ug573.
Technical report, Xilinx Inc., 2016.


