
HopliteBuf: FPGA NoCs with Provably Stall-Free FIFOs

Tushar Garg, Saud Wasly, Rodolfo Pellizzoni, Nachiket Kapre
{t3garg,swasly,rpellizz,nachiket}@uwaterloo.ca

University of Waterloo
Ontario, Canada

ABSTRACT

Deflection-routed NoCs like Hoplite and HopliteRT take advantage

of FPGA-specific features to deliver low-cost, high-frequency, FPGA-

friendly communication networks. However, they suffer from long

packet deflection penalties, low sustained throughputs, and fea-

ture limitations such as out-of-order delivery of packets. In this

paper, we introduce the HopliteBuf NoC, and an associated static

analysis tool, that eliminates deflections entirely while simultane-

ously adding in-order delivery feature using (1) small, stall-free

FIFOs with provable occupancy bounds, and (2) linearization of

vertical rings of the torus Hoplite topology to improve provable link

utilization. We implement these FIFOs using cheap LUT SRAMs

(Xilinx SRL32s, and Intel MLABs) to absorb packet contention. We

evaluate conditions for stall-free behavior using static analysis that

compute upper bounds on FIFO occupancy based on the commu-

nication pattern. Our static analysis deliver bounds that are not

only better (in latency) than HopliteRT but also tighter by 2–3×.

Across 100 randomly-generated flowsets mapped to a 5×5 system

size, HopliteBuf is able to route a larger fraction of these flowsets

with <128-deep FIFOs, boost worst-case routing latency by ≈2×

for mutually feasible flowsets. At 20% injection rates, HopliteRT is

only able to route 1–2% of the flowsets while HopliteBuf can deliver

40–50% sustainability.

ACM Reference Format:

Tushar Garg, Saud Wasly, Rodolfo Pellizzoni, Nachiket Kapre. 2019. Hoplite-

Buf: FPGA NoCs with Provably Stall-Free FIFOs. In The 2019 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA ’19),

February 24–26, 2019, Seaside, CA, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3289602.3293917

1 INTRODUCTION

A well-regulated Network-on-Chip (NoC), being necessary to the safe

operation of a real-time system, the right of the NoC packets to travel

without unpredictable backpressure, shall not be infringed.

High-performance communication networks are vital for sup-

porting connectivity requirements of modern FPGA designs. FPGA

logic can be configured to implement packet-switched NoCs to al-

low IP blocks to interact with each other at the cost of stealing logic

and routing resources away from the developer. In contrast, the

system-level interface bandwidth requirements are driving FPGA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FPGA ’19, February 24–26, 2019, Seaside, CA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6137-8/19/02. . . $15.00
https://doi.org/10.1145/3289602.3293917

0,1

0,0

1,1

1,0

(a)W → S Corner-Turn Buffer

0,1

0,0

1,1

1,0

o o
(b)W → S + N Corner-Turn Buffer

Figure 1: 2×2 HopliteBuf NoC Topology with Stall-Free

Corner-Turn buffers (). Stall-Free buffers are sized to

never go full avoiding the need for backward flow control.

TheW → S + N topology disconnects vertical rings (o) and

introduces an extra uphill multiplexer in each router.

vendors to embrace hardened NoC resources that bake in the net-

work functionality without using any soft logic. Regardless of the

choice of soft or hard NoC technology, real-time system develop-

ers wishing to use FPGAs need tool support to analyze the timing

properties of their FPGA mappings to ensure they are able to meet

relevant scheduling deadlines. Real time systems are character-

ized by a need to rigorously prove timing requirements of various

computing and communicating blocks. For instance, the ISO 26262

standard [4] requires performance isolation between communi-

cating components on a chip and livelocks in NoCs violate this

requirement. While timing analysis of statically-scheduled FPGA

datapaths is simple, the analysis of communicating components

using a shared dynamically-scheduled resource like a NoC is not

so. NoC performance analysis is notoriously hard; it is often pes-

simistic and leads to over-provisioning of resources. In this paper,

we aim to build analysis-friendly, low-cost FPGA NoCs and de-

velop accompanying analysis tools to prove worst-case NoC packet

routing latencies.

Resource-efficient NoCs like Hoplite [6] and HopliteRT [15] pro-

vide a scalable, low-cost fabric for designing FPGA communication

networks using soft logic. Both these NoCs are built on the idea

of deflection routing that avoids the cost of packet buffering. The

routers for these NoCs can be as small as 86–89 6-LUTs for 64-bit

payloads operating at 1.2–1.3 ns clock period on a Virtex-7 485T

FPGA. However, packets may suffer long deflection penalties in

the fabric (Hoplite, and HopliteRT) and packets may even suffer

livelocks where packets deflect endlessly (Hoplite). This behavior is

a problem for real-time FPGA applications in mission-critical envi-

ronments like self-driving cars and automotive systems, unmanned

drones, avionics, and biomedical devices. Such application domains

need strict timing guarantees for bounding worst-case behavior

and allowing certification of the products for use in the field.

A conventional, buffered, packet-switched NoCmight be a tempt-

ing alternative. However, deeply buffered NoCs with classic flow

control are too expensive to implement on the FPGA, and are hard

to analyze for static analysis of buffer bounds due to the complexity

of packet interactions. Contemporary buffered FPGA NoCs like

CMU CONNECT [13] and Penn Split-Merge [3] NoCs are very

expensive and occupy 1000s of LUTs/router for 32-bit routers. Fur-

thermore, the state-of-the-art analysis of NoC buffer bounds [7, 8]

is pessimistic due to the complexity of modeling pipelining effects

and mixing of various flows in the network.

In this paper, we propose the HopliteBuf NoC, shown in Figure 1,

derived from the low-cost Hoplite NoC. HopliteBuf introduces

(1) small stall-free buffers for certain router functions to simplify

flow control, to (2) eliminate deflections with any associated live-

locks, (3) provides optional linearization of vertical NoC rings to

enhance analysis that, (4) bounds buffer sizes to distributed-RAM

friendly implementation sizes. The key contributions of our work is

the microarchitecture of analysis-friendly HopliteBuf NoC routers,

topology modifications coupled with a buffer sizing algorithm that

is able to determine the worst-case occupancies for all the FIFOs

in the NoC. In particular, the proposed topology in Figure 1b with

two corner-turn buffers and no vertical loopback simplifies static

analysis of buffer sizes. This also improves provable wire utilization

while preserving wiring cost and requiring a modest increase in

LUT count over Figure 1a. For our workloads we observe that these

occupancies are small enough to be realizable in LUT-based FIFOs

(Xilinx SRL32s, and Intel MLABs). The HopliteBuf NoC is more

expensive that Hoplite or HopliteRT by 3–4× due to buffering, but

still cheaper than full-blown conventional buffered NoCs.

We summarize the main contributions of our work here:

• Design of an FPGANoC torus topology to enhance static analysis

for computing buffer bounds and NoC router microarchitecture

redesignwith stall-free FIFOs to eliminate deflections and provide

in-order packet delivery. Optimization and customization of the

NoC router RTL to match Xilinx and Intel FPGAs.

• Development of a buffer sizing algorithm to compute the worst-

case bounds on FIFO occupancies. Use of vertical NoC link lin-

earization to improve provable link utilization. Static analysis

tools compute upper bounds on size of FIFOs required for stall-

free operation, source queueing delay, in-flight routing latency

under various conditions.

• Engineering of a robust simulation infrastructure to compute

cycle counts of packet traversals in the NoC. Resource and perfor-

mance analysis of the NoC under various synthetic workloads.

2 BACKGROUND

We now review existing literature on deflection-routed FPGA over-

layNoCs: Hoplite andHopliteRT to highlight the underlying resource-

performance tradeoffs, features and limitations of these NoCs.

Hoplite [6] is an FPGA-friendly NoC router that uses torus topol-

ogy and eliminates buffering and flow control to provide a low-

cost implementation on modern FPGAs. Packets traverse using

DOR (dimension-ordered routing) policy in the X-dimension (hor-

izontally, W→E) first before turning (W→S) and routing in the

Y-dimension (vertically, N→S). This simple design requires a pair of

2:1

2:1

W
E

N

SPEi

PEo

(a) Hoplite Router

3:1

3:1

W
E

N

SPEi

PEo

(b) HopliteRT Router

Figure 2: High-level design sketches of Hoplite [6] (can

livelock) and HopliteRT [15] (no livelock) FPGA NoC

Routers. HopliteRT adds a N→E turn to Hoplite to elim-

inate livelock. Both designs fit one bit of crossbar in one

Xilinx 6-LUT.

2:1 muxes as shown in Figure 2a. The DOR control logic is very sim-

ple and consumes very few LUTs as it can be constructed directly

on valid signals of the incoming packets alone. Packets exiting the

NoC must do so over the S port to allow the mux and wires to be

shared by both south-bound and exiting packets. A separate output

valid signal helps determine the nature of the packet. The NoC

client is provided the lowest priority and cannot inject a packet is

the router has packets on both ports. A key limitation of Hoplite is

the inability of the NoC to avoid livelock. This is possible as a W

packet continues to get deflected to the E port as long as a packet

on N port wants to travel S. Furthermore, a series of packets sent

from a source client to a destination client may take different paths

through the network and need not deflect in identical manner.

HopliteRT [15] is a refinement over Hoplite that inverts the

priorities and deflects N packet to the E (hence the newN→E turn in

Figure 2b). Thus, HopliteRT requires two 3:1 muxes but still requires

the same number of LUTs as Hoplite due to common multiplexer

selection inputs to both muxes. HopliteRT overcomes the livelock

limitation by forcing the N packet to deflect E and reappear as a W

packet with higher priority. This simple modification means that

a packet will only suffer a single deflection at a given switch as it

descends down the NoC. The adaptation not only avoids livelock

but puts an upper bound on in-flight NoC latency to ∆X +∆Y ×m+2

for anm ×m NoC. This indicates that, in the worst-case, the torus

NoC could reduce down to a ring O (m2).

While HopliteRT costs the same asHoplite and removes livelocks,

it still suffers from an unusually high worst-case deflection bound

while doing nothing to eliminate out-of-order delivery. Reducing a

bandwidth-rich torus to a ring is neither an efficient nor scalable

use of FPGA resources. Reordering of packets now becomes the

responsibility of the NoC client and can add extramemory resources

at the endpoints. In this paper, we propose develop a new NoC that

not only preserve livelock-free behavior, but also provides improved

latency bounds along with in-order packet delivery.

3 HOPLITE WITH STALL-FREE BUFFERS

In this section, we describe the design of an FPGA NoC router

with stall-free buffering. We explain the core switch microarchitec-

ture, associated routing policy and discuss FPGA mapping.

2

2:1

3:1

W
E

N

SPEi

PEo

(a) FIFO onW → S Turn

2:1

3:1

3:1

W
E

Ni

So

No

SiPEi

PEo

(b) FIFOs onW → S + N Turns

Figure 3: Two design alternatives for adding buffers to the

Hoplite NoC router.W → S adds a buffer on the corner

turn, whileW → S + N adds an extra uphill buffer.

3.1 The Idea

Earlier in Figure 1, we sketched two variants of the proposed Ho-

pliteBuf topologies with buffers for turning packets. In Figure 3,

we show the switch microarchitectures of these variants. The basic

multiplexing functionality implements turns to support DOR rout-

ing scheme. What this means is that, unlike the HopliteRT design,

our proposed microarchitecture does not support the N → E turn.

Now, recall that contention in Hoplite arises from packets wanting

the same S resource either for turns (W → S) or for vertical descent

(N → S). We can choose to make either or both of these conflicting

parties wait in buffers, but theW → S option is preferred as it limits

buffering penalty for a given flow to a single buffer. Buffering the

N → S path will force packets descending vertically to wait at each

hop prolonging their stay in the network. This would make both

end-to-end routing latency as well as FIFO size larger than needed.

Hence, we focus only onW packets for buffering. We now elaborate

on the two design options that only bufferW packets in two ways:

• W → S buffer: In this scenario, packets turning from W port

to S will be buffered if a N → S packet arrives at that router in

the same cycle. The routing policy now prioritizes N packets

overW packets as there is no longer the option of deflecting to

E like in HopliteRT. The East mux now seesW , and PE as input,

and South mux seesW ′ (FIFO output), N , and PE as inputs. The

multiplexer select lines also need to be distinct as the routing

combinations prevent sharing. We discuss how this may fit on

the FPGA fracturable LUT organization in the Section 3.2 and the

restrictions of the routing combinations in Section 3.3. From the

perspective of the NoC, the packet will have to wait in a buffer

only at the point of turn. The PEo exit shares the same wires

as the S just like in the original Hoplite and HopliteRT routers

to avoid paying the extra cost of exit multiplexers. Empirical

evaluation has shown negligible performance hit from this cost-

saving transformation.

• W → S + N buffer: In this second scheme, the routing policy

introduces a S → N link and allows a newW → N turn. At

first glance, this may seem like an unlikely design choice as

inserting an entirely new routing path will increase LUT resource

costs. While this is true, this scheme does not increase wiring

requirements as seen in Figure 1b. The vertical wrap-around link

in the original Hoplite ring is now forced to traverse through the

switch on the way uphill. Thus total wirelength stays unchanged.

Furthermore, as well will see later, this organization enhances the

static analysis pass by removing the loopback and allows a higher

provable link utilization on the vertical ring. You may notice we

retain the shared single exit to the client PEo that shares wires

with the S port. As the vertical ring is disconnected, traffic is

delivered to destination PEs only on the downhill traversal. This

is another cost-saving measure that eliminates introducing an

exit multiplexer along with an accompanying FIFO for packets

on the uphill Si → No that may wish to exit sooner.

3.2 FPGA Implementation

A Xilinx 6-LUT is fracturable into two 5-LUTs with five common

inputs across both LUTs. This allows you to implement one function

of 5-inputs (any function) and one function of 6-inputs (if it overlaps

with the 5-input function) in the same LUT. An Intel ALUT is

organized differently and has 8-inputs shared across two 6-LUTs.

The two 6-LUTs have four common inputs, and two distinct inputs

each. They can implement two functions of 6-inputs as long as they

share four inputs. Apart from logic, certain Xilinx LUTs can be

programmed as 32-deep memories or shift registers. Intel offers a

similar functionality with their MLAB (Memory Logic Array Block)

resources. The stall-free buffer component of our new designs are

implemented using these cheap resources.

Original Hoplite Mapping: When implementing the original

Hoplite router shown in Figure 2a on a Xilinx FPGA, we can easily

fit the two 2:1 muxes in two Xilinx 5-LUTs to allow a compact 1

6-LUT mapping per bit of switching. This is possible as the East 2:1

mux can use a 5-LUT (requiring 3 inputs), while the South 2:1 mux

can be mapped to the embedded 2:1 mux that drives the O6 output

(needing two more inputs, only one of which needs to be unique).

When implementing the original Hoplite router on an Intel FPGA,

it is trivially possible to fit this in a single ALM with two 6-LUTs

without even forcing the East mux serialization. This is because we

can the 3:1 mux (South mux if implemented fully) needs 5 inputs

while the 2:1 mux only needs 3. Two of these inputs are shared by

both muxes (W and PEi), while the distinct mux select inputs can

be supplied to the two 6-LUTs independently without violating the

common input restriction.

MappingW → S FIFO Design This design requires the switch-

ing crossbar to consume four packet inputs: N ,W ,W ′ (FIFO output)

and PEi inputs along with 3 mux-select inputs. This already ex-

ceeds the 6-input LUT capacity of the Xilinx FPGA and cannot

use fracturing. On the Intel FPGA, we require four common inputs

to each 6-LUT; this constraint is satisfied by our design thereby

enabling a compact fit. Additionally, we can supply two unique

inputs to each 6-LUT which is adequate to support the mux-select

signals.

MappingW → S + N FIFO Design This design requires the

switching crossbar to consume six packet inputs: Ni ,W ,W ′ (W →

S FIFO),W ′′ (W → N FIFO) and PEi and 5 mux-select inputs. We

choose to split the turning packets into separate FIFOs to prevent

mutual interference between traversing flows. The total distributed

3

0

200

400

600

Hoplite HopliteRT W−>S W−>S+N

Router Type

A
re

a
 (

X
ili

n
x
 6

−
L

U
T

s
)

Logic
Memory

(a) Xilinx Mapping

0

200

400

600

Hoplite HopliteRT W−>S W−>S+N

Router Type

A
re

a
 (

In
te

l
A

L
U

T
s
)

Logic

Memory

(b) Intel Mapping

Figure 4: LUT utilization for logic and memory across var-

ious Hoplite routers on Xilinx and Intel FPGAs with Pay-

load=128b and FIFO=32 deep.

RAM capacity stays same as it just split into two SRL32 or MLAB

instantiations instead of a longer single distributed RAM block.

Here, with limited opportunity for input sharing, the resulting

design is larger in LUT cost, but as we will see later, this allows

efficient use of the NoC links.

We quantify the LUT utilization of the various Hoplite routers in

Figure 4. The design size scales linearly with the product of Dataw-

idth of the NoC × Depth of the FIFO on both vendor parts. With

32-deep FIFOs mapped to distributed RAMs, the storage fraction

increases design size by 1.2–1.5×. For the dual-FIFO design, the

extra multiplexing also increases cost of the switching logic .

3.3 Routing Policy

The original Hoplite and HopliteRT routers implemented buffer-

less deflection routing rooted in Dimension-Ordered Routing (DOR)

policy. The policy ensured that arriving packets fromW andN ports

were sent to E and S ports respectively. For turning packets, Ho-

plite prioritizes N port over theW port thereby introducing the

possibility of livelock, while HopliteRT prioritizesW over N to en-

sure bounded NoC routing delays. Thus, HopliteRT deviates from

DOR by allowing a N → E deflection that is not permitted under

standard DOR implementation.

For HopliteBuf, we restore DOR routing policy but introduce

extra decision logic for servicing FIFO packets. With buffering,

W packets are forced to wait in the buffer thereby transferring

priority to N port forW → S variant, and to Ni and Si packets for

W → S + N variant. All routers still accept PE packets with the

least priority.

4 LATENCY AND BUFFER SIZE ANALYSIS

We now turn our attention to static analysis of the NoC traffic to

bound buffer sizes and worst-case injection and in-flight traversal

latencies. This is important to establish whether we can realize

them in distributed FPGA RAMs (SRLs and MLABs). We first intro-

duce our regulation and traffic model. We then develop a network

calculus approach to FIFO size and worst-case latency analysis for

HopliteBuf. The presence of cycles in the torus topology make this

analysis susceptible to instability, but we are able to provide an

analytic solution that employs a topology linearization alternative

(Figure 1b) to eliminate cycles.

0 2 4 6 8 10
0

2

4
λb=3,ρ=1/4

λb=2,ρ=1/4

γσ=7/4,ρ=1/4

Time (cycles)

P
ac
k
et
s

Figure 5: Example traffic curves for λb=3,ρ=1/4 and

λb=2,ρ=1/4 along with an arrival curve for γσ=7/4,ρ=1/4.

4.1 Client Traffic Regulation

Injection regulation is a known technique from network calculus to

establish well-defined behavior of network traffic at runtime for off-

chip internet-scale systems. We adapt token bucket regulation [15]

for use in an on-chip context at the NoC clients to enforce traffic

discipline on the NoC. This is done transparently and the datapath

design just needs to obey the standard NoC valid-ready interface

(AXI-stream). We can implement this regulation on the FPGA using

two simple counters per NoC client and require no buffers at the

client-NoC interface. The regulator is programmed with a rate ρ

and burst b that reflects the communication requirements of the

application. At run-time, the regulator maintains a token counter.

A packet can only be injected if the NoC is ready (no other packet

is blocking the client) and there is at least one token in the counter;

the token is consumed upon sending the packet. New tokens are

generated and added to the counter at a rate ρ, provided that the

counter has not saturated to its maximum value of b tokens.

4.2 Traffic Model

Definition 1. Traffic curve: To analyze the traffic character-

istics, we introduce a traffic curve λb,ρ (t) to denote the maximum

number of packets sent on a NoC link in any interval of t cycles. By

definition, a token bucket regulator with parameters b, ρ provides a

traffic curve:

λb,ρ (t) = min
(

t ,b + ⌊ρ · (t − 1)⌋
)

. (1)

Example: Traffic curves for two regulators with b = 2, ρ = 1/4

and b = 3, ρ = 1/4 are depicted in Figure 5 (the arrival curve γ will

be introduced in Section 4.4). Consider the regulator with b = 3.

The traffic curve derivation assumes that the bucket is initially full.

Hence, b = 3 packets can be sent consecutively at times t = 1, 2, 3.

After the first packet is sent at time t = 1, the regulator starts

generating a new packet, which is then added to the bucket at time

1 + 1/ρ = 5; this corresponds to the fourth transmitted packet.

Afterwards, new packets are sent every 1/ρ cycles.

In this analysis, we consider an (m ×m) matrix of clients (x ,y).

Each client sends packets as part of one or more flows; all packets

within the same flow have the same destination and use the same to-

ken bucket regulator. Hence, we use F = { f1, . . . , fi , . . .} to denote

the set of flows in the system, where for each flow f : (f .xs, f .ys)

represents the source client of the flow; (f .xd, f .yd) represents the

destination client; and f .b, f .ρ represent the regulator parameters.

Note that two different flows fi and fj might share the same source,

or the same destination.

4

0,2

0,1

0,0

1,2

1,1

1,0

2,2

2,1

2,0

f 1

f 1′

f 2

f 2′

f 3

f 4
f 5

f 5′

Figure 6: ExampleW → S NoC design with five flows f1...5.

Table 1: Flow parameters for the example NoC. ΓC are the

conflicting flows used in Section 4.3; fW→S and fN→S are

theW → S and N → S interfering flows used in Section 4.4.

‘-’ denotes not applicable.

flow source dest ΓC fW→S fN→S

f1 (0,1) (2,1) none f2 f ′5
f2 (1,1) (2,0) f3, f1 f1 f ′5
f3 (1,1) (1,2) f2 - -

f4 (2,1) (2,2) f ′1 , f
′
2 , f
′
5 - -

f5 (1,2) (2,1) none none f ′2 + f4

Example: We present a running example of a NoC with five

flows f1...5 using theW → S buffer design in Figure 6. Note that

we use f ′i to denote a flow after it leaves a buffer, as buffering can

increase the burstiness of the flow (packets queued up in a buffer

can be flushed directly back-to-back). Relevant flow parameters are

tabulated in Table 1. We discuss how to apply the analysis to the

W → S + N design in Section 4.5 as the flows have been linearized

and have no loops. For theW → S design, the analysis is harder due

to the loopback of the vertical ring. The instability created by loop-

backs is a notoriously challenging problem in network calculus [10]

and results in lower provable bounds on link utilization. We analyze

the unique problem formulation presented by the HopliteBuf torus

network and propose a technique for deriving these bounds and

improving link utilization through linearization of the vertical ring.

Our analysis derives three sets of parameters:

• Injection latency Injection(f) for each flow f ∈ F ; this is the

maximum time that the source client (f .xs, f .ys) can be stalled

waiting to send a packet of f .

• Maximum queuing delay Delay (f) for each turning flow f .

• Backlog for each router; this is the maximum number of packets

that are queued waiting to be transmitted (excluding the packet

that might be transmitted in the current clock cycle).

4.3 Injection Latency

We first determine the set ΓC of conflicting flows for f , that is, the

set of flows that can block injection of a packet of f . It comprises:

• all other flows injected by the same source client, since a client

can only inject a single packet per clock cycle;

• all flows originating from other clients that traverse the same

mux used by f at its source router (f .xs, f .ys).

Example: For flow f2 in Figure 6, the conflicting set comprises

flow f3 (same client) and flow f1 (E mux). For f4, the set comprises

flows f ′1 , f
′
2 and f ′5 (S mux).

Assume that each flow in ΓC is bounded by a traffic curve λb,ρ (t);

we define b (ΓC) as the sum of the burstiness parameters b of traffic

curves for flows in ΓC , and ρ (ΓC) as the sum of their rate parame-

ters. Based on the token bucket regulator analysis provided in [15],

we then obtain:

Injection(f) = ⌈1/f .ρ⌉ − 1 +

⌈

σ (ΓC)

1 − ρ (ΓC)

⌉

. (2)

Note that the condition ρ (ΓC) < 1 implies that the cumulative

rate of conflicting flows is less than 1 packet/cycle; this guarantees

that packets of flow f are not permanently blocked at the source.

Furthermore, if the client wishes to inject a sequence of k > 1

packets, it is possible to obtain an improved bound on the injection

latency for the whole sequence as long as k ≤ f .b. For simplicity

we consider single-packet injection with f .b = 1.

It remains to determine the traffic curve λb,ρ (t) for each interfer-

ing flow. For a flow fi that has not yet traversed a buffer, the curve

is simply λf .b,f .ρ (t). We show how to derive the traffic curve for

a flow f ′i that leaves aW → S buffer in the next section.

4.4 Vertical Ring AnalysisW → S Design

We now analyze the behaviour of flows turning on a vertical ring

through aW → S buffer. We employ the theory of network calcu-

lus [10] for FIFO-arbitrated flows to derive deterministic bounds on

queuing delay and backlog. In particular, we show that the delay

and backlog depend on the burstiness and rate of flows entering

the FIFO buffer, as well as the burstiness and rate of flows routed

N → S . To apply the theory, we need to introduce a new type of

curves.

Definition 2. Leaky bucket arrival curve: A flow f is said to

the bounded by a leaky bucket arrival curve γσ ,ρ (t) if the number of

packets transmitted by the flow in any time interval t is bounded by:

γσ ,ρ (t) = σ + ρ · t .

In this case, f .σ and f .ρ are arrival curve parameters for the flow.

Luckily, we can convert between traffic curves of the form λb,ρ (t)

and arrival curves γσ ,ρ (t) according to the following lemma (a for-

mal proof is provided in Lemma 1 in Appendix):

• to convert λb,ρ (t) into γσ ,ρ (t), we set σ = b − ρ;

• to convert γσ ,ρ (t) into λb,ρ (t), we set b = ⌈σ + ρ + 1⌉.

Example: Refer again to Figure 5. The traffic curve

λb=2,ρ=1/4 (t) is upper bounded by γσ=7/4,ρ=1/4 (t). Simi-

larly, arrival curve γσ=7/4,ρ=1/4 (t) is upper bounded by

λb= ⌈7/4+1/4+1⌉,ρ=1/4 (t) = λb=3,ρ=1/4 (t); γσ=7/4,ρ=1/4 (t) >

λb=3,ρ=1/4 (t) for t = 1, 2, but since the NoC link cannot send

more than one packet per cycle, λb=3,ρ=1/4 (t) is still a valid traffic

bound. In essence, Lemma 1 allows us to “convert” a flow with a

5

traffic curve λb,ρ (t) into an arrival curve γσ ,ρ (t) and vice-versa,

albeit at some loss of precision.

Finally, there are situations where we need to aggregate (com-

bine) flows transmitted on the same link; for example, flows

f ′2 and f4 entering router (2, 2) from N . Note that for two ar-

rival curves γσ ′,ρ′ (t) and γσ ′′,ρ′′ (t), it immediately holds that

γσ ′,ρ′ (t)+γσ ′′,ρ′′ (t) = γσ ′+σ ′′,ρ′+ρ′′ (t): hence, the arrival curve for

the aggregate of flows traversing the same link can be expressed

by summing the σ and ρ parameters of the arrival curves for the

individual flows.

W

Ni

So

f

f ′

fW→S

f ′
W→S

fN→S

fPE→S

Figure 7: Flows through

aW → S router.

Figure 7 illustrates the flows

required for analysis at one NoC

router. Here, f and f ′ represent

a flow under analysis before and

after leaving theW → S buffer;

fW→S represents the aggregate

of all other interfering flows

traversing the buffer; fN→S rep-

resents the aggregate of all in-

terfering flows traversing the

router in the N → S direction;

and fPE→S represents the aggre-

gate of all flows injected by the

client at that router directly S .

As discussed in Section 3.3, the S

mux arbitration gives lowest pri-

ority to the client; hence, we do

not have to consider flow fPE→S

when analyzing flow f , but it will interfere in the N → S direction

on the next router. Regarding the other flows, fN→S has higher

priority than f , while fW→S and f are FIFO scheduled as they

traverse the same buffer.

Assuming that each flow is described by an arrival curve, we then

obtain the following relations involving the curve parameters 1:

f ′.ρ = f .ρ; (3)

f ′.σ = f .σ + f .ρ ·
fN→S .σ + fW→S .σ

1 − fN→S .ρ
; (4)

Backloд = f .σ + fW→S .σ + (f .ρ + fW→S .ρ) ·
fN→S .σ

1 − fN→S .ρ
(5)

Delay (f) =
f .σ

1 − fN→S .ρ − fW→S .ρ
+

fN→S .σ + fW→S .σ

1 − fN→S .ρ
(6)

under the condition that f .ρ + fN→S .ρ + fW→S .ρ < 1 (that is, the

link is not saturated).

Based on Equation 3, buffering does not increase the rate of flows.

Furthermore, based on Lemma 1, for any flow fi that has not been

buffered, including flow f , we have fi .σ = fi .b − fi .ρ. Hence, the

only unknowns in Equation 4 are the values f ′i .σ for flows that

have crossed a buffer. To analyze the system, we thus apply the

so-called Time Stopping Method in network calculus [10]: we treat

the values f ′i .σ as variables, and write a system of linear equations

1In details, Proposition 1.3.4 in [10] is first used to determine a service curve for the
aggregate of flows f , fW→S . Corollary 6.2.3 is then used to derive f ′ .ρ, f ′ .σ , as well
as the service curve for f . Backlog and delay bounds follow from Theorems 1.4.1, 1.4.2.

by applying Equation 4 to each flow that enters a given vertical ring.

If the values of f ′i .σ obtained by solving the system of equations

are valid (that is, bounded and positive), then γf ′i .σ ,f
′
i .ρ

(t) upper

bounds flow f ′i . Otherwise, the network cannot be analyzed.

Example: Assume f1.ρ + f2.ρ + f5.ρ < 1. For flow f1, fW −>S
comprises flow f2, while fN−>S comprises flow f ′5 . Since for any

flow fi .σ = f ′i .σ and fi .σ = f1.b − f .ρ, we obtain:

f ′1 .σ = f1.b − f1.ρ + f1.ρ · (f
′
5 .σ + f2.b − f2.ρ)/(1 − f5.ρ).

Similarly, applying Equation 4 to flows f2, f5 under the added as-

sumption f2.ρ + f4.ρ + f5.ρ < 1 yields:

f ′2 .σ = f2.b − f2.ρ + f2.ρ · (f
′
5 .σ + f1.b − f1.ρ)/(1 − f5.ρ),

f ′5 .σ = f5.b − f5.ρ + f5.ρ · (f
′
2 .σ + f4.b − f4.ρ)/(1 − f2.ρ − f4.ρ).

Hence, we solve a linear system of three equations to determine

the value of variables f ′1 .σ , f
′
2 .σ , f

′
5 .σ , which can then be used

to determine the backlog at each router and delay for each flow

according to Equations 5, 6. Furthermore, by applying Lemma 1,

we derive equivalent traffic curves λ ⌈f ′i .σ+f
′
i .ρ+1⌉,f

′
i .ρ

(t) for f ′1 , f
′
2

and f ′5 , which we use to bound the injection latency of f4. As an

example, if we set b = 1, ρ = 1/4 for all regulators, we obtain

f ′1 .σ = f ′2 .σ = 33/20, and f ′5 .σ = 39/20, which result in backlogs

of 14/5 at (2, 1) and 39/20 at (2, 2). Hence, we need a minimum

W → S buffer size of ⌊14/5⌋ + 1 = 3 at (2, 1) and ⌊39/20⌋ + 1 = 2 at

(2, 2); note we add 1 to the buffer size to account for a packet being

read from the buffer and transmitted in the current clock cycle.

Despite this, it is known [1, 10] that the circular dependencies

introduced by a ring design can reduce the sustainable (provable)

per-link utilization of the network by up to 50%.We now present the

linearization alternative that overcomes this low peak utilization.

4.5 Linearized Analysis:W → S + N Design

2,2

2,1

2,0

f 1

f 1′

f 2

f 2′

f 4

f 5

f 5′

Figure 8:W → S + N de-

sign example: rightmost

column.

The analysis for theW → S +

N design proceeds in a similar

manner, but is much simpler as

no vertical loopback exists. The

same injection latency compu-

tation is performed, albeit the

set ΓC
f
can be different compared

to the W → S design since a

flow that was conflicting on the

S mux could now turn N instead.

Similarly, the same conditions

in Equations 3-6 can be applied

after decoupling each router in

two parts: a south component

containing the W → S buffer

and S mux, and a north compo-

nent containing the W → N

buffer and N mux. Since packets

are transmitted in different di-

rections for the two components,

when writing the equation for the north components we use flows

fS→N and fW→N in place of fN→S and fW→S .

Example: Figure 8 shows the resulting decomposition for the

rightmost column of the flow set depicted in Figure 6. Note that the

6

Table 2: Conflicting and interfering flows for theW →

S + N design. ‘-’ denotes not applicable, as the flow is not

buffered in that direction.

flow ΓC fW→S fN→S fW→N fS→N

f1 none none f ′5 - -

f2 f1, f3 - - none f ′5
f4 f ′1 , f

′
5 - - - -

f5 none - - none none

topmost router (2, 0) only implements the south component, as no

flow can be injected north at (2, 0). The sets of conflicting flows ΓC
f

and interfering flows fN→S , fW→S , fS→N , fW→N are provided in

Table 2. Compared to theW → S design, the number of conflicting

and interfering flows is reduced.

When compared to theW → S design, we do not need to solve

a system of equations to compute the f ′i .σ values: since theW →

S + N design disconnects vertical rings, we can apply Equation 4

to flows with destinations on a column x by ordering the flows

based on the router at which they turn, in the order of packet

propagation: from (x ,m − 1) to (x , 1) for flows turning N , and then

from (x , 0) back to (x ,m − 1) for flows turning S . As long as no link

is saturated, this guarantees that the analysis computes bounded

delay and backlog.

4.6 Scaling regulation

For multiple flows starting from a client, we can design traffic

regulators in two primary ways:

• We can implement a new token regulator for each outgoing

flow by replicating counters per flow to deliver good analysis

outcomes at increasing cost. For each outgoing flow per client,

we need two counters to implement token regulation. This cost

may be acceptable for a handful of outgoing flows.

• Alternatively, we can compute cumulative ρ and b parameters

across all flows and program a single regulator. The rates and

bursts are computed by summing the individual flow proper-

ties. This optimization will need a single regulator and single

set of counters keeping costs low. However, this will result in

pessimistic injection latency analysis due to interference.

5 EVALUATION

We present the performance measurement results for our FPGA

optimized NoC and associated results from static analysis. We are

interested in understanding the worst case NoC routing latency

properties, its breakdown, buffer depth bounds, as well as routing

coverage. We also want to confirm the properties of static analysis

bounds and understand their impact of distributed FPGA RAM

mapping costs. We show results for 5×5 NoCs to retain narrative

consistency, but can generate other RTL networks and bounds for

other sizes as well. We use two synthetic workloads which are

commonly used in the real-time systems community:

• We use ALL-TO-ONE pattern that gets all NoC clients to target

a same NoC address: a shared resource like an external DRAM,

PCIe, or Network port.

• We also use synthetic uniform RANDOM traffic pattern that is

expressed a set of flows, i.e. flowsets. We evaluate the NoCs using

0

25

50

75

100

0 5 10 15 20

Injection Rate (%)

F
e

a
s
ib

ile
 (

%
)

RT W−>S W−>S+N

Figure 9: Feasible flowsets for RANDOM traffic with b=1 at 5×5

system size with 128-deep FIFOs in the NoC routers.

100 separately-generated synthetic flowsets. Each flowset is a

collection ofm2 distinct streaming flows. Each flow captures data

communication between a source-destination pair of clients. All

flows have the same burstiness and rate which is increased until

the links saturate.

5.1 RTL Simulation Results

We first examine the results (feasibility, latency, FIFO sizing) of

cycle-accurate RTL simulations of the different NoCs.

5.1.1 Flowset Feasibility. For our designs, we cap the maximum

FIFO occupancy at 128 to enable low-cost realizations. As a result

some combination of flowset communication pattern and injection

rate ρ will likely be infeasible. If any FIFO ever goes full, we classify

that configuration as not feasible. We want to know what fraction

of our 100 randomly-generated flowsets were able to route without

any of the NoC FIFOs every going full at a given rate.

In Figure 9, we plot the number of feasible flowsets for RANDOM

traffic pattern on the different NoCs. For HopliteRT, there are no

FIFOs, but we know that flowsets are not feasible when the inter-

fering flows on any link exceed the link bandwidth, i.e. you cannot

use more than 100% of any link capacity. The deflection pattern

for HopliteRT forces traffic to travel through longer paths through

the NoC thereby interfering with a lot of other traffic flows. Hence,

the feasibility trends for HopliteRT fall drastically above 16% in-

jection rates. The HopliteBuf NoCs are more resilient and support

a larger fraction of the flowsets for larger injection rates. At the

peak supported injection rate of 20%, HopliteBuf supports up to

50–60% of the flowsets, while HopliteRT only routes 1–2% of the

flowsets. As predicted from the linearization analysis in Section 4.5,

theW → S + N topology allows the system to support more traffic

and a slightly greater fraction of the synthetic combinations are

feasible at even 20% injection rates. Higher feasibility translates

into more FPGA developer freedom in being able to support their

communication requirements.

5.1.2 Worst-Case Latency Trends. We expect the use of buffer-

ing will help reduce worst-case routing latencies as we eliminate

deflections. However, the improvements will be balanced by the

penalty of waiting in the FIFOs. In Figure 10 we show this effect for

two traffic patterns with burst b=1. The common odd trend here

is the decrease in injection latency as a function of injection rate.

This is not an illusion, and is a result of the fact that the client

7

●

●

●

●

●

50

70

90

110

1 2 3 4

Injection Rate (%)

W
o

rs
t−

c
a

s
e

 L
a

te
n

c
y

● W−>S+N

W−>S

RT

(a) ALL-to-ONE

25

50

75

100

125

0 5 10 15 20

Injection Rate (%)
W

o
rs

t−
c
a

s
e

 L
a

te
n

c
y

RT

W−>S

W−>S+N

(b) RANDOM

Figure 10: Worst-case latency trends for the different NoCs

with 5×5 system sizes and b=1. HopliteBuf performs bet-

ter for RANDOM pattern, and offers no improvements for

ALL-TO-ONE traffic.

Source Queueing In−Flight

0 5 10 15 20 0 5 10 15 20
0

25

50

75

100

Injection Rate (%)

W
o

rs
t−

C
a

s
e

 L
a

te
n

c
y

RT W−>S W−>S+N

Figure 11: Breakdown of Source-Queueing and In-Flight

NoC latencies for RANDOM workload with b=1 at 5×5 system

size. Both metrics improved due to buffering.

is regulated and may miss the token cycle which scales with the

injection rate ρ of the regulator. At large enough injection rates we

eventually start to see an increase due to network congestion but

this is marginal. For the ALL-TO-ONE traffic pattern, the waiting

time in the FIFOs lines up with the penalty of deflections result-

ing in no observable difference between the different designs. For

RANDOM traffic, we show a distribution of measured cycle counts

across the 100 flowsets. There is a clear benefit to using buffers

to avoid deflections as bufferless HopliteRT shows a wider spread

of achieved worst-case latencies. The buffer waiting time is lower

than the penalty of deflections resulting in tighter latency spreads

for HopliteBuf NoCs. Furthermore,W → S designs suffer a buffer

wait only at a single turn, it exhibits slightly worse performance

that the two-FIFOW → S +N design. Overall HopliteBuf is 1.2–2×

better than HopliteRT in terms of worse-case routing latencies. We

also see that HopliteRT is poorly unable to support the highest

injection rate of 20% that is well-supported by the HopliteBuf NoCs.

Thus, the presence of buffers not only improves (reduces) worst-

case latencies, but also supports higher data rates. This is expected

as HopliteRT steals unnecessary bandwidth in the X-ring due to

deflection.

5.1.3 Worst-Case Latency Breakdown. In Figure 11 we show a

breakdown of worst-case latency into its source queueing (waiting

time at PEs) and in-flight latency (actual routing time in the NoC).

The improvements due to elimination of deflections does show

up in better in-flight routing latencies, but larger wins are visible

during source queueing. This is because the NoC is blocking the PE

injection ports less often by keeping packets in the buffers instead

of wasting injection slots due to deflection. For HopliteRT routing

scheme, the N → E deflection potentially sends packets along the

scenic route around each X-ring (at most once) generating traffic

conflicts where none would exist for conventional DOR routing.

HopliteBuf chooses FIFO waiting on conflicts thereby reducing

contention in other X-rings and a drop in source queueing delays.

As we see, the NoC traversal time is mostly unaffected even in

presence of FIFOs.

5.1.4 Latency Distribution. In Figure 12, we show the histogram

of worst-case packet latencies for the different NoCs for RANDOM

traffic with burst b=1, and injection rate ρ=7.5% at 5×5 system size.

We note that the HopliteRT NoC has a much wider spread than the

FIFO designs. This is because deflections create unpredictable trips

through the NoC X-rings. In contrast, a victimized packet just sits

in a buffer and the waiting time in the buffer is much lower than

round-trips around the ring. As expected, theW → S design has a

marginally wider distribution than theW → S + N design as the

packets have an extra choice during the turn.

5.1.5 FIFO Sizing. Ultimately, the NoC with improved worst-case

latencies is useful to us only if the buffer sizes are reasonable to

realize onmodern FPGAs. For a single LUTwe can get 16–32 storage

bits for our FIFOs making it possible to build LUTs using these

low-cost components. We cap our experiments at 128-deep FIFO

25 30 35 40 25 30 35 40 25 30 35 40
0

10

20

30

40

50

Worst−Case Packet Latency

C
o

u
n

t

RT W−>S W−>S+N

Figure 12: Distribution of worst-case packet latencies for

RANDOM workload with b=1, ρ=7.5% at 5×5 system size. Ho-

pliteRT has a wider spread due to the unpredictable nature

of the deflections. HopliteBuf has narrower spreads.

●●●● ● ●●● ●●

W−>S W−>S+N

1 2 3 4 1 2 3 4
0

25
50
75

100
125

Injection Rate %

M
a

x
im

u
m

 F
IF

O
 U

s
e

ALL2ONE

●●● ● ● ● ● ● ● ●●● ● ● ● ● ● ●

W−>S W−>S+N

0 5 10 15 200 5 10 15 20
0

10
20
30
40
50

Injection Rate %

RANDOM

Burst ● 1 2 4 8

Figure 13: Maximum FIFO usage trends from RTL simula-

tions of NoCs with 5×5 system sizes. For RANDOM traffic, we

observe a spread of maximum FIFO use as per pattern in

the flowset, but lower than ALL-TO-ONE pattern.

8

RT W−>S W−>S+N

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
0

25

50

75

100

Injection Rate (%)

F
e
a
s
ib

le
 (

%
)

Analysis Simulation

Figure 14: Feasible flowsets predicted by static analysis.

Analysis is more conservative than simulation for Ho-

pliteRT, but much tighter for HopliteBuf.

sizes to keep NoC LUT cost at 4 LUTs/bit. For ALL-TO-ONE traffic

pattern shown in Figure 13, we will observe high FIFO usage in the

column containing the destination client. As burst length increases,

the FIFO usage also scales linearly with very low utilization with

a burst length of 1–2. RANDOM traffic shown in Figure 13 exhibits

slightly lower FIFO usage and demonstrates a spread of occupancies

depending on connectivity pattern. While no experiment occupies

more than 50 entries in the FIFO, on average, we only need ≈20–25

entries. We note an odd reduction in FIFO occupancy above 10%

injection rate. This is because an increasing subset of flowsets are

not feasible with 128-deep FIFO limit i.e. FIFOs start going full.

5.2 Analysis

We now examine the quality of our static analysis predictions and

compare them to simulated data.

5.2.1 Feasible Flowsets. Our analysis tools take the communication

pattern of a flowset, its injection rate ρ and burst b to determine

if it is can route successfully without making a FIFO ever go full.

Analysis is more conservative, and you will note that Figure 14 is

different from the simulation data in Figure 9. Our simulation results

are for 1K packets per client, and there may be longer simulation

conditions that ultimately go infeasible. Hence, we trust our analysis

data as it is backed by the formal proofs explained in Section 4.

Here, we see HopliteRT dropping dramatically above 8% while

HopliteBuf clones closely track simulation results. At 11% rates, we

see analysis predict feasibility of only 2–3% of HopliteRT and ≈90%

for HopliteBuf. Back in Figure 9, simulation results showed 50% of

HopliteRT were feasible and ≈90% for HopliteBuf. This suggests

tighter analysis bounds for HopliteBuf resulting in better provable

utilization of resources.

5.2.2 Worst-Case Latency: Analysis vs. Simulation. In Figure 15,

we show the predicted worst-case latency count as a result of our

static analysis vs. actual observed latencies through simulation.

As expected, the predicted bounds are worse with analysis due

to pessimistic assumptions regarding interference of traffic flows.

HopliteRT predictions are as much as 1.5× worse than theW →

S + N predictions due to pessimism inherent in the HopliteRT

routing algorithm. It is interesting to see that a few flowsets mapped

to HopliteRT at 16–20% injection rates actually simulate fine, but

are discarded by analysis as infeasible, yet again due to analytic

pessimism. Furthermore, we see that theW → S+N predictions are

RT W−>S W−>S+N

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
0

100

200

300

Injection Rate (%)

W
o
rs

t−
c
a
s
e
 L

a
te

n
c
y

Analysis Simulation

Figure 15: Worst-Case Latency Prediction-vs-Simulation,

RANDOM traffic, b=1, 5×5 system size, 128-deep FIFOs.

●●● ● ● ●
●

●
●

●●● ● ● ● ● ●
●

W−>S W−>S+N

0 5 10 15 20 0 5 10 15 20

25

50

75

100

Injection Rate %

M
a

x
im

u
m

 F
IF

O
 U

s
e

● Analysis Simulation

Figure 16: Worst-Case FIFO size Prediction-vs-Simulation

for RANDOM traffic at 5×5 system size with 128-deep FIFOs

and burstiness of 8.

significantly tighter than theW → S predictions. This is primarily

due to the challenges associated with analyzing loopy flows in

the vertical ring. When comparing the widerW → S spread to

HopliteRT, it is important to note that a significant chunk of flowsets

were infeasible when mapped to HopliteRT (See Figure 14). Thus,

the larger latencies are due toW → S being able to feasibly route

flowsets and doing so with high latencies than not being able to

do so at all. TheW → S + N analysis is significantly better than

W → S and has a larger feasibility to compound the matter.

5.2.3 FIFO Sizing: Analysis vs. Simulation. In Figure 16, we compare

the result of static analysis with simulated data for FIFO usage for

a 5×5 NoC with RANDOM traffic and a worst-case burstiness of 8. For

theW → S topology, we cap the maximum FIFO size to 128 to stay

within reasonable 4 LUTs/bit FIFO cost. In this case, the FIFOs go

full for a few flowsets only above a healthy 15% injection rate. For

theW → S + N topology, the FIFO sizes are capped at 64 (for a

sum of 128) and only go full at a higher 20$ injection rate. For both

cases, we observe that simulated data shows lower occupancies

than the prediction by as much as 2.5× (on average 1.5×). This is

expected due the pessimism in the analysis but the LUT cost impact

is limited due to SRL32 packing quantization.

For FPGA implementation, we can choose to size all FIFOs in

the NoC to the largest size, or customize each FIFO independently

as per the static analysis. We observe that the largest size of 128

is rarely observed, and roughly 50% of our occupancies are below

the 32 threshold. Thus, we can customize the right SRL depth to

further save resources by as much as 2×.

9

6 DISCUSSION AND RELATED WORK

Real-time NoC design has mostly focused in two directions:

• Time-division multiplexed (TDM) NoCs [2, 5, 12]: These

NoCs require complete knowledge of the communication flows

to build static TDM scheduling tables used for both packet injec-

tion and routing. However, this approach tends to be unsuitable

for NoCs that need to support both real-time flows requiring

worst case guarantees and best effort flows where average case

delay matters.

• Prioritized NoCs [8, 14]: Here, packets are arbitrated based on

the relative priority of the constituent flow instead of requiring

complete knowledge. While this approach effectively supports

clients of different criticality, it requires expensive virtual chan-

nels: at each port, every priority flow needs a different buffer.

In this paper, we rely on a standard network calculus frame-

work [10] to bound queuing delay and backlog so that we can

guarantee the stall-free property of the buffers. The use of regula-

tors to bound the maximum network latency is well-known in the

context of network calculus. In particular, introducing a regulator

at each router port can solve the dependencies issue in theW → S

cyclic design, ensuring that the network remains stable up to full

link utilization. Instead of expensive per-flow, per-router regula-

tion popularly used in off-chip networks where cost of wiring is

dominant, our work uses a cheaper per-flow regulator at injection.

PaterNoster NoC [11] is similar to Hoplite and uses a torus

topology along with deflection routing. However, it is not optimized

for FPGAs and uses many multiplexers and corner buffer. The use

of corner buffer does help improve throughput but the NoC falls

back to deflection routing when the buffers go full. In contrast, our

NoC analysis guarantees stall-free behavior without resorting to

deflections or affecting delivery order.

The Kim NoC router [9], uses separate X and Y rings like Ho-

plite, introduces an intermediate buffer for X→Y traversal, again

like HopliteBuf, but uses backpressure flow control to manage full

buffers. This topology uses multiplexers abundantly as it is targeted

as ASICs, and would not match the LUT fabric of the FPGA as well

as Hoplite or HopliteBuf. Furthermore, HopliteBuf does not require

backpressure flow control either as FIFOs are not allowed to go full.

We anticipate our static analysis tools to help compute latency

bounds on the newly-announced Xilinx Versal NoC with hard-

ened FIFOs of known sizes. Unlike LUT-based HopliteBuf NoC used

in this study, the Versal hard-NoC FIFOs do not need to be designed

with LUT-FIFO capacity constraints.

7 CONCLUSIONS

We present HopliteBuf, an FPGA-based NoC with lightweight

buffering and associated static analysis tools to better support NoC

communication requirements of real-time FPGA applications. Ho-

pliteBuf introduces LUT-based stall-free FIFOs to the NoC router

to absorb deflections and provide in-order routing of packets. We

develop static analysis tools that can compute worst-case buffer

occupancy bounds, along with latency bounds for communication

patterns with rate, and burst information known up-front. In our

experiments with 100 randomly-generated flowsets, we show that

HopliteBuf is able to deliver 40–50% feasibility at 20% injection rates

while the competing state-of-the-art HopliteRT NoC only supports

25% feasibility at 10% injection rates at 2× worse latency bounds..

REFERENCES
[1] Ahmed Amari and Ahlem Mifdaoui. 2017. Worst-case timing analysis of ring

networks with cyclic dependencies using network calculus. In Proceedings of the
IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA). IEEE.

[2] Kees Goossens and Andreas Hansson. 2010. The aethereal network on chip after
ten years: Goals, evolution, lessons, and future. In 47th DAC. IEEE, 306–311.

[3] Yutian Huan and A DeHon. 2012. FPGA optimized packet-switched NoC using
split and merge primitives. In Field-Programmable Technology. 47–52.

[4] S. Jeon, J. Cho, Y. Jung, S. Park, and T. Han. 2011. Automotive hardware devel-
opment according to ISO 26262. In 13th International Conference on Advanced
Communication Technology (ICACT2011). 588–592.

[5] N. Kapre. 2016. Marathon: Statically-Scheduled Conflict-Free Routing on FPGA
Overlay NoCs. In 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). 156–163. https://doi.org/10.
1109/FCCM.2016.47

[6] N. Kapre and J. Gray. 2015. Hoplite: Building austere overlay NoCs for FPGAs.
In Field Programmable Logic and Applications. 1–8. https://doi.org/10.1109/FPL.
2015.7293956

[7] H. Kashif and H. Patel. 2014. Bounding buffer space requirements for real-time
priority-aware networks. In 2014 19th Asia and South Pacific Design Automation
Conference (ASP-DAC). 113–118.

[8] Hany Kashif and Hiren Patel. 2016. Buffer Space Allocation for Real-Time Priority-
Aware Networks. In proceedings of the IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 1–12.

[9] John Kim. 2009. Low-cost router microarchitecture for on-chip networks. In
42st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
42 2009), December 12-16, 2009, New York, New York, USA, David H. Albonesi,
Margaret Martonosi, David I. August, and José F. Martínez (Eds.). ACM, 255–266.
https://doi.org/10.1145/1669112.1669145

[10] Jean-Yves Le Boudec and Patrick Thiran. 2001. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Springer-Verlag.

[11] Jörg Mische and Theo Ungerer. 2012. Low Power Flitwise Routing in an Unidi-
rectional Torus with Minimal Buffering. In Proceedings of the Fifth International
Workshop on Network on Chip Architectures (NoCArc ’12). ACM, New York, NY,
USA, 63–68. https://doi.org/10.1145/2401716.2401730

[12] Jörg Mische and Theo Ungerer. 2014. Guaranteed Service Independent of the
Task Placement in NoCs with Torus Topology. In Proc. 22Nd RTNS. (RTNS ’14).
ACM, 151:160. https://doi.org/10.1145/2659787.2659804

[13] Michael K Papamichael and James C Hoe. 2012. CONNECT: re-examining con-
ventional wisdom for designing nocs in the context of FPGAs. In Proceedings
of the ACM/SIGDA international symposium on Field Programmable Gate Arrays.
ACM, 37–46.

[14] Zheng Shi and Alan Burns. 2008. Real-Time Communication Analysis for On-
Chip Networks with Wormhole Switching. In Second ACM/IEEE NOCS (nocs 2008)
(NOCS ’08). IEEE, 161–170. https://doi.org/10.1109/NOCS.2008.4492735

[15] SaudWasly, Rodolfo Pellizzoni, and Nachiket Kapre. 2017. HopliteRT: An efficient
FPGA NoC for real-time applications. In F. Program. Technol. (ICFPT), 2017 Int.
Conf. IEEE, 64–71.

A APPENDIX

Lemma 1. (1) A flow bounded by traffic curve λb,ρ (t) is also

bounded by arrival curve γb−ρ,ρ (t). (2) Similarly, a flow bounded by

arrival curve γσ ,ρ (t) on any NoC link is also bounded by traffic curve

λ ⌈σ+ρ+1⌉,ρ (t).

Proof. Part (1). Based on the curve definitions, we have:

λb,ρ (t) = min
(

t ,b + ⌊ρ · (t − 1)⌋
)

≤ b + ρ · (t − 1) = b − ρ + ρ · t = γb−ρ,ρ (t).

Part (2). Again by definition:

γσ ,ρ (t) = σ + ρ · t = σ + ρ + ρ · (t − 1) ≤ σ + ρ + ⌊ρ · (t − 1)⌋ + 1

≤ ⌈σ + ρ + 1⌉ + ⌊ρ · (t − 1)⌋ .

Since furthermore a NoC link cannot transmit more than one packet

every clock cycle, the flow is bounded by:

min(t , ⌈σ + ρ + 1⌉ + ⌊ρ · (t − 1)⌋) = λ ⌈σ+ρ+1⌉,ρ (t).

�

10

