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HopliteBuf is a deflection-free, low-cost, and high-speed FPGA overlay Network-on-chip (NoC) with stall-free

buffers. It is an FPGA-friendly 2D unidirectional torus topology built on top of HopliteRT overlay NoC. The

stall-free buffers in HopliteBuf are supported by static analysis tools based on network calculus that help

determine worst-case FIFO occupancy bounds for a prescribed workload. We implement these FIFOs using

cheap LUT SRAMs (Xilinx SRL32s, and Intel MLABs) to reduce cost. HopliteBuf is a hybrid microarchitecture

that combines the performance benefits of conventional buffered NoCs by using stall-free buffers with the cost

advantages of deflection-routed NoCs by retaining the lightweight unidirectional torus topology structure.

We present two design variants of the HopliteBuf NoC: (1) Single corner-turn FIFO (W → S), and (2) Dual

corner-turn FIFO (W → S + N ). The single corner-turn (W → S) design is simpler and only introduces a

buffering requirement for packets changing dimension from X ring to the downhill Y ring (or West to South).

The dual corner-turn variant requires two FIFOs for turning packets going downhill (W → S) as well as uphill
(W → N ). The dual corner-turn design overcomes the mathematical analysis challenges associated with single

corner-turn designs for communication workloads with cyclic dependencies between flow traversal paths

at the expense of small increase in resource cost. Our static analysis deliver bounds that are not only better

(in latency) than HopliteRT but also tighter by 2 − 3×. Across 100 randomly-generated flowsets mapped to a

5×5 system size, HopliteBuf is able to route a larger fraction of these flowsets with <128-deep FIFOs, boost

worst-case routing latency by ≈ 2× for mutually feasible flowsets, support 10% higher injection rate than

HopliteRT. At 20% injection rates, HopliteRT is only able to route 1–2% of the flowsets while HopliteBuf can

deliver 40–50% sustainability. When compared to theW → Sbkp backpressure-based router, we observe that

our HopliteBuf solution offer 25–30% better feasibility at 30–40% lower LUT cost.

CCS Concepts: • Hardware → Reconfigurable logic and FPGAs; • Networks → Network on chip; •
Mathematics of computing→ Calculus.
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1 INTRODUCTION
High-performance communication networks are vital for supporting connectivity requirements of

modern FPGA designs. FPGA logic can be configured to implement overlay packet-switched NoCs
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(or soft NoCs) [5, 7, 12, 14] to allow IP blocks to interact with each other at the cost of stealing logic

and routing resources away from the developer. FPGA vendors are also embracing hardened NoC

resources [13] that bake in the network functionality without using any soft logic. This trend is

driven primarily by the communication demands of system-level IO. Soft NoCs still remain useful

for two reasons: (1) for providing last-mile connectivity to portions of the FPGA fabric further

away from hard NoC interfaces and (2) to deliver communication networks with greater flexibility

and features such as timing guarantees that hard NoCs may not be able to provide.

Regardless of the choice of NoC implementation on FPGAs, real-time system developers wishing

to use FPGAs need tool support to analyze the timing properties of their FPGA mappings to ensure

they are able to meet relevant scheduling deadlines. Real time systems are characterized by a

need to rigorously prove timing requirements of various computing and communicating blocks.

For instance, the ISO 26262 standard [6] requires performance isolation between communicating

components on a chip. Shared communication media like NoCs are prone to interference and mixing

of traffic that can complicate certification processes. NoC performance analysis is notoriously hard;

it is often pessimistic and leads to over-provisioning of resources. In this paper, we aim to build

analysis-friendly, low-cost FPGA NoCs and develop accompanying analysis tools to prove worst-

case NoC packet routing latencies.
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(b)W → S + N Corner-Turn Buffer
Fig. 1. 2×2 HopliteBuf NoC Topology with Stall-Free Corner-Turn buffers ( ). Stall-Free buffers are sized
to never go full avoiding the need for backward flow control. TheW → S + N topology disconnects vertical
rings () and introduces an extra uphill multiplexer in each router.

Resource-efficient NoCs like Hoplite [7] and HopliteRT [14] provide a scalable, low-cost fabric

for designing FPGA communication networks using soft logic. Both these NoCs are built on the

idea of deflection routing that avoids the cost of packet buffering. The routers for these NoCs

can be as small as 86–89 6-LUTs for 64-bit payloads operating at 1.2–1.3 ns clock period on a

Virtex-7 485T FPGA. However, packets may suffer long deflection penalties in the fabric (Hoplite,

and HopliteRT) and packets may even suffer livelocks where packets deflect endlessly (Hoplite).

This behavior is a problem for real-time FPGA applications in mission-critical environments like

self-driving cars and automotive systems, unmanned drones, avionics, and biomedical devices. Such

application domains need strict timing guarantees for bounding worst-case behavior and allowing

certification of the products for use in the field. A conventional, buffered, packet-switched NoC

might be a tempting alternative. However, deeply buffered NoCs with classic flow control are too
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expensive to implement on the FPGA, and are hard to statically analyze to compute worst-case

buffer bounds due to the complexity of packet interactions. Contemporary buffered FPGA NoCs

like CMU CONNECT [12] and Penn Split-Merge [5] NoCs are very expensive and occupy 1000s of

LUTs/router for 32-bit routers (For context, a light weight RISC-V CPU takes ≈ 200–500 LUTs on

an FPGA [4]). The reason for such a bloated and slow design is that these routers support exotic

features in a NoC, such as flow-control, extensive buffering, arbitration logic, virtual-channels

which are not favourable for FPGA realization. Furthermore, the state-of-the-art analysis of NoC

buffer bounds [8, 9] is pessimistic due to the complexity of modeling pipelining effects and mixing

of various flows in the network. In this paper, we propose the HopliteBuf NoC, shown in Figure 1,

derived from the low-cost Hoplite NoC. HopliteBuf introduces (1) small stall-free buffers for certain

router functions to simplify flow control, to (2) eliminate deflections with any associated livelocks,

(3) provides optional linearization of vertical NoC rings to enhance analysis that, (4) bounds buffer

sizes to distributed-RAM friendly implementation sizes. The key contributions of our work is the

microarchitecture of analysis-friendly HopliteBuf NoC routers, topology modifications coupled

with a buffer sizing algorithm that is able to determine the worst-case occupancies for all the

FIFOs in the NoC. In particular, the proposed topology in Figure 1b with two corner-turn buffers

and no vertical loopback simplifies static analysis of buffer sizes. This also improves provable

wire utilization while preserving wiring cost and requiring a modest increase in LUT count over

Figure 1a. For our workloads we observe that these occupancies are small enough to be realizable

in LUT-based FIFOs (Xilinx SRL32s, and Intel MLABs). The HopliteBuf NoC is more expensive

than Hoplite or HopliteRT by 3–4× due to buffering, but still cheaper than full-blown conventional

buffered NoCs. We summarize the main contributions of our work here:

• Design of an FPGA NoC torus topology to enhance static analysis for computing buffer bounds

and NoC router microarchitecture redesign with stall-free FIFOs to eliminate deflections and

provide in-order packet delivery. Optimization and customization of the NoC router RTL to

match Xilinx and Intel FPGAs.

• Development of a buffer sizing algorithm to compute the worst-case bounds on FIFO occupancies.

Use of vertical NoC link linearization to improve provable link utilization. Static analysis tools

compute upper bounds on size of FIFOs required for stall-free operation, source queueing delay,

in-flight routing latency under various conditions.

• Engineering of a robust simulation infrastructure to compute cycle counts of packet traversals

in the NoC. Resource and performance analysis of the NoC under various synthetic workloads.

• Development of RTL and analysis for Hoplite NoC router with backpressure in the horizon-

tal rings. This allows us to quantify the cost advantages and the analysis benefits of using a

HopliteBuf over conventional backpressure-based buffered routers.

2 BACKGROUND
We now review existing literature on deflection-routed FPGA overlay NoCs: Hoplite and HopliteRT

to highlight the underlying resource-performance tradeoffs, features and limitations of these NoCs.

Hoplite [7] is an FPGA-friendly NoC router that uses torus topology and eliminates buffering and

flow control to provide a low-cost implementation on modern FPGAs. Packets traverse using DOR

(dimension-ordered routing) policy in the X-dimension (horizontally, W→E) first before turning

(W→S) and routing in the Y-dimension (vertically, N→S). While DOR is not strictly required

for deflection-routed switches, Hoplite includes this routing scheme to reduce switching cost by

eliminating certain turns in the router. This simple design requires a pair of 2:1 muxes as shown in

Figure 2a. The DOR logic defines the arbitration scheme with three inputs N (North), W (West)

and PE (processing element/client) and two outputs S (South + Switch exit, shared) and E (East).

The DOR control logic is very simple (shown in Table 1) and consumes very few LUTs as it can be

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:4 Garg, et al.

2
:
1

2:1

W
E

N

SPE

(a) Hoplite Router

3
:
1

3:1

W
E

N

SPEi

PEo

(b) HopliteRT Router
Fig. 2. High-level design sketches of Hoplite [7] (can livelock) and HopliteRT [14] (no livelock) FPGA NoC
Routers. HopliteRT adds a N→E turn to Hoplite to eliminate livelock. Both designs fit one bit of crossbar in
one Xilinx 6-LUT.

constructed directly on valid signals of the incoming packets alone. Packets exiting the NoC must

do so over the S port to allow the mux and wires to be shared by both south-bound and exiting

packets. A separate output valid signal helps determine the nature of the packet. The NoC client is

provided the lowest priority and cannot inject a packet is the router has packets on both ports. A

key limitation of Hoplite is the inability of the NoC to avoid livelock. This is possible as a W packet

continues to get deflected to the E port as long as a packet on N port wants to travel S. Furthermore,

a series of packets sent from a source client to a destination client may take different paths through

the network and need not deflect in identical manner.

HopliteRT [14] is a refinement over Hoplite that inverts the priorities and deflects N packets to

the E (hence the new N→E turn in Figure 2b). By doing this, HopliteRT achieves livelock freedom

and bounds the worst-case latency as a function of system size. Thus, HopliteRT requires two

3:1 muxes but still requires the same number of LUTs as Hoplite as shown in Table 2. This is

possible because the multiplexer inputs are shared and it requires a 5-input, 2-output function

which can be implemented using careful mapping using a LUT-6. HopliteRT overcomes the livelock

limitation by forcing the N packet to deflect E in case of contention caused by high-priority W→

S flow. The N packet then reappear as a W packet with higher priority. This simple modification

means that a packet will only suffer a single deflection at a given switch as it descends down the

NoC. The adaptation not only avoids livelock but puts an upper bound on in-flight NoC latency to

∆X + ∆Y ×m + 2 for anm ×m NoC, where ∆X and ∆Y if the number of steps or nodes a packet

Table 1. Routing Function Table to support single 6-LUT implementation of Hoplite. N has highest priority,
followed byW port and PE has the least priority. PE andW cannot inject simultaneously ifW has a packet
even if the flows are non-overlapping.

Mux select Routes Explanation

s_sel e_sel

0 0 PE→E or PE→S No W or N packet

0 1 W→S or W→E Even if PE has packet

1 0 N→S + PE→E No W packet

1 1 N→S + W→E No N packet
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has traversed in the X and Y direction respectively. This indicates that, in the worst-case (when

∆X =m and ∆Y =m), the torus NoC could reduce down to a ring O(m2).

Table 2. FPGA costs for 64b router (4×4 NoC) with Vivado 2016.4 (Default settings) + Virtex-7 485T FPGA
(adapted from [14])

Router LUTs FFs Period (ns)

Hoplite 89 149 1.29 ns

HopliteRT 86 146 1.22 ns

While HopliteRT achieves livelock freedom without increasing resource cost over Hoplite, it still

has two drawbacks. (1) Due to the 1D ring linearization in the worst case, HopliteRT suffers from

a high worst-case deflection bound. Reducing a bandwidth-rich torus to a 1D ring is neither an

efficient nor scalable use of FPGA resources. (2) As the deflections are not ordered, packets can be

delivered out-of-order at the destination. Reordering of packets now becomes the responsibility of

the NoC client and it can add extra memory overheads at the endpoints.

The in-flight and source queueing latency bounds for Hoplite are ∞ due to unpredictable nature

of packet deflections. To bound source queueing latency (the amount of time a packet has to wait at

a client before entering the network), HopliteRT uses the concept of traffic regulation.

Table 3. Routing Function Table (adapted from [14]) for HopliteRT. PE injection has lowest priority and will
stall on conflict. PE→E + W→S is not supported to avoid an extra select signal driving the multiplexers and
doubling LUT cost by preventing fracturing a 6-LUT into 2×5-LUTs.

Mux select Routes Explanation

sel1 sel0

0 0 W→E + N→S Non-interfering

0 1 W→S + N→E Conflict over S (Not supported in Hoplite)

1 0 PE→E + N→S No W packet

1 1 PE→S + W→E No N packet (Not possible in Hoplite)

Token Bucket Regulator: The objective of network regulation is to manage traffic congestion in

a network of routers to allowing guaranteed service to participating traffic flows. One such traffic

control algorithm is the Token bucket regulation [11]. The regulator ensures that the data injected

in the network conforms to defined limits on rate ρ and burstiness b. Here, rate is the throughput
of packet injection measured in packets per second while burstiness is the maximum number of

back-to-back packets permitted to enter the network. These regulators have abundant applications

in large-scale networks like internet routers.

We can customize these regulators for on-chip communication networks like FPGA NoCs. This

regulator is highly efficient and cheap to implement, requiring just two counters. Figure 3a shows

a high-level cartoon diagram of a Token Bucket Regulator inserted on the client → NoC interface.

The regulator restricts the amount of traffic injected into the NoC and also bounds the amount of

time a client has to wait to inject a packet into the network. Both ρ (injection rate) and b (burst)

are configured by the NoC developer.

Two counters: rate counter, and a token counter, are required to implement token bucket regu-

lation. Rate counter, is a free-running counter that is programmed to add a token into the token

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:6 Garg, et al.

Token

Bucket

rate
counter

token
counter

User

Logic

NoC

Switch

NoC ready

Packet

(rate+1)%
1

ρ

max(token+1,b)

b

overflow

(a) Token Bucket Regulator

0 2 4 6 8 10

0

2

4

λb=3,ρ=1/4

Time (cycles)

P
a
c
k
e
t
s

(b) Traffic Curve for regulator
Fig. 3. A cartoon diagram representing the Token Bucket regulation and an example traffic curve with burst=3,
and rate= 1

4
. A regulator is used at the injection port of each NoC client. Number of tokens represent the

number of packets allowed to inject in the network by a client.

bucket, shown in Figure 3a, when it overflows after a period of every
1

ρ cycles. Token counter,

keeps track of tokens consumed by the client/user logic and also makes sure that the token bucket

never exceeds it’s maximum size, b. The token bucket is assumed to initially full with, b tokens

(user programmable) in it. Whenever a client wishes to inject a packet in the network, it checks if

the NoC is ready to accept packets and client has enough tokens in the token counter. For each

packet sent in the network, token counter is decremented by one which also represents that we

have one empty slot in the token bucket.

We introduce the concept of a traffic curve λb ,ρ (t) to capture the maximum number of packets

injected by a regulator in any interval of t cycles. Based on the provided description, it holds:

λb ,ρ (t) = min

(
t,b + ⌊ρ · (t − 1)⌋

)
. (1)

The traffic curve for a regulator with b = 3, ρ = 1/4 is depicted in Figure 3b. The traffic curve

derivation assumes that the bucket is initially full. Hence, b = 3 packets can be sent consecutively

at times t = 1, 2, 3. After the first packet is sent at time t = 1, the regulator starts generating a

new packet, which is then added to the bucket at time 1 + 1/ρ = 5; this corresponds to the fourth

transmitted packet. Afterwards, new packets are sent every 1/ρ cycles.

3 HOPLITEBUF MICROARCHITECTURE

In this section, we describe the design of the HopliteBuf router with stall-free buffering. We

explain the core switch microarchitecture, associated routing policy and discuss FPGA mapping.

3.1 The Idea
Earlier in Figure 1, we sketched two variants of the proposed HopliteBuf topologies with buffers

for turning packets. In Figure 4, we show the switch microarchitectures of these variants. The

basic multiplexing functionality implements turns to support DOR routing scheme. What this

means is that, unlike the HopliteRT design, our proposed microarchitecture does not support

the N → E turn. Now, recall that contention in Hoplite arises from packets wanting the same S

resource either for turns (W → S) or for vertical descent (N → S). We can choose to make either

or both of these conflicting parties wait in buffers, but theW → S option is preferred as it limits

buffering penalty for a given flow to a single buffer. Buffering the N → S path will force packets

descending vertically to wait at each hop prolonging their stay in the network. This would make

both end-to-end routing latency as well as FIFO size larger than needed. Hence, we focus only on

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.



HopliteBuf: Network Calculus-based design of FPGA NoCs with Provably Stall-Free FIFOs 1:7

2
:
1

3:1

W
E

N

SPEi

PEo

(a) FIFO onW → S Turn

2
:
1

3:1

3:1

W
E

Ni

So

No

SiPEi

PEo

(b) FIFOs onW → S + N Turns
Fig. 4. Two design alternatives for adding buffers to the Hoplite NoC router.W → S adds a buffer on the
corner turn, whileW → S + N adds an extra uphill buffer.

W packets for buffering. We now elaborate on the two design options that only bufferW packets

in two ways:

• W → S buffer: In this scenario, packets turning from W port to S will be buffered if a N → S
packet arrives at that router in the same cycle. The routing policy now prioritizes N packets

overW packets as there is no longer the option of deflecting to E like in HopliteRT. The East

mux now seesW , and PE as input, and South mux seesW ′
(FIFO output), N , and PE as inputs.

The multiplexer select lines also need to be distinct as the routing combinations prevent sharing.

We discuss how this may fit on the FPGA fracturable LUT organization in the Section 3.2 and the

restrictions of the routing combinations in Section 4. From the perspective of the NoC, the packet

will have to wait in a buffer only at the point of turn. The PEo exit shares the same wires as the

S just like in the original Hoplite and HopliteRT routers to avoid paying the extra cost of exit

multiplexers. Empirical evaluation has shown negligible performance hit from this cost-saving

transformation.

• W → S+N buffer: In this second scheme, the routing policy introduces a S → N link and allows

a newW → N turn. At first glance, this may seem like an unlikely design choice as inserting

an entirely new routing path will increase LUT resource costs. While this is true, this scheme

does not increase wiring requirements as seen in Figure 1b. The vertical wrap-around link in

the original Hoplite ring is now forced to traverse through the switch on the way uphill. Thus

total wirelength stays unchanged. Furthermore, as well will see later, this organization enhances

the static analysis pass by removing the loopback and allows a higher provable link utilization

on the vertical ring. You may notice we retain the shared single exit to the client PEo that shares
wires with the S port. As the vertical ring is disconnected, traffic is delivered to destination PEs

only on the downhill traversal. This is another cost-saving measure that eliminates introducing

an exit multiplexer along with an accompanying FIFO for packets on the uphill Si → No that

may wish to exit sooner.

3.2 FPGA Implementation
We show the distinct LUT organizations of the Xilinx and Intel FPGAs in Figure 5. A Xilinx 6-LUT is

fracturable into two 5-LUTs (shown in Figure 5a) with five common inputs across both LUTs. This

allows you to implement one function of 5-inputs (any function) and one function of 6-inputs (if it
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overlaps with the 5-input function) in the same LUT. An Intel ALUT is organized differently (shown

in Figure 5b) and has 8-inputs shared across two 6-LUTs. The two 6-LUTs have four common inputs,

and two distinct inputs each. They can implement two functions of 6-inputs as long as they share

four inputs.

5-LUT

5-LUT

2
:
1 O6

O5

I0

I1

I2

I3

I4

I5

(a) Xilinx Lookup Table (LUT) Orga-
nization

6-LUT

6-LUT

combout1

combout0

dataf0

datae0

dataa

datab

datac

datad

datae1

dataf1

(b) Intel Adaptive Logic Module
(ALM) Organization

Fig. 5. Xilinx and Intel FPGA logic organizations. A fracturable Xilinx 6-input Lookup Table (LUT) can fit two
5-LUTs with common inputs. A fracturable Intel Adaptive Logic Module (ALM) can fit a variety of Adaptive
LUT (ALUT) combinations, with two 6-ALUTs with common inputs combination shown.

The Xilinx LUT structure is extremely flexible and allows to be configured as Storage elements,

such as, Distributed RAM, and Shift-Registers [16]. Figure 6a shows how a LUT can be configured

to work as 32-bit SRL. The 32:1 mux selects one of the 32 inputs coming from the shift-register

based on the address port A. By adding a slight amount of logic on top of this module can make

it work like a 32-deep 1-bit FIFO. Multiple LUTs can be cascaded to increase the depth and width
of the FIFO implemented using SRLs. One such example is shown in Figure 6b where two LUTs

are cascaded such that the FIFO depth is 64. In a similar manner, within a SLICE, a maximum of

four 32-bit SRL32 can be cascaded with the help of F7AMUX and F8AMUX to implement a 128-bit

Shift-Register or FIFO. A detailed discussion of realizing FIFOs on Xilinx SRLs is provided in [3].

This is integrated into our routers with a minor modification that the FIFO full signal is guaranteed
never to go high based on static analysis and remains unused in our logic.

Similar to what Xilinx LUTs can do to implement shift-registers and memories, Intel implements

this functionality with their MLAB resources. MLABs are a superset of LAB and support all the

features that LABs can support MLABs have a slightly different architecture to build the memory

configuration. Each MLAB supports a maximum of 640bits of simple dual-port SRAM. MLABs can

configured to implement 32-deep and 20bit wide simple dual-port SRAMs. For more information,

please refer to [1]. The stall-free buffer component of our new designs are implemented using these

cheap resources.

Original HopliteMapping: When implementing the original Hoplite router shown in Figure 2a

on a Xilinx FPGA, we can easily fit the two 2:1 muxes in two Xilinx 5-LUTs to allow a compact 1

6-LUT mapping per bit of switching. This is possible as the East 2:1 mux can use a 5-LUT (requiring

3 inputs), while the South 2:1 mux can be mapped to the embedded 2:1 mux that drives the O6

output (needing two more inputs, only one of which needs to be unique). When implementing the

original Hoplite router on an Intel FPGA, it is trivially possible to fit this in a single ALM with two

6-LUTs without even forcing the East mux serialization. This is because the 3:1 mux (South mux if

implemented fully) needs 5 inputs while the 2:1 mux only needs 3. Two of these inputs are shared
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Fig. 6. (a) A LUT-6 based 32-bit Shift Register on Xilinx FPGA (b) Two LUT-6 cascaded to implement a 64-bit
Shift register. The cascading is done with the help of F7AMUX which is available in SLICEM of a Combinational
Logic Block in Xilinx FPGAs

by both muxes (W and PEi ), while the distinct mux select inputs can be supplied to the two 6-LUTs

independently without violating the common input restriction.

MappingW → S FIFO Design This design requires the switching crossbar to consume four

packet inputs: N ,W ,W ′
(FIFO output) and PEi inputs along with 3 mux-select inputs. This already

exceeds the 6-input LUT capacity of the Xilinx FPGA and cannot use fracturing. On the Intel FPGA,

we require four common inputs to each 6-LUT; this constraint is satisfied by our design thereby

enabling a compact fit. Additionally, we can supply two unique inputs to each 6-LUT which is

adequate to support the mux-select signals. When it comes to implementing FIFOs using this cheap

resources, both Xilinx and Intel FPGAs provide configuration to use LUT and ALMs as Memory

registers. To implement deeper FIFOs with Xilinx, we use the cascading strategy shown in Figure 6b

where multiple LUTs can be cascaded with each other by using F7AMUX and F8AMUX. With Intel

devices, deeper memories can be built much easily by just instantiating multiple MLAB primitives

explained in [1].

MappingW → S + N FIFO Design This design requires the switching crossbar to consume

six packet inputs: Ni , Si ,W ,W ′
(W → S FIFO),W ′′

(W → N FIFO) and PEi and 5 mux-select

inputs. We choose to split the turning packets into separate FIFOs to prevent mutual interference

between traversing flows. The total distributed RAM capacity stays same as it just split into two

SRL32 or MLAB instantiations instead of a longer single distributed RAM block. Here, with limited

opportunity for input sharing, the resulting design is larger in LUT cost, but as we will see later, this

allows efficient use of the NoC links. In this design as well, we implement the memory components

using LUTs/MLABs similar toW → S buffer design.

Table 4 shows the resource costs of implementing different variants of HopliteBuf on Xilinx and

Intel FPGAs. Maximum FIFO depth analyzed in this work is capped at 128, to reasonably implement

them using LUTs and ALMs. As show in the table, the W→ S design is slightly more expensive

than HopliteRT on Xilinx FPGAs due to their LUT architecture. However, W→ S design uses same

number of ALMs to implement the logic as HopliteRT but is a little expensive in terms of buffer

implementation using MLABs. In the dual-buffer variant, W→ S+N, the memory costs are identical

to W→ S but it is slightly more expensive due to an added 3:1 mux to implement the upward logic.

On an average, HopliteBuf is around 3 − 4× more expensive than HopliteRT but as you will see

in the evaluation section that this added cost is going to pay in terms of performance gain over

HopliteRT.
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Table 4. Resource utilization on Xilinx Virtex-7 and Intel Arria-10 devices for different Datawidth and FIFO
sizes of HopliteRT, and HopliteBuf routers. The LUTs used for FIFO storage are computed as per the equation
Datawidth·⌈ F I FO

32
⌉

Xilinx Intel

HopliteRT W → S W→ S+N HopliteRT W → S W → S+N

LUTs FFs LUTs FFs LUTs FFs LUTs FFs LUTs FFs LUTs FFs

DW=32, FIFO=32 59 86 155 94 - - 102 92 167 91 - -

DW=64, FIFO=32 91 150 251 158 - - 166 156 263 144 - -

DW=32, FIFO=64 59 86 197 95 262 142 102 92 248 140 278 156

DW=64, FIFO=64 91 150 325 159 413 238 166 156 408 221 438 246

DW=32, FIFO=128 59 86 281 96 346 144 102 92 331 224 445 261

DW=64, FIFO=128 91 150 482 160 562 240 166 156 555 360 733 409

4 ROUTING POLICY
Now that we understand the architecture and implementation details of the two variants of Ho-

pliteBuf,W → S andW → S + N , we are going to look at the arbitration scheme and routing

policies to implement these structures.

The original Hoplite and HopliteRT routers implemented bufferless deflection routing rooted in

Dimension-Ordered Routing policy. The policy ensured that arriving packets fromW and N ports

were sent to E and S ports respectively. For turning packets, Hoplite prioritizes N port over the

W port thereby introducing the possibility of livelock, while HopliteRT prioritizesW over N to

ensure bounded NoC routing delays. Thus, HopliteRT deviates from DOR by allowing a N → E
deflection that is not permitted under standard DOR implementation.

HopliteBuf:W → S design: ForW → S design we restore DOR routing policy as we move

back to the same architecture (with an added buffer onW to S link) as Hoplite. But in order to

service FIFO packets, the routing policy has been modified. We list the routing combinations for

W → S NoC design in Table 9 in the Appendix.

The upper half of the routing table shows the possible flow combinations when only one-port,

eitherW ,W ’, N or PEi , has packets to transmit. The lower half shows more complicated routing

decision cases when multiple ports are willing to transmit simultaneously. For South Mux, the

arbitration scheme gives the highest priority to N port, as it is not buffered and cannot hold the

packets. The second-highest priority is given toW ’ (West FIFO output) while PEi gets the least
priority. For East mux,W port has higher priority than PEi packets. The decision logic also takes

care of a unique and complex routing case of simultaneous data transfer betweenW → E and

W ′ → S .
HopliteBuf:W → S + N design: ForW → S + N design as well we use DOR routing policy.

With buffering,W packets are forced to wait in the FIFOs thereby transferring priority to Ni and Si
packets. This design still accept PEi packets with the least priority. We list the routing combinations

forW → S + N NoC design in Table 10 in the Appendix. The routing logic is much complex in

comparison toW → S design as it has 8 possible flow combinations and all have different priority

structures. The table summarizes all the possible combinations along with their priority.

5 W→ S BUFFER DESIGNWITH BACKPRESSURE
In contrast to HopliteBuf, where FIFOs are provably stall-free, conventional buffered NoCs use back-

pressure signaling to propagate FIFO stall condition upstream. This backpressure signal propagates

upstream through potentially several routers stalling each link along the way. This architecture

allows analysis-free operation of the NoC but also suffers from poorer latency outcomes due to
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complex network flow interactions. To quantify the benefits of HopliteBuf over this conventional

alternative, we develop the W→S + Backpressure design. We develop RTL for this design as well

as network flow-based analysis. In particular, for the torus topology used by our work, this design

resembles the Kim NoC Router [10].

The microarchitecture of this router introduces two primary hardware structures into the design

as shown in Figure 7:

• A Backpressure controller is added to manage the propagation or generation of backpressure

indication. Backpressure may be generated when a turning W→S packet encounters a full W→S

FIFO. Alternatively, backpressure may be propagated along the W→E link if an Eastbound packet

encounters a stalled upstream West port of a router.

• A shadow register or skid buffer is needed on the W port of the router to hold packets in place as

the backpressure signal propagates horizontally in a pipelined fashion. The effect of pipelining

introduces a one cycle delay on the backpressure signal it traverses through each router. Packets

may have begun their traversals before they saw the incoming backpressure. This is handled

using a standard shadow register or skid buffer on the W input.

2
:
1

Ctrl

3:1

Skid

Buffer

W
E

N

S

BPinBPout

PEi

bp

PEo

full

rd

Fig. 7. FIFO onW → S Turn along with Backpressure Unit.

In this design, the vertical N→S packets continue to enjoy backpressure-free traversal in the NoC.

Backpressure only affects the horizontal packets and may inadvertently hold up an W→E packet if

a downstream W→S FIFO has gone full. This blocking behavior is not possible in HopliteBuf, as all

packets in front of a packet along the horizontal link are guaranteed safe storage in the turn FIFOs

should they need to do so. The DOR routing logic must be adapted to account for the presence of

backpressure and FIFO full signals. In Table 11 in the Appendix, we show the complete routing

table used in our design.

Another impact of this microarchitecture is the larger expected cost. The backpressure controller

and the shadow register will increase LUT and FF usage, while also slowing down clock frequency

due to complex control flow. We quantify the result of hardware mapping of the routers on Xilinx

and Intel FPGAs in Table 5. Finally, note that for the purpose of network-flow based analysis, the

W→S + Backpressure design will consider turn FIFO sizes to be only one deep. Deeper FIFOs

require queuing analysis and generate pessimistic bounds due to increased flow burstiness, as we

will explain in Section 6.
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Table 5. Resource utilization on Xilinx Virtex-7 and Intel Arria-10 devices for different Data Width and FIFO
sizes forW → Sbkp design. % increase overW → S switch is also quantified.

Xilinx Intel

LUTs FFs % LUTs FFs %

DW=32, FIFO=32 246 175 58.7 257 159 53.8

DW=64, FIFO=32 409 303 62.9 416 227 58.1

DW=32, FIFO=64 290 176 47.2 338 184 36.2

DW=64, FIFO=64 485 304 49.2 561 304 37.5

DW=32, FIFO=128 372 177 32.3 420 247 26.8

DW=64, FIFO=128 640 305 32.7 707 450 27.3

6 LATENCY AND BUFFER SIZE ANALYSIS
We now turn our attention to static analysis of the NoC traffic to bound buffer sizes and worst-case

injection (source queueing) and in-flight traversal latencies. This is important to establish whether

we can realize these buffers in distributed FPGA RAMs (SRLs and MLABs). We first introduce

our regulation and traffic model. We then develop a network calculus approach to FIFO size and

worst-case latency analysis for HopliteBuf. The presence of cycles in the torus topology make this

analysis susceptible to instability, but we are able to provide an analytic solution that employs a

topology linearization alternative (Figure 1b) to eliminate cycles and get accurate buffer bounds

and latencies.

6.1 Traffic and Network Model
Injection regulation is a known technique to establish well-defined behavior of network traffic

at runtime for off-chip internet-scale systems. As discussed in Section 2, we adapt token bucket

regulation at the NoC clients to enforce traffic discipline on the NoC. This is done transparently

and the datapath design just needs to obey the standard NoC valid-ready interface (AXI-stream).

We can implement this regulation on the FPGA using two simple counters per NoC client and

require no buffers at the client-NoC interface.

0,2

0,1

0,0

1,2

1,1

1,0

2,2

2,1

2,0

f 1

f 1′

f 2

f 2′

f 3

f 4f 5

f 5′

Fig. 8. ExampleW → S NoC design with five flows
f1...5.

We consider an (m × m) matrix of clients

(x,y). Each client sends packets as part of

one or more flows; all packets within the

same flow have the same destination and use

the same token bucket regulator. Hence, we

use F = { f1, . . . , fi , . . .} to denote the set of

flows in the system, where for each flow f :
(f .xs, f .ys) represents the source client of the
flow; (f .xd, f .yd) represents the destination

client; and f .b, f .ρ represent the regulator pa-

rameters. Note that two different flows fi and
fj might share the same source, or the same

destination. Example: We present a running

example of a NoC with five flows f1...5 using
theW → S buffer design in Figure 8. Note that

we use f ′i to denote a flow after it leaves a buffer,

as buffering can increase the burstiness of the
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flow (packets queued up in a buffer can be flushed directly back-to-back). Relevant flow parameters

are tabulated in Table 6.

Table 6. Flow parameters for the example NoC. ΓC are the conflicting flows used in Section 6.2; fW→S and
fN→S are theW → S and N → S interfering flows used in Section 6.3. ‘-’ denotes not applicable.

flow source dest ΓC fW→S fN→S

f1 (0,1) (2,1) none f2 f ′
5

f2 (1,1) (2,0) f3, f1 f1 f ′
5

f3 (1,1) (1,2) f2 - -

f4 (2,1) (2,2) f ′
1
, f ′

2
, f ′

5
- -

f5 (1,2) (2,1) none none f ′
2
+ f4

The amount of traffic carried by each flow is represented by a traffic curve λb ,ρ (t), as detailed in

Equation 1, where b and ρ are the parameters of the corresponding regulator. Flows entering from

different ports into a switch might affect the traffic injection rate by the client at that router. To

determine the effect, we need to analyze the combined traffic rate of all flows entering the router.

To calculate the combined traffic load we consider two traffic flows, λb1,ρ1 and λb2,ρ2 entering a

router from two different ports and directed to the same output. Lemma 1 defines an operator ⊕

that combines the two traffic curves to compute a tight bound on the resulting aggregated traffic.

Lemma 1 (Lemma 1 in [15]). Let λb1,ρ1 and λb2,ρ2 bound the traffic on two input ports (West, North
or PE) directed to the same output port (East or South). Then the traffic on the output port is bounded
by the following curve:

(λb1,ρ1 ⊕ λb2,ρ2 )(t) = min

(
t,b1 + b2 + ⌊ρ1 · (t − 1)⌋ + ⌊ρ2 · (t − 1)⌋

)
. (2)

More in general, let A be a set of traffic curves representing traffic directed to the same port, then the
traffic on that port is bounded by:

⊕ A(t) = min

©«t,
∑

∀λb ,ρ ∈A

b + ⌊ρ · (t − 1)⌋
ª®¬ (3)

Our analysis derives three sets of parameters:

• Injection latency Injection(f ) for each flow f ∈ F ; this is the maximum time that the source

client (f .xs, f .ys) can be stalled waiting to send a packet of f .
• Maximum queuing delay Delay(f ) for each flow f turningW → S through a buffer.

• Backlog for each router; this is the maximum number of packets that are queued waiting to be

transmitted (excluding the packet that might be transmitted in the current clock cycle).

The total latency for a flow f is then obtained as the sum of Injection(f ), Delay(f ), and the total

per-hop delay of one cycle per hop, which is equal to (f .yd − f .ys)%m + (f .xd − f .xs)%m + 1.
We discuss how to compute the injection latency in the next Section 6.2. We then show how

to derive delay and backlog bounds for theW → S design in Section 6.3, and for theW → S + N
design in Section 6.5. Note that the analysis forW → S is harder, due to the loopback of the vertical

ring. The instability created by loopbacks is a notoriously challenging problem [11] and results in

lower provable bounds on link utilization. TheW → S + N design does not suffer such issue as the

flows have been linearized and have no loops. Finally, we extend theW → S analysis to handle

backpressure in Section 6.6.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:14 Garg, et al.

6.2 Injection Latency
We now show how to compute the maximum delay suffered by a client (x,y) to inject a sequence

of k packets of flow f , where k ≤ f .b. The first step is to determine the set of conflicting flows ΓC ,
that is, those flows that block the injection of packets at the analyzed client. It comprises:

• all other flows injected by the same source client, since a client can inject only one packet per

cycle. For the example shown in Figure 8, Table 6 shows that there is no conflicting flows for

flow f1 since no other flows are originating from source (0,1). However, f3 becomes a conflicting

flow for flow f2 since f3 is originating from the same source at f2.
• Second, we need to add to ΓC all the flows generated by other clients that traverse the same mux

used by f at its source router (f .xs, f xs). If f injects packets to the East port, then it suffers

conflicts from any flowW → E. If f injects packets to the South port, then it suffers conflicts

from flowsW → S or N → S . For the example shown in Figure 8, Table 6 shows that f2 is
injecting packets to East port and the East traversing f1 is conflicting with it. For f4, which is

injecting to the South port, the interfering flows comprise f ′
1
and f ′

2
, the flows that turn South

on that router after traversing the corresponding West buffer, and f ′
5
, which traverses the router

N → S .
Assume that each flow in ΓC is bounded by a traffic curve λb ,ρ (t); we define b(Γ

C ) as the sum

of burstiness parameters b of traffic curves for all flows in ΓC , and ρ(ΓC ) as the sum of their rate

parameters. To compute the upper bound on packet injection latency, we can employ Lemmas 2

and 3 in [15], which prove that under the condition ρ(ΓC ) < 1, the number of cycles where a client

is free to inject on the NoC in any interval of t cycles is bound by:

t − ⊕ΓC (t) ≥ max

(
0, ⌊

(
t − (T s + 1)

)
·
(
1 − ρ(ΓC )

)
⌋ + 1

)
, (4)

where:

T s =

⌈
b(ΓC )

1 − ρ(ΓC )

⌉
. (5)

Note this implies that the flowmight receive no free cycles forT s
clock cycles, but is then guaranteed

to receive slots at a rate of 1 − ρ(ΓC ). Based on Lemmas 2 and 3 in [15], the following theorem can

be proven.

Theorem 1 (Theorem 2 in [15]). Assume ρ(ΓC ) < 1 and the client wishes to inject a sequence of
k ≤ f .b packets for flow f . Then the delay to inject all packets in the sequence is upper bounded by:

Injection(f ,k) = ⌈1/f .ρ⌉ − 1 +T s +

⌈
(k − 1) ·max

(
1

f .ρ
,

1

1 − ρ(ΓC )

)⌉
. (6)

Based on Theorem 1, the first packet in the sequence waits for at most ⌈1/f .ρ⌉ − 1 +T s
cycles;

successive packets are sent either every 1/f .ρ or every 1/
(
1 − ρ(ΓC )

)
cycles, whichever is higher.

Note this implies that if f .ρ + ρ(ΓC ) > 1, meaning that the NoC is saturated, then the node cannot

inject at its prescribed rate f .ρ, and is instead forced to inject at a lower rate 1 − ρ(ΓC ). For this
reason in our evaluation, if the condition f .ρ + ρ(ΓC ) ≤ 1 is not satisfied, we consider the flow set

unfeasible. It remains to determine the traffic curve λb ,ρ (t) for each interfering flow. For a flow

fi that has not yet traversed a buffer, the curve is simply λf .b ,f .ρ (t). We show how to derive the

traffic curve for a flow f ′i that leaves aW → S buffer in the next section.

6.3 Vertical Ring AnalysisW → S Design
We now analyze the behaviour of flows turning on a vertical ring through aW → S buffer. We

employ the theory of network calculus [11] for FIFO-arbitrated flows to derive deterministic bounds
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Time (Cycles)
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Fig. 9. Example traffic curves for λb=3,ρ=1/4 and λb=2,ρ=1/4 along with an arrival curve for γb=7/4,ρ=1/4.
(Discrete version)

on queuing delay and backlog. In particular, we show that the delay and backlog depend on the

burstiness and rate of flows entering the FIFO buffer, as well as the burstiness and rate of flows

routed N → S . The theory describes the behaviour of data flows traversing a system of network

elements. Each element is composed of a buffer, where incoming data is stored, and a server which

takes data from the buffer and forwards it. Each data flow is represented by an arrival curve α(t),
which bounds the maximum amount of data in any interval of length t . A commonly used curve is

the leaky bucket curve γσ ,ρ (t), which is defined as:

γσ ,ρ (t) = σ + ρ · t . (7)

Whenever a flow f is bounded by a curve γσ ,ρ (t), we shall also use f .σ and f .ρ to denote the

arrival curve parameters for the flow.

We can covert between the traffic curve representation λb ,ρ (t), which we used to bound the

injection latency, and arrival curves γσ ,ρ (t) based on the following lemma:

Lemma 2. (1) A flow bounded by traffic curve λb ,ρ (t) is also bounded by arrival curve γb−ρ ,ρ (t). (2)
Similarly, a flow bounded by arrival curve γσ ,ρ (t) on any NoC link is also bounded by traffic curve
λ ⌈σ+ρ+1⌉,ρ (t).

Proof. Part (1). Based on the curve definitions, we have:

λb ,ρ (t) = min

(
t,b + ⌊ρ · (t − 1)⌋

)
≤ b + ρ · (t − 1) = b − ρ + ρ · t = γb−ρ ,ρ (t).

Part (2). Again by definition:

γσ ,ρ (t) = σ + ρ · t = σ + ρ + ρ · (t − 1) ≤ σ + ρ + ⌊ρ · (t − 1)⌋ + 1

≤ ⌈σ + ρ + 1⌉ + ⌊ρ · (t − 1)⌋ .

Since furthermore a NoC link cannot transmit more than one packet every clock cycle, the flow is

bounded by:

min(t, ⌈σ + ρ + 1⌉ + ⌊ρ · (t − 1)⌋) = λ ⌈σ+ρ+1⌉,ρ (t)

□

Example: Figure 9 shows traffic curves for two regulators with b = 2, ρ = 1/4 and b = 3, ρ =
1/4. The traffic curve λb=2,ρ=1/4(t) is upper bounded by γσ=7/4,ρ=1/4(t). Similarly, arrival curve

γσ=7/4,ρ=1/4(t) is upper bounded by λb= ⌈7/4+1/4+1⌉,ρ=1/4(t) = λb=3,ρ=1/4(t);γσ=7/4,ρ=1/4(t) > λb=3,ρ=1/4(t)
for t = 1, 2, but since the NoC link cannot send more than one packet per cycle, λb=3,ρ=1/4(t) is still
a valid traffic bound. In essence, Lemma 2 allows us to “convert” a flow with a traffic curve λb ,ρ (t)
into an arrival curve γσ ,ρ (t) and vice-versa, albeit at some loss of precision.

There are situations where we need to aggregate (combine) flows transmitted on the same link.

Note that for two arrival curvesγσ ′,ρ′(t) andγσ ′′,ρ′′(t), it immediately holds thatγσ ′,ρ′(t)+γσ ′′,ρ′′(t) =
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Fig. 10. Arrival (γσ ,ρ ) and Service (βR,T ) curve example.

γσ ′+σ ′′,ρ′+ρ′′(t): hence, the arrival curve for the aggregate of flows traversing the same link can be

expressed by summing the σ and ρ parameters of the arrival curves for the individual flows.

We next consider the behavior of the server. We model it through a strict service curve β(t),
which is a lower bound to the amount of data forwarded by the element in any interval of length t
under the condition that it is backlogged during the interval, that is, the buffer is never empty. A

commonly used service curve is the rate-latency curve βR,T (t), which is defined as:

βR,T (t) = max

(
0,R · (t −T )

)
. (8)

Given arrival curve and service curve, one can compute bounds on delay and backlog as follows:

Theorem 2 (Theorems 1.4.1 and 1.4.2 in [11]). Consider a network element with service curve
βR,T (t) traversed by a flow with arrival curve γσ ,ρ (t). If ρ < R, then:

Delay = T + σ/R (9)

Backloд = σ + ρ ·T (10)

A graphical interpretation of Theorem 2 is shown in Figure 10; note that the delay is the maximum

horizontal distance between the arrival and service curve, while the backlog is the maximum vertical

distance.

W

Ni

So

f

f ′

fW→S

f ′W→S

fN→S

fPE→S

Fig. 11. Flows through a
W → S router.

Figure 11 illustrates the flows required for analysis at oneW → S NoC
router. Here, f and f ′ represent a flow under analysis before and after

leaving theW → S buffer; fW→S represents the aggregate of all other

interfering flows traversing the buffer; fN→S represents the aggregate

of all interfering flows traversing the router in the N → S direction;

and fPE→S represents the aggregate of all flows injected by the client at

that router directly S . As discussed in Section 4, the S mux arbitration

gives lowest priority to the client; hence, we do not have to consider

flow fPE→S when analyzing flow f , but it will interfere in the N → S
direction on the next router. Regarding the other flows, fN→S has higher

priority than f , while fW→S and f are FIFO scheduled as they traverse

the same FIFO buffer.

Assuming that each flow is described by an arrival curve, we will use

two further lemmas from [11] that will helps us analyze the system.

Lemma 3 (Proposition 1.3.4 in [11]). Consider a network element,
which forwards data at a constant rateC with no processing delay. Assume
that the element services two flows fH and fL , where fH has higher priority
than fL . Further assume that fH is bounded by a leaky bucket arrival curve

with fH .ρ < C . Then fL is guaranteed a service curve βR,T with R = C − fH .ρ and T = fH .σ
C−fH .ρ .
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Based on Lemma 3, we can generate a service curve βR,T for the aggregate of flows f and fW→S ,

where fH is fN→S . Since the router transmits one packet per cycle, we have C = 1, thus yielding:

R = 1 − fN→S .ρ, (11)

T =
fN→S .σ

1 − fN→S .ρ
. (12)

We can then compute the backlog by applying Theorem 2 to the aggregate of f and fW→S :

Backloд = f .σ + fW→S .σ + (f .ρ + fW→S .ρ) ·
fN→S .σ

1 − fN→S .ρ
(13)

Lemma 4 (Corollary 6.2.3 in [11]). Consider a network element serving two flows f1, f2 bounded
by leaky bucket arrival curves in FIFO order. Assume that the element guarantees to the aggregate of
the two flows a service curve βR,T , and that furthermore f1.ρ + f2.ρ < R. Then f1 has a service curve
βR′,T ′ with R′ = R − f2.ρ andT ′ = T +

f2 .σ
R . Furthermore, the output flow f ′

1
is constrained by a leaky

bucket arrival curve with f ′
1
.ρ = f1.ρ and f ′

1
.σ = f1.σ + f1.ρ

(
T +

f2 .σ
R

)
.

By applying Lemma 4 to our router, where f1 is the flow under analysis, f2 is fW→S , and R,T are

obtained in Equations 11, 12, we obtain service curve βR′,T ′ for f :

R′ = 1 − fN→S .ρ − fW→S .ρ, (14)

T ′ =
fN→S .σ + fW→S .σ

1 − fN→S .ρ
. (15)

Substituting the values of T ′
and R′

in Equation 9 we obtain:

Delay(f ) =
f .σ

1 − fN→S .ρ − fW→S .ρ
+

fN→S .σ + fW→S .σ

1 − fN→S .ρ
(16)

under the condition that f .ρ + fN→S .ρ + fW→S .ρ < 1 (that is, the link is not saturated).

Finally, note that unless it immediately exits the network, flow f ′ will be injected on the North

port of the next router. Hence, the fN→S flow for the next router can include f ′. For this reason, we
have to compute an arrival curve for f ′ to be able to analyze such router. Again applying Lemma 4

we obtain:

f ′.ρ = f .ρ (17)

f ′.σ = f .σ + f .ρ ·
fN→S .σ + fW→S .σ

1 − fN→S .ρ
(18)

under the non-saturation condition that f .ρ + fN→S .ρ + fW→S .ρ < 1. Since Equations 17, 18 must

hold for all flows fi turningW → S on the vertical ring, we effectively obtain a system of equations.

Once the system is solved, the flow N → S on each router can be determined, and Equations 13

and 16 can be used to obtain backlog bounds for all buffers and queuing delay for all flows. Based

on Equation 17, buffering does not increase the rate of flows. Furthermore, based on Lemma 2, for

any flow fi that has not been buffered, we have fi .σ = fi .b − fi .ρ. Hence, the only unknowns in

Equation 18 are the values f ′i .σ for flows that have crossed a buffer. To analyze the system, we

thus apply the so-called Time Stopping Method in network calculus [11]: we treat the values f ′i .σ
as variables, obtaining a system of linear equations. If the values of f ′i .σ obtained by solving the

system of equations are valid (that is, bounded and positive), then γf ′i .σ ,f ′i .ρ (t) upper bounds flow
f ′i . Otherwise, the network cannot be analyzed.
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Example: Let us consider flows at router (2,1) from Figure 8. Assume f1.ρ + f2.ρ + f5.ρ < 1. For

flow f1, fW −>S comprises flow f2, while fN−>S comprises flow f ′
5
. Since for any flow fi .σ = f ′i .σ

and fi .σ = fi .b − fi .ρ, we obtain:

f ′
1
.σ = f1.b − f1.ρ + f1.ρ · (f ′

5
.σ + f2.b − f2.ρ)/(1 − f5.ρ).

Similarly, applying Equation 18 to flows f2, f5 under the added assumption f2.ρ + f4.ρ + f5.ρ < 1

yields:

f ′
2
.σ = f2.b − f2.ρ + f2.ρ · (f ′

5
.σ + f1.b − f1.ρ)/(1 − f5.ρ),

f ′
5
.σ = f5.b − f5.ρ + f5.ρ · (f ′

2
.σ + f4.b − f4.ρ)/(1 − f2.ρ − f4.ρ).

2,2

2,1

2,0

f 2

f 2′

f 1

f 1′

f 3

f 3′

Fig. 12. Cyclic dependency
flow example inW → S Ho-
pliteBuf.

Hence, we solve a linear system of three equations to determine the

value of variables f ′
1
.σ , f ′

2
.σ , f ′

5
.σ , which can then be used to determine

the backlog at each router and delay for each flow according to Equa-

tions 13, 16. Furthermore, by applying Lemma 2, we derive equivalent

traffic curves λ ⌈f ′i .σ+f
′
i .ρ+1⌉,f

′
i .ρ (t) for f ′

1
, f ′

2
and f ′

5
, which we use to

bound the injection latency of f4. As an example, if we set b = 1, ρ = 1/4

for all regulators, we obtain f ′
1
.σ = f ′

2
.σ = 33/20, and f ′

5
.σ = 39/20,

which result in backlogs of 14/5 at (2, 1) and 39/20 at (2, 2). Hence, we
need a minimumW → S buffer size of ⌊14/5⌋ + 1 = 3 at (2, 1) and
⌊39/20⌋ + 1 = 2 at (2, 2); note we add 1 to the buffer size to account for

a packet being read from the buffer and transmitted in the current clock

cycle.

While the presented approach generally results in reasonably tight

bounds, it is known [2, 11] that the circular dependencies introduced

by a ring design can reduce the sustainable (provable) per-link uti-

lization of the network by up to 50%. We present an example of cir-

cular dependencies and show how to handle them in the next sec-

tion.

6.4 Cyclic Dependencies in HopliteBufW → S design
Figure 12 shows example flows for a vertical ring, where each flow enters in a router and exits

from the router above. Assuming that f1.ρ + f2.ρ + f3.ρ < 1 so that no link is saturated, we can use

Equation 18 to write a system of three linear equations:

f ′
1
.σ = f1.σ + f1.ρ ·

f ′
2
.σ + f ′

3
.σ

1 − f2.ρ − f3.ρ
(19)

f ′
2
.σ = f2.σ + f2.ρ ·

f ′
1
.σ + f ′

3
.σ

1 − f1.ρ − f3.ρ
(20)

f ′
3
.σ = f3.σ + f3.ρ ·

f ′
1
.σ + f ′

2
.σ

1 − f1.ρ − f2.ρ
(21)

Let us now assume that f1.ρ = f2.ρ = f3.ρ = ρ < 1

3
. We can re-write the system of equations as

follows:

®σ = A · ®σ + ®a, ®σ =


f ′
1
.σ

f ′
2
.σ

f ′
3
.σ

 ,A =


0
ρ

1−2ρ
ρ

1−2ρ
ρ

1−2ρ 0
ρ

1−2ρ
ρ

1−2ρ
ρ

1−2ρ 0

 , ®a =

f1.σ
f2.σ
f3.σ

 , (22)
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where A is a positive matrix and ®a a positive vector of constant terms. Assuming that the spectral

radius of A is less than 1, the matrix (I −A) is invertible; we can thus obtain the unknown vector ®σ
as ®σ = (I −A)−1 · ®a. Defining η =

ρ
1−2ρ and using some linear algebra we obtain:

(I −A)−1 =


1−η2

1−3η2−2η3
η2+η

1−3η2−2η3
η2+η

1−3η2−2η3
η2+η

1−3η2−2η3
1−η2

1−3η2−2η3
η2+η

1−3η2−2η3
η2+η

1−3η2−2η3
η2+η

1−3η2−2η3
1−η2

1−3η2−2η3

 (23)

It is now possible to prove [11] that the spectral radius condition is equivalent to (I −A)−1 being
positive, which yields the condition 0 ≤ η < 1

2
, or equivalently 0 ≤ ρ < 0.25. This means that the

maximum per-link utilization on the network is 3 · 0.25 = 75%, lower than the 100% utilization

implied by condition f1.ρ + f3.ρ + f3.ρ < 1.

To address such issue, the authors of [11] also demonstrate a different approach, known as the

Backlog-based Method.

Theorem 3 (Theorem 6.4.1 in [11]). Consider a unidirectional ring ofm network elements which
forward data of a flow aggregate at constant rate C with no processing delay. Let F 1, ..., Fm to denote
the set of flows on each of them network elements. Further define:

σtot =
∑

f ∈F 1∪...∪Fm
f .σ , (24)

σmax = max

i=1...m

∑
f ∈F i

f .σ , (25)

ρmax = max

i=1...m

∑
f ∈F i

f .ρ . (26)

Then if ρmax < C , the backlog at any router is bounded by:

Backloд =m2 ·
ρmax

C − ρmax

· σmax + σtot, (27)

and the maximum queuing delay at any network element is Backloд/C .

We can apply Theorem 3 to our system by setting C = 1 and computing the F i set based on the

flows traversing the i − th router in either the N → S orW → S direction; as before, we do not

consider the flows PE → S as they do not affect buffering at the router where they are injected, but

they must be considered in the N → S set at the router below.

Since Theorem 3 always produces a bound as long as ρmax < 1, the backlog-based method allows

us to analyze networks with up to 100% per-link utilization. However, as we show in Figure 13, in

practice the obtained bound is highly pessimistic. It is clear that the peak injection rate supported

by Backlog-based analysis is as high as 33% per flow that yields a 99% link utilization. This is better

than the 75% link utilization possible with the Time-stopping method. However, the pessimism in

the Backlog-based analysis shows with as much as 5–20× larger FIFO capacities and up to 3× worse

base latency than the Time-stopping method. Furthermore, when applied to larger workloads the

wins do not materialize and Time-Stopping remains the better approach (see our detailed evaluation

in Section 7.3.4). For this reason, we next discuss theW → S + N design which leads to much

tighter bounds by linearizing the vertical communication.

6.5 Linearized Analysis:W → S + N Design
The analysis for theW → S + N design proceeds in a similar manner, but is much simpler as no

vertical loopback exists. The same injection latency computation is performed, albeit the set ΓC can
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Fig. 13. Comparing Backlog-based (Bklg) bound calculation with Time-stopping (TS) method when computing
FIFO size and worst-case Latency. While Backlog-based bound permits scaling to higher injection rates, the
bounds are significantly worse. In practice, we find that when limited by FIFO capacity, backlog-based bound
generally becomes infeasible and gains from supporting higher rates are lost.

be different compared to theW → S design since a flow that was conflicting on the S mux could

now turn N instead. Similarly, the same conditions in Equations 13, 16, 17, 18, can be applied after

decoupling each router in two parts: a south component containing theW → S buffer and S mux,

and a north component containing theW → N buffer and N mux. Since packets are transmitted in

different directions for the two components, when writing the equation for the north components

we use flows fS→N and fW→N in place of fN→S and fW→S .

Table 7. Conflicting and interfering flows for theW → S +N design. ‘-’ denotes not applicable, as the flow is
not buffered in that direction.

flow ΓC fW→S fN→S fW→N fS→N

f1 none none f ′
5

- -

f2 f1, f3 - - none f ′
5

f4 f ′
1
, f ′

5
- - - -

f5 none - - none none

2,2

2,1

2,0

f 1

f 1′

f 2

f 2′

f 4
f 5

f 5′

(a)

2,2

2,1

2,0

f 2

f 2′f 1

f 1′

f 3

f 3′

(b)
Fig. 14. (a)W → S + N design example: rightmost
column. (b) Breaking Cyclic dependency with lineariza-
tion inW → S + N design example.

Example: Figure 14a shows the resulting de-

composition for the rightmost column of the

flow set depicted in Figure 8. Note that the top-

most router (2, 0) only implements the South

component, as no flow can be injected North

at (2, 0). The sets of conflicting flows ΓC and in-

terfering flows fN→S , fW→S , fS→N , fW→N are

provided in Table 7. Compared to theW → S
design, the number of conflicting and interfer-

ing flows is reduced.

When compared to theW → S design, we

do not need to solve a system of equations to

compute the f ′i .σ values: since theW → S +N
design disconnects vertical rings, we can apply

Equation 18 to flows with destinations on a

column x by ordering the flows based on the

router at which they turn, in the order of packet

propagation: from (x,m − 1) to (x, 1) for flows
turning North, and then from (x, 0) back to (x,m − 1) for flows turning South. As long as no link is

saturated, it is guaranteed that the analysis will compute bounded delay and backlog.
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6.6 Backpressure Analysis forW → S Design
Finally, we discuss how to modify the analysis to handle the backpressure design in Section 5.

Consider again the flows in Figure 11, but assume that the router implements backpressure. As

explained in Section 5, in this case the routers does not queue packets. Hence, the maximum number

of packets of flow f that are forwarded South is bounded by the number of packets of f arriving

from West; and flow f ′ is bounded by the same arrival curve as f , meaning it holds f ′.σ = f .σ
in addition to f ′.ρ = f .ρ. Therefore, backpressure reduces the burstiness of the output flow f ′

compared to theW → S buffer design. In addition, f does not suffer any queuing delay. However, f
can suffer backpressure every time a packet of a flow in fN→S traverses the router. Hence, the flows

in fN→S must be added to the set of conflicting flows ΓC , which increases the injection latency for

f . In this case, we say that f suffers generated backpressure from flows in fN→S .

We also have to consider the effect of propagated backpressure on each horizontal link. Assume

that two flows f1 and f2 share a West port on a router west of f1.xd . Then any packet which causes

backpressure on f1 can also backpressure f2. Hence, all flows that cause generated backpressure

on f1 also cause propagated backpressure f2. If another flow f3 exists such that f2 and f3 share a
West port on router further west, flows that cause either generated or propagated backpressure

on f2 also cause propagated backpressure on f3, and so on. In practice, we can construct a set

of backpressuring flows at each router in a horizontal link by first deriving the set of generated

backpressure flows, and then propagating such flows backward through the horizontal ring as long

as there are flows sharing the same West port. Once the set of backpressuring flows at each router

is computed, it can be added to the ΓC set for each flow traversing the West port at that router.

Example: consider the example depicted in Figure 15 and Table 8, showing an horizontal ring with

3 flows f1...3 where all routers use backpressure. We start by computing the generated backpressure

flows for the West port of each router, which are f4 for (4, 0), f5 for (3, 0), and f6 for (2, 0) (note
that f7 does not cause backpressure, since no flow is turningW → S at (1, 0)). Since there is a
flow that crosses the West port at both (4, 0) and the previous router (3, 0) (flow f1), we add the

backpressuring flows at (4, 0) to the set of propagated backpressure at (3, 0). Similarly, since there is

a flow that crosses the West port at both (3, 0) and (2, 0), (1, 0) (flow f2), we add the backpressuring

flows at (3, 0) to the set of propagated ones at (2, 0) and (1, 0); and the ones at (2, 0) to the ones at

(1, 0). Finally, the backpressure sets are added to the conflicting set ΓC based on the West ports

traversed by each flow; here, f4 and f5 are added to the conflicting set for f1, while flows f4, f5
and f6 are added to the conflicting sets for f2 and f3. Finally, note that while in this example the

propagation stops at (1, 0), in general due to the torus topology, a N → S flow might have to be

added to either the generated or propagated set for all routers on a given horizontal ring.

0,0 1,0 2,0 3,0 4,0

f 7 f 6 f 5 f 4

f 1f 2f 3
Fig. 15. Example backpressure scenario on horizontal ring.

The discussed example shows that dependencies between horizontal flows can significantly

grow the set of conflicting flows for f . Hence, injection latency can be significantly worse for the

backpressure case compared to the previous designs. However, since the backpressure architecture

does not queue packets, it does not suffer from the issue of cyclic dependencies for vertical flows.

Specifically, consider again the three-flows example in Figure 12; as pointed out in Section 6.4,
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Table 8. Generated and propagated backpressure sets for the example in Figure 15.

router generated set propagated set

(4, 0) f4 -

(3, 0) f5 f4
(2, 0) f6 f4, f5
(1, 0) - f4, f5, f6
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Fig. 16. Worst-case Latency trends comparing W→S Stall-free and Backpressure designs on the example
flows in Figure 12. All three flows have a burst of 16. The W→S Stall-free analysis uses the Time-stopping
method.

theW → S design supports a maximum per-link utilization of 45% based on the Time-stopping

method. In contrast, as shown in Figure 16, the backpressure design supports a maximum per-link

utilization of 99% (33% injection rate for each flow). Furthermore, we observe lower worst-case

latency. In summary, this indicates a trade-off between the two designs, where results depend on

the topology of the analyzed flow set; in our evaluation in Section 7.3 we provide an in-depth

analytical comparison based on random flows.

7 EVALUATION
We present the performance measurement results for our FPGA optimized NoC and associated

results from static analysis. We are interested in understanding the worst case NoC routing latency

properties, its breakdown, buffer depth bounds, as well as routing coverage. We also want to confirm

the properties of static analysis bounds and understand their impact of distributed FPGA RAM

mapping costs. We show results for 5×5 NoCs to retain narrative consistency, but can generate

other RTL networks and bounds for other sizes as well. We study four synthetic workloads which

are commonly used in the real-time systems community:

• We use ALL-TO-ONE pattern that gets all NoC clients to target a same NoC address (destination

PE (0,0)): a shared resource like an external DRAM, PCIe, or Network port.

• We use ALL-TO-ROW pattern that gets all NoC clients to target a same row in the torus (destination

row 0).

• We use ALL-TO-COLUMN pattern that gets all NoC clients to target a same column in the torus

(destination column 0).

• We also use synthetic uniform RANDOM traffic pattern that is expressed a set of flows, i.e. flowsets.
We evaluate the NoCs using 100 separately-generated synthetic flowsets. Each flowset is a
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collection ofm2
distinct streaming flows. Each flow captures data communication between a

source-destination pair of clients. All flows have the same rate which is increased until the links

saturate. For simplicity, we also assign the same burstiness b = 1 to all flows, but also consider

larger bursts in later analysis.

7.1 RTL Simulation Results
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RT W → S W → Sbp W → S + N

Fig. 17. Feasible flowsets for RANDOM traffic with b=1
at 5×5 system size with 128-deep FIFOs in the NoC
routers.

We first examine the results (feasibility, latency,

FIFO sizing) of cycle-accurate RTL simulations

of the different NoCs.

7.1.1 Flowset Feasibility. For our designs, we
cap the maximum FIFO occupancy at 128 to

enable low-cost realizations. As a result some

combination of flowset communication pattern

and injection rate ρ will likely be infeasible. If

any FIFO ever goes full, we classify that con-

figuration as not feasible. We want to know

what fraction of our 100 randomly-generated

flowsets were able to route without any of the

NoC FIFOs every going full at a given rate.

In Figure 17, we plot the number of feasible

flowsets for RANDOM traffic pattern on the dif-

ferent NoCs. For HopliteRT, there are no FIFOs, but we know that flowsets are not feasible when

the interfering flows on any link exceed the link bandwidth, i.e. you cannot use more than 100% of

any link capacity. For W → S buffer design with Backpressuring (W → Sbp ), FIFO occupancy can

never exceed the maximum programmed depth (128 in this case) and hence a flow in this design

become infeasible when the link bandwidth exceeds 100%.
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Fig. 18. Feasible flowsets for RANDOM traffic with b=1, FIFO depth=128 with different system sizes and injection
rates.

The deflection pattern for HopliteRT forces traffic to travel through longer paths through the

NoC thereby interfering with a lot of other traffic flows. Hence, the feasibility trends for HopliteRT

fall drastically above 10% injection rates. The HopliteBuf NoCs (W → S, W → S+N) are more
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resilient and support a larger fraction of the flowsets for larger injection rates. At the peak supported

injection rate of 20%, HopliteBuf supports up to 50–60% of the flowsets, while HopliteRT only routes

1–2% of the flowsets. As predicted from the linearization analysis in Section 6.5, theW → S + N
topology allows the system to support more traffic and a slightly greater fraction of the synthetic

combinations are feasible at even 20% injection rates. The backpressure design,W → Sbp , performs

identical to HopliteBufW → S design, however, at 20% we see a slightly better performance with

this design. But the dual buffer designW → S + N still outperforms all the other designs. At

25%, we observe that no other design is feasible except forW → Sbp andW → S + N , where

W → S + N is still outperforming the backpressure design. Higher feasibility translates into more

FPGA developer freedom in being able to support their communication requirements.

In Figure 18, we plot the number of feasible flowsets for the RANDOM traffic pattern on the different

system-sizes. With increasing injection rates, HopliteRT becomes less feasible for all system sizes.

For smaller systems, HopliteRT performs identical to buffered NoC designs, however, for large

systems, HopliteRT suffers drastic reduction in feasibility at higher injection rates.
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Fig. 19. Worst-case latency trends for ALL-TO-ONE, ALL-TO-ROW, and ALL-TO-COLUMN traffic patterns on NoCs
with 5×5 system sizes and b=1. HopliteBuf designs offers no improvements for these traffic patterns.
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Fig. 20. Worst-case latency trends for RANDOM traffic
pattern on NoCs with 5×5 system sizes and b=1. Ho-
pliteBuf performs better than other designs for this
workload.

7.1.2 Worst-case latency trends. We expect the

use of buffering will help reduce worst-case

routing latencies as we eliminate deflections.

However, the improvements will be balanced

by the penalty of waiting in the FIFOs. In Fig-

ure 19 we show this effect for three traffic pat-

terns with burst b=1 and in Figure 20 we show

the same effect for 100 RANDOM flowsets. The

common odd trend here is the decrease in in-

jection latency as a function of injection rate.

This is not an illusion, and is a result of the

fact that the client is regulated and may miss

the token cycle which scales with the injection

rate ρ of the regulator. At large enough injec-

tion rates we eventually start to see an increase

due to network congestion but this is marginal.

For the ALL-TO-ONE traffic pattern, the waiting

time in the FIFOs lines up with the penalty of deflections resulting in no observable difference

between the different designs. For ALL-TO-ROW traffic pattern, there is no visible difference among
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the buffered NoC designs except that HopliteRT saturates at 7.5% injection rate while buffered

NoCs are saturating at a higher injection rate of 10%. For ALL-TO-COLUMN, all the NoC designs are

saturating at around 5% and they all perform almost identically except for HopliteRT which shows

substantially higher worst-case latency than other designs. The saturation rate for these designs

are in agreement with the system size where all the other nodes send packets randomly to each

other except to itself. For RANDOM traffic, we show a distribution of measured cycle counts across

the 100 flowsets. There is a clear benefit to using buffers to avoid deflections as bufferless HopliteRT

shows a wider spread of achieved worst-case latencies. The buffer waiting time is lower than

the penalty of deflections resulting in tighter latency spreads for HopliteBuf NoCs. Furthermore,

W → S designs suffer a buffer wait only at a single turn, it exhibits slightly better or identical

performance to the two-FIFOW → S + N design. The backpressure designW → Sbp , however,
performs similar to HopliteBufW → S variant and in some case even better than the dual-buffer

W → S + N design. Overall HopliteBuf is 1.2–2× better than HopliteRT in terms of worse-case

routing latencies. We also see that HopliteRT is poorly unable to support the highest injection rate of

20% that is well-supported by the HopliteBuf NoCs. Thus, the presence of buffers not only improves

(reduces) worst-case latencies, but also supports higher data rates. This is expected as HopliteRT,

andW → Sbp steals unnecessary bandwidth in the X-ring due to deflection or backpressuring.
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Fig. 21. Breakdown of Source-Queueing and In-Flight NoC latencies for RANDOM workload with b=1, FIFO
depth=128 at 5×5 system size. Both metrics improved due to buffering.

7.1.3 Worst-Case Latency Breakdown. In Figure 21 we show a breakdown of worst-case latency

into its source-queueing latency (waiting time at PEs) and in-flight latency (actual routing time

in the NoC). The improvements due to elimination of deflections does show up in better in-flight

routing latencies for HopliteBuf designs, but larger wins are visible during source queueing. This

is because the NoC is blocking the PE injection ports less often by keeping packets in the buffers

instead of wasting injection slots due to deflection.

For HopliteRT routing scheme, the N → E deflection potentially sends packets along the scenic
route around each X-ring (at most once) generating traffic conflicts where none would exist for

conventional DOR routing.W → Sbp design has comparable in-flight latencies but we expect

the source-queuing latency for this design to go high in case of small buffer sizes as PE will be

backpressured and packets will wait longer in the client if the buffer is full. HopliteBuf chooses FIFO

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:26 Garg, et al.

25 30 35 40 25 30 35 40 25 30 35 40 25 30 35 40

0

20

40

60

Worst−Case Packet Latency

C
ou

nt

RT W → Sbp W → S W → S + N

Fig. 22. Distribution of worst-case packet latencies for RANDOM workload with b=1, ρ=7.5% at 5×5 system size.
HopliteRT has a wider spread due to the unpredictable nature of the deflections. HopliteBuf has narrower
spreads.

waiting on conflicts thereby reducing contention in other X-rings and a drop in source queueing

delays. As we see, the NoC traversal time is mostly unaffected even in presence of FIFOs.

7.1.4 Latency Distribution. In Figure 22, we show the histogram of worst-case packet latencies for

the different NoCs for RANDOM traffic with burst b=1, and injection rate ρ=7.5% at 5×5 system size.

We note that the HopliteRT NoC has a much wider spread than the FIFO designs. This is because

deflections create unpredictable trips through the NoC X-rings. In contrast, a victimized packet

just sits in a buffer and the waiting time in the buffer is much lower than round-trips around the

ring. We see thatW → Sbp design performs better than HopliteW → S design as more cases are

feasible with backpressuring that it was with just buffers. As expected, all the other buffered design

has a marginally wider distribution than theW → S +N design as the packets have an extra choice

during the turn.
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Fig. 23. Maximum FIFO usage trends from RTL simu-
lations of NoCs with 5×5 system sizes for ALL-TO-ONE
pattern

7.1.5 FIFO Sizing. Ultimately, the NoC with

improved worst-case latencies is useful to us

only if the buffer sizes are reasonable to realize

on modern FPGAs. For a single LUT we can

get 16–32 storage bits for our FIFOs making

it possible to build LUTs using these low-cost

components. We cap our experiments at 128-

deep FIFO sizes to keep NoC LUT cost at 4 LUT-

s/bit. For ALL-TO-ONE traffic pattern shown in

Figure 23, we will observe high FIFO usage in

the column containing the destination client.

As burst length increases, the FIFO usage also

scales linearly with very low utilization with a

burst length of 1–2. RANDOM traffic shown in Fig-

ure 24 exhibits slightly lower FIFO usage and

demonstrates a spread of occupancy depending

on connectivity pattern. While no experiment
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occupies more than 50 entries in the FIFO, on average, we only need ≈20–25 entries. We note an

odd reduction in FIFO occupancy above 10% injection rate. This is because an increasing subset of

flowsets are not feasible with 128-deep FIFO limit i.e. FIFOs start going full.
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Fig. 24. Maximum FIFO usage trends from RTL simulations of NoCs with 5×5 system sizes for RANDOM pattern

7.2 FPGA Place-and-Route Results
Now we compare the FPGA implementation costs of HopliteBuf to other FPGA-overlay NoCs

presented in this thesis. We quantify the LUT utilization of the various Hoplite routers in Figure 25.

We present resource costs on Xilinx and Intel FPGAs.

For HopliteBufW → S + N design, we are essentially dividing the traffic into two buffers going

up and down and hence, the total distributed RAM capacity stays same as it just split into two

SRL32 or MLAB instantiations instead of a longer single distributed RAM block. Here, with limited

opportunity for input sharing, the resulting design is larger in LUT cost, but as we have seen

already, this allows efficient use of the NoC links.

As shown in the figure, the design size scales linearly with the product of Datawidth of the NoC

× Depth of the FIFO on both vendor parts. With 64-deep FIFOs mapped to distributed RAMs, the

storage fraction increases design size by ≈ 2 ×.
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Fig. 25. LUT utilization for logic and memory across various Hoplite routers on Xilinx and Intel FPGAs with
Payload=64b and FIFO=64 deep.
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The logic cost varies with different router types. For the dual-FIFO HopliteBufW → S + N
design, the extra multiplexing needed for upward route increases the cost of the switching logic. We

observe the worst logic usage forW → Sbp backpressure design, where the classic flow-control logic
implementation uses almost 2 × more resources than other single-buffer designs. Both HopliteBuf

achieves better performance thanW → Sbp while maintaining low implementation costs.
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Fig. 26. Maximum Area usage at different injection rates for
RANDOM pattern with 5 × 5 system size. Each node in the system
uses carefully picked FIFO sizes through static analysis in case of
W → S andW → S + N HopliteBuf designs.

In Figure 26, we show the area us-

age to implement a complete 5 × 5

system with different NoC designs.

The experiment is done for 100 syn-

thetic RANDOM flows where the pro-

totype designs, W → Sbp , uses a

fixed FIFO size of 128 whereas Ho-

pliteBuf (W → S ,W → S +N ) imple-

ments carefully analyzed FIFO sizes

by our analysis tool. As shown in fig-

ure, HopliteBuf designs are ≈ 2 − 3×

worse than Hoplite(RT) for all injec-

tion rates whereasW → Sbp design

is ≈ 7 times worse than Hoplite(RT).

This clearly shows the benefit of care-

fully analyzing the FIFO sizes for

a particular application. Hence, we

say that not only are the Hoplite-

Buf designs outperforms other NoCs

in terms of latency and throughput

the overall hardware requirement is

much better than the backpressure and deflection (fixed FIFO size) designs as well.

7.3 Analysis Results
We now examine the quality of our static analysis predictions and compare them to simulated data.

The Static analysis was only done for HopliteRT and the two variants of HopliteBuf:W → S and

W → S +N . And hence, we only compare the simulation and analysis results for these three router

designs. We also consider analysis and simulation results forW → Sbkp design with backpressure

to illustrate the cost overhead and performance limitations of the conventional buffered design.

7.3.1 Feasible Flowsets. Our analysis tools take the communication pattern of a flowset, its injection

rate ρ and burst b to determine if it can route successfully without making a FIFO ever go full.

Analysis is more conservative, and you will note that Figure 27 is different from the simulation

data in Figure 17. Our simulation results are for 1024 packets per client, and there may be longer

simulation conditions that ultimately go infeasible. Hence, we trust our analysis data as it is backed

by the formal proofs explained in Section 6. Here, we see HopliteRT dropping dramatically above

8% while HopliteBuf clones closely track simulation results. At 11% rates, we see analysis predict

feasibility of only 2–3% of HopliteRT and ≈90% for HopliteBuf. Back in Figure 17, simulation results

showed 50% of HopliteRT were feasible and ≈90% for HopliteBuf. This suggests tighter analysis

bounds for HopliteBuf resulting in better provable utilization of resources. When considering

analysis results for feasibility, theW → Sbkp results are worse thanW → S by 20–25%. Notably,

the simulation results show both designs perform equally well. This reflects pessimism in the

analysis which is a direct result of the complexities of interacting flows in presence of backpressure.
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Fig. 27. Feasible flowsets predicted by static analysis. Analysis is more conservative than simulation for
HopliteRT, but much tighter for HopliteBuf.
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Fig. 28. Worst-Case Latency Prediction-vs-Simulation, RANDOM traffic, b=1, 5×5 system size, 128-deep FIFOs.

7.3.2 Worst-Case Latency: Analysis vs. Simulation. In Figure 28, we show the predicted worst-case

latency count as a result of our static analysis vs. actual observed latencies through simulation. As

expected, the predicted bounds are worse with analysis due to pessimistic assumptions regarding

interference of traffic flows. HopliteRT predictions are as much as 1.5× worse than theW → S + N
predictions due to pessimism inherent in the HopliteRT routing algorithm. It is interesting to see

that a few flowsets mapped to HopliteRT at 16–20% injection rates actually simulate fine, but are

discarded by analysis as infeasible, yet again due to analytic pessimism. Furthermore, we see that

theW → S + N predictions are significantly tighter than theW → S predictions. This is primarily

due to the challenges associated with analyzing loopy flows in the vertical ring. When comparing

the widerW → S spread to HopliteRT, it is important to note that a significant chunk of flowsets

were infeasible when mapped to HopliteRT (See Figure 27). Thus, the larger latencies are due to

W → S being able to feasibly route flowsets and doing so with high latencies than not being able to

do so at all. TheW → S +N analysis is significantly better thanW → S and has a larger feasibility

to compound the matter. ForW → Sbkp, the analysis latencies are larger thanW → S at low

injection rates ≤ 10%, but improved at higher injection rates >10%. At high injection rates, the

W → S analysis tends to blow up close to link saturation limits. This is clear from Equation 16

where the leftover bandwidth along the link appears in the denominator. In contrast,W → Sbkp
designs deliver better outcomes. When considering simulation results, again, both designs are

pretty much equivalent.
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Fig. 29. Worst-Case FIFO size Prediction-vs-Simulation
for RANDOM traffic at 5×5 system size with 128-deep
FIFOs and burstiness of 8.

7.3.3 FIFO Sizing: Analysis vs. Simulation. In
Figure 29, we compare the result of static anal-

ysis with simulated data for FIFO usage for a

5×5 NoC with RANDOM traffic and a worst-case

burstiness of 8. For theW → S topology, we cap
the maximum FIFO size to 128 to stay within

reasonable 4 LUTs/bit FIFO cost. In this case,

the FIFOs go full for a few flowsets only above a

healthy 15% injection rate. For theW → S + N
topology, the FIFO sizes are capped at 64 (for

a sum of 128) and only go full at a higher 20%

injection rate. For both cases, we observe that

simulated data shows lower occupancies than

the prediction by as much as 2.5× (on average

1.5×). This is expected due the pessimism in

the analysis but the LUT cost impact is limited

due to SRL32 packing quantization. For FPGA

implementation, we can choose to size all FIFOs

in the NoC to the largest size, or customize each FIFO independently as per the static analysis. We

observe that the largest size of 128 is rarely observed, and roughly 50% of our occupancies are

below the 32 threshold. Thus, we can customize the right SRL depth to further save resources by as

much as 2×.
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Fig. 30. Comparing Time-Stopping and Backlog-based analysis methods.

7.3.4 Impact of Analysis Method (W→ S). Finally, in Figure 30, we compare the feasibility and

worst-case latency trends for using Time-Stopping technique vs. the Backlog-based bound for

a 5×5W → S NoC under Random traffic. As we saw previously in Theorem 3 from Section 6,

there is a potential for supporting higher injection rates when using backlog-based bounds at the

expense of significantly worse latency values. However, the benefits of Backlog-based analysis

seem to only be true for a one-off test example from Figure 13 in Section 6. In the case of randomly-

generated traces, we conclude there is no advantage to using a backlog-based analysis technique

for improving feasibility at higher rates. When considering feasibility, the backlog-based method

offers significantly lower feasibility and stops scaling beyond 11% injection rate. This is primarily

due to worst-case FIFO usage bounds exceeding the limit of 128. Furthermore, when considering

worst-case latency, the spread of possible latency values exceeds the Time-Stopping bounds by as

much as 5×.
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8 CONCLUSIONS
We present HopliteBuf, an FPGA-based NoC with lightweight buffering and associated static

analysis tools to better support NoC communication requirements of real-time FPGA applications.

HopliteBuf introduces LUT-based stall-free FIFOs to the NoC router to absorb deflections and

provide in-order routing of packets. We develop static analysis tools that can compute worst-case

buffer occupancy bounds, along with latency bounds for communication patterns with rate, and

burst information known up-front. In our experiments with 100 randomly-generated flowsets, we

show that HopliteBuf is able to deliver 40–50% feasibility at 20% injection rates while the competing

state-of-the-art HopliteRT NoC only supports 25% feasibility at 10% injection rates at 2× worse

latency bounds. We also demonstrate 25–30% better feasibility outcomes compared to conventional

backpressure-based Hoplite variant at 30–40% lower LUT cost.

A APPENDIX

Table 9. DOR Routing Policy forW → S router. PEi always has the least priority. S exit is shared with port
PEo exit.W ′ → S uses WFIFO read port. Extra combination ofW → E andW ′ → S also supported.

Packet paths Muxsel FIFO

W → E W ′ → S N → S PE → E PE → S Smx Emx read

x 00 -

x 01 - 1

x – 0

x – 1

x 10 -

x x 00 0

x x 00 1

x x 10 0

x x 00 - 0

x x 01 1 1

x x 01 0 1
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x 1/0 1/0 00 - - 0

x 1/0 1/0 01 - 1 0

x 1 1/0 – - - 1

x 0 1/0 – 0 - 0
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x 1/0 1/0 10 - - 0
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x x 1 1/0 00 - - 0

x x 0 1/0 00 1 - 0

x x 1 1/0 10 - - 1

x x 0 1/0 10 0 - 0

x x 1/0 1 00 - 0 1

x x 1/0 0 00 - 0 0

x x 1/0 1/0 01 1 1 0

x x 1 1/0 01 - 1 1

x x 0 1/0 01 0 1 0
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