Driving Timing Convergence of FPGA Designs
through Machine Learning and Cloud Computing

Nachiket Kapre, Bibin Chandrashekaran
School of Computer Engineering
Nanyang Technological University
Singapore, 639798
nachiket@ieee.org

Abstract—

Machine learning and cloud computing techniques can help
accelerate timing closure for FPGA designs without any mod-
ification to original RTL code. RTL is generally frozen closer
to system delivery target to avoid injecting new unforeseen
bugs or significantly affecting design characteristics. In these
circumstances, developers trying to close timing are either at
the mercy of random trials through placement seed exploration
or through vendor-provided design space exploration tools that
run a few compilation trials with changes to the CAD tool
options (or parameters). Instead, we propose evaluating multiple
CAD runs in parallel on the cloud, supported by a Bayesian
learning and classification framework for generating multiple
CAD parameter combinations most likely to help attain timing
closure. We maintain a database of FPGA CAD tool parameters
(input) along with associated variations in timing slack (output)
to enable the learning process. A key engineering resource we use
here is cheap and abundant parallelism made possible through
cloud computing frameworks such as the Google Compute
Engine. Across a range of open-source benchmarks, we show
that learning helps improve total negative slack (TNS) scores
by 10.5x (geomean) when compared to a single baseline run of
Quartus 14.1 and by 7x (geomean) when compared to Altera
Quartus 14.1 Design Space Explorer (DSE).

I. INTRODUCTION

In [1], Richard Feynman narrates his interest in picking
locks during his time at Los Alamos. For his initial exploits,
Feynman relies on being able to try multiple combinations
as quickly as he can (and on sheer luck). However, as the
locks get more complex, he devises increasingly clever tricks
to prune the search space based on mental models of how
the locks operated. Modern FPGA backend CAD tools are
similar to Feynman’s locks. While they serve an important
purpose: compiling circuits to FPGA bitstreams, they are hard
to get right (or crack). So far, designers have relied on ad-hoc
tuning techniques and intuition to ensure that their designs
meet user specifications. Borrowing from Feynman, we hope
to uncover the fundamental principles behind the selection
of CAD parameters and use that knowledge in an automated
manner to guide timing convergence of user designs.

Modern FPGA design flows typically start with a design
space exploration phase of the system-level aspects that inform
low-level RTL design. During the RTL design phase, a large
amount of engineering effort and costs are allocated to design
verification. While pursing functional correctness, designers

Harnhua Ng, Kirvy Teo
Plunify Inc.
67 Ayer Rajah Crescent
Singapore, 139950
harnhua@plunify.com

Parameter
Reduction
__.--- (Offline)

RTL
Input

I

Generate
Strategy

Exploration Limits
+ Constraints

- [2
Parallel Parallel
Run Run

Parallel Learning
Run DB

\ Google Compute Engine
\s/

Update
Database

Timing
Target Met?

Fig. 1: High-Level Organization of InTime (showing use of
cloud computing resource for parallel runs, and machine
learning database for guiding convergence)

will occasionally run FPGA CAD tools to get a gut-feel
for the resource utilization and timing scores of the final
compiled design. However, majority of backend tool runs
happen towards the latter stages of the design process. This
is an unfortunate consequence of the long runtimes associated
with modern CAD tools and the complexity of configuring
the CAD tool parameters (e.g. command-line switches, project
settings) for optimum results. This also means that if the
design fails to meet timing by a small margin closer to the
delivery window, any RTL change would impose significant
engineering cost on the team. While some RTL modifications
may be inevitable, it is often possible to tweak the CAD
tool parameters to ensure designs meet their timing targets.
Existing strategies for managing this selection rely on designer
intuition accumulated from years of experience with the tools.
A popular approach is to run multiple instances of the CAD
tools with different placement seeds (cost tables). Both these
approaches require relying on in-house expertise which is ex-
pensive to build or on pure luck to help achieve timing closure.
Modern CAD tools such as Quartus often export hundreds
of user-selectable parameters that are impossible to manage
together using human intuition alone. More worryingly, the
number of parameters has only increased with each generation
of the CAD tool.

In this paper, we hope to replicate the benefits of designer

intuition through automated machine learning techniques, and
parallelism through cloud computing resources using the
InTime [2] tool. We show a high-level diagram of InTime
in Figure 1. Unlike placement seed exploration, we expose
a larger set of CAD tool parameters (60-70) to automated
selection while relying on Bayesian techniques to approximate
human intuition in sorting out influential CAD tool parameters
and setting them correctly. Furthermore, we provide initial
hints in the form of a starting set of parameters to drive the
search in favorable directions based on device/tool charac-
teristics and some high-level knowledge of the designs. We
exploit parallelism to help collect enough samples to drive
our learning algorithms. We then formulate a new set of
parameters to attempt in the subsequent trials. By choosing
the extent of parallelism, and number of learning steps, we
can achieve timing closure faster than other techniques and
naive parallel exploration.
The key contributions of our paper include:

o Design of a Bayesian learning and classification and frame-
work supported by Principal Component Analysis pruning
of parameter sets for delivering timing closure for stubborn
RTL designs.

e The development of cloud computing backend to par-
allelize the FPGA CAD runs to improve the quality of
learning through sufficient sample generation.

e Quantification of the benefits of learning, impact of par-
allelism, evaluation of computing costs across a range
of open-source benchmarks gathered from opencores [3]
repositories.

II. BACKGROUND
A. Multi-stage FPGA CAD Flow

The FPGA compilation flow starts with Verilog/VHDL as
input and ends with an executable FPGA bitstream as its
output. The internal stages are often organized as a series of
sub-problems such as (1) synthesis, (2) mapping and packing,
(3) placement, and (4) routing. Each of these sub-problems
solve an NP-complete problem using heuristics and they often
require multiples hours to days of runtime for the largest
FPGAs available today. The Altera Quartus CAD tool supports
up to 80 different CAD tool parameters that can be optimized
or tweaked creating a design space that is impractical to
explore exhaustively. In this case, without modifying RTL,
we can adjust a select few synthesis parameters, packing
constraints as well as placement-and-routing options i.e. at
each step of the flow. However, the key challenge is to decide
which parameters matter and how to change them. The correct
operation and tuning of these heuristics must then rely on
designer intuition and knowledge to help the design meet the
system-level throughput goals such as timing targets. When the
design does not meet timing, the designer attempts a trial-and-
error approach by setting up multiple trials by modifying a few
parameters to help guide convergence. As mentioned earlier,
a common trick most developers will try is placement seed
exploration which exploit randomness to drive the placement
process. In Figure 2, we show the impact of such placement

seed exploration on overall slack for the vga benchmark. Here
slack represents the extent by which the design did not meet
timing. Larger negative values of slack mean that the design is
far away from meeting timing, while smaller values are closer
and better. As we increase the number of seed exploration
runs, the best timing slack observed continues to improve up
to an extent. This clearly shows (1) the scope of improvements
that are possible through a parameter exploration, (2) the need
for multiple trials to exploit noise properties of FPGA CAD
tools, and (3) the limitation of luck in directing convergence.

18
16 b 100 runs
2 66 runs
ch 14 | 33 rung sreeeeee
3 12 10 rung s
(5]
S 10|
o
> 8 I
o
& 6
>
g 4r
[T 2+
0 1 1
-500 -450 -400 -350 -300 -250 -200

Total Negative Slack (TNS)

Fig. 2: Impact of Placement Seeds on Timing slack for the
vga benchmark running on Quartus 14.1 Web Edition for
Cyclone IV FPGA (More trials yield better results)

B. Related Work

The underlying concepts of smart design space explo-
ration and machine learning techniques have been explored
in allied domains of high-performance computing, computer
microarchitecture optimization and CPU compiler flows. The
complexity of modern CPU architectures and the compilation
frameworks necessitates a rigorous exploration of the different
interacting components in optimizing the final implementation.

In supercomputing systems, extracting every bit of perfor-
mance benefits out of a single compute node have significant
consequences at the macroscale. ATLAS [4] package allows
HPC developers to automate the laborious process of code-
generation and optimization of the numerical routines for each
specific computer architecture and input problem size through
selection of parameters such as cache blocking factor, loop
unroll count, and others. In this case, the approach is applied
to commonly-used libraries such as BLAS, and LAPACK
and a brute-force exploration of the possible combinations is
adequate. The optimization is applied to the shared libraries
once during installation and then automatically picked up by
any applications using these libraries. In our approach, each
FPGA design is unique and a brute-force exploration is not
feasible due the sheer size of the parameter space.

Modern CPU microarchitecture design is an increasingly
challenging and complex process with several configurable
choices at the designers disposal such as core counts/types,
cache sizes, issue widths, ALU/FPU counts, and various
pipelining options. In [5], the authors show a way to build re-
gression models for designing CPU micro-architecture through

a strategic search of the design space (potentially reducing the
search space of ~22 billion points to less than 4000 samples)
while achieving median error rates of ~4%. In the scope of
the parameter space size, this problem shares the challenge
with the FPGA design process. However, each FPGA CAD
invocation runs for hours instead of the few minutes of
simulation time required for the CPU microarchitecture studies
making it particularly important to drive convergence faster.

In [6], a smart iterative search strategy is used during
C/C++ compilation phase to optimize the generated binary
without modifying original source code. The tool explores
the design space through embedded heuristic knowledge that
allows pruning of the search space to manageable sizes. While
modern C/C++ compilers are complex tools, the compile times
are still much lower than the FPGA design flow. Coupled
with the larger pool of C/C++ programs, this represents a
larger training set and much faster training process compared
to FPGA design.

There has been work on quantifying the impact of CAD
tool noise for open-source academic CAD tools in [7]. Here,
the authors identify the impact of changes to solution quality
when using VPR 5.0.2 under different timing targets and input
net ordering. They report a critical path delay gap in the range
of 17-110% when compared to nominal behavior. Academic
FPGA tools are much simpler than commercial tools, but it is
useful to see the scope of improvements possible in even such
simple tool flows.

In [8], the authors develop a strategy inspired by Design
of Experiments (DoE) to customize the parameters of the soft
processor design space. They do this by carefully selecting
a subset of the parameters and their associated ranges for
experimentation. In contrast with our approach of targeting
the backend flow while keeping RTL fixed, the DoE-inspired
approach modifies the RTL generators to improve results.
Additionally, we use machine learning techniques to drive
selection of parameters rather than rely on DoE techniques.

In [9], the authors consider the impact of ordering of LLVM
passes on the quality of hardware solution for high-level
synthesis. They observe a variation in excess of 10% by com-
posing various compiler passes in different ways. This study
is similar to the approach taken in [6], in that it focuses on
compiler-level optimizations instead of modifying original C
code. However, even here the changes in HLS compiler options
translate into RTL-level changes which require re-verification
before shipping the design. Additionally, the predictive models
used in the HLS tools are still not sufficiently accurate to
predict the post place-and-route timing results due to the
complex interactions with the backend flows. Our approach
freezes the RTL and relies only on the final placed-and-routed
timing scores to drive learning.

III. MACHINE LEARNING FOR FPGA CAD

A. InTime Organization

At a high level, InTime is a software plugin for FPGA
CAD tools. Given a timing target specification, RTL code
and user constraints, InTime will formulate a strategy to help

guide the CAD flow towards timing convergence through
multiple rounds of intelligent trials. It derives its intelligence
by learning from previous trials to formulate the next plan
of action. We have previously shown a representation of the
InTime flow in Figure 1. We now show an abstract execution
profile in Figure 3.

FPGA CAD FPGA CAD
Run Run
L %
Ry M Learn Bun ST earn

FPGA CAD FPGA CAD
Run Run
Round

Round

FPGA CAD
Run
run -
FPGA CAD
Run

Seed Explore

Fig. 3: Execution Steps of InTime (showing 3-round
scenario, but multiple rounds possible)

Two key aspects of InTime stand out: (1) the application
of machine learning with a metrics database, and (2) the use
of cloud computing resources. InTime organizes the execution
in a series of sequential rounds; each round contains a series
of parallel runs. Within each run, InTime will generate an
assignment of values to CAD tool parameters. While the pa-
rameters are internally represented as boolean values, we also
support continuous variables as well (see next section). Runs
within a round do not interfere with or depend on each other
in any way and can be fully parallelized subject to available
compute resources. Each round is a synchronization point to
facilitate the learning algorithm to adjust its predictions based
on the results of the runs in the previous rounds. While there
are many ways to accumulate and share learned knowledge,
we presently start with a clean database for each design.
However, when formulating CAD parameters for a run for
the first time, we use statically formulated strategies that are
known to work best for that particular device or tool version
of design property according to CAD tool documentation
and engineering experience. In this particular respect InTime
operates in a manner similar to Altera DSE. As InTime learns
the peculiarities of the design, the assignments to the CAD
tools parameters start to converge to their ideal final values.
The learning algorithm observes what the timing results are
good and what are bad, and keeps track of the CAD parameters
for each result. If necessary, at the end, closer to convergence,
InTime performs a cleanup phase that runs a short placement
seed exploration round to mop up any available slack. The use
and availability of cheap cloud computing resources are also
crucial to help make InTime feasible. While InTime can work
with any compute cluster, the elastic ability to scale compute
resources as desired in cloud-based shared environments is a
cost effective approach.

B. Bayesian Classification and Learning

Machine learning routines are at the heart of the InTime
flow. Without data analysis and learning, we would simply
be relying on untracked, undigested statistical behavior and

noise in CAD tools to throw up a better result. As discussed
earlier, each stage of the FPGA CAD tool can influence the
final solution. Our learning approach first identifies and exports
the list of tunable CAD tool options that are considered safe
from the perspective of generating netlists (e.g. disabling or
modifying timing target or overriding user constraints is not
permitted). While the list of possible parameters available is
large ~80, we restrict our attention to 60 or so parameters
depending on the target device/tool version.

We formulate the learning problem by first associating a
boolean variable x; for each CAD tool parameter i (1 < i < N
where NN is the total number of CAD parameters). To keep
the parameter analysis simple, we assume that each CAD
tool parameter is generally independent of the others (see
Section III-C on how we orthogonalize the parameters). Every
parameter has a default value that is used when it is not
explicitly set by the user (or by InTime). Most parameters
turn out to have only two possible values (boolean yes/no
options). For parameters with a greater number of discrete
choices, we convert those into boolean variables encoding each
independent choice. Similarly, for continuous variables, we
classify the range into sub-ranges (bins) and assign variables
for a sub-range (bin). Since the relationship between the
input X and output y is uncertain due to the noise effects
in FPGA CAD tools, we model this uncertainty through
probabilities. Hence, we associate a probability p; with each
variable x;. This probability indicates the likelihood of that
variable (CAD tool parameter) affecting timing convergence.
When p; is close to 1, we enable the corresponding CAD tool
parameter. The result of the CAD tool execution is captured
in a solution variable y; for each invocation of the CAD flow
7 (1 <5< M, where M is the total number of CAD runs).
Since InTime is aimed at delivering timing convergence, y
is the total negative slack in the design (but, this could be
area, power or some other figure-of-merit). Thus, we have X
representing the inputs to the CAD tool and y[j] capturing
the results for run j. The history of all observed y values are
captured in Y. Not every combination of CAD parameters can
result in a successful compilation. Sometimes the CAD tools
themselves may crash due to software bugs or server issues,
such as having insufficient computational memory. Overly
aggressive CAD parameters can also cause a design to not
fit into the target FPGA, resulting in a compilation failure.
InTime tracks all failures as well so that it does not repeat
them in future runs, for he who does not learn from history is
doomed to repeat it.

Every FPGA design has an initial value of y produced from
a single invocation of the CAD tool. If y is negative, then the
design has not met its timing target. If y is zero, then it has met
its timing target. Our overall goal is to obtain one or more X
for which y is better than the initial value (ideally 0). Learning
proceeds in a series of stages which can be represented as a
function f that generates new proposals for X based on the
previous history of X;-y[j]. To ensure learning has enough
samples for making intelligent proposals, we need results from
multiple CAD runs before invoking the learning step.

9 ©) ©)

Generate Parallel

Update
Strategy Runs database dated
updated once
— per "round"
%) Q
X X2 .| FPGACAD y.
1 > Run r 1 Probability p,
XN Array p,
Output: P
Input: X TNS :
CAD [FPGACAD | - :
Param.| Xo X:2 | FPGACAD VoI —> Le?:;gmg
XN

A : . Run

X, 2 FPGA CAD
M >

. Run

N

—

Bayesian Classification
and Learning

[=

Fig. 4: High-Level Flow Diagram of the InTime Learning
Process (X; is a vector of input CAD parameters for run ¢,
Y is the vector of all TNS scores across M runs. P is a
probability vector associated with each CAD parameter.

Our overall approach, shown in Figure 4, consists of three
steps that are run in a loop as requested by the user:

1. Generate Strategy: In this stage, we generate candidate
proposals for estimating values of X that are likely to
contribute to better values of y. We run Bayesian learning
to update our parameter probabilities to generate these
candidates for X. This is the learning stage of our flow.

2. Parallel Runs: Once we have a set of proposals for X,
we launch a CAD run for each proposal. Each run within
this proposal set (called a round earlier) is independent of
another. This is where we exploit cloud computing.

3. Update Database: Once we collect the results y for a
given set of X proposals, we store the results in our database
for a subsequent use.

We now explain our Bayes classifier in more detail. As-
suming all FPGA tool options are conditionally independent
of one another, given Y, we can describe the Naive Bayes
Classifier to obtain the probability distribution over possible
values of Y in Equation 1.

Py = yi) [I;(P(Xily = yx))
> (Ply=y;) IL(Xily = y;)
(1)

Given a new vector X of CAD parameters used in actual
compilation runs, Equation 1 shows how to calculate the prob-
ability that the corresponding solution TNS, y, will take on a
particular value. Here P(Y) is the array of probabilities that
captures the likelihood that the particular input parameter set
X; - X yields a lower timing slack score. The term P(X|Y')
is the conditional probability of each CAD tool parameter
influencing the resulting slack. To teach the classifier what

is preferred, we tag each value of y as “Good” if greater
than the initial value of y (less negative slack) and “Bad”
if equal or less than the initial value of y (more negative
slack). Each value of X and Y in the training set is then
fed to the Naive Bayes classifier. After training, the classifier
produces the probability that Y will be “Good” or “Bad”
given a new X. In other words, each combination of FPGA
tool options will be tested against this model to predict if it
will produce a better or worse timing result. For each design,
the predicted “Good” X will be used to compute the timing
results. For learning to be effective, we need to collect a
sufficient number of samples of X and the corresponding
Y to ensure that the classifier has a reasonable population
sample. It is worth noting that the classifier stages run in
a few seconds on input vector sets of 60-70 (#parameters)
x100-200 (#runs). If the predictions prove effective, the time
saved on not having to perform unproductive exploratory
compilations will more than compensate for the time spent
on gathering samples and training the classifier. At the end
of each round of compilations, if the predictions of X were
accurate, in other words, predicted "Good” X resulted in better
timing performance and X flagged as "Bad” really led to
poorer TNS, InTime will subsequently update the probability
p; associated with each variable z; so that future generated
strategies become more and more informed.

C. Parameter Reduction

The online component of InTime manages the execution of
the parallel CAD run, prediction via classification and directs
the learning rounds. There is also an offline component in
this flow that is run to help improve the effectiveness of
classification and identify independent variables. This step
need not be explicitly carried out by the end user, but is part
of the data analysis methods present in the InTime software.
It is typically run for each new device family, speed grade
and CAD tool version. We already know that the space of
possible CAD tool parameters that we can tweak is large.
Of the ~80 available CAD tool parameters, not all affect
timing performance in significant ways. Some may influence
area rather than timing. Others may be design-dependent;
for example, some parameters may not be of much use
in DSP-heavy applications and will potentially confuse the
classification phase. Even different FPGA device families and
Quartus versions exhibit varying cause-and-effect relationships
between CAD tool parameters and compilation results. One
potential drawback of having too many parameters or di-
mensions of analysis is known as over-fitting, whereby the
classifier’s effectiveness decreases beyond a certain number
of parameters. Intuitively, the classifier generalizes better if
it does not learn about exceptions or random effects caused
by some CAD parameters which are not really meaningful
influences at all.

Parameter reduction, as the name suggests, is a technique to
help prune the parameter exploration space to a manageable
size by eliminating those parameters that matter less for
the device/tool combination. We use the popular Principle

Component Analysis (PCA) to determine the most significant
CAD parameters that affect the FPGA design under optimiza-
tion. PCA aims to discover the variables which account for
the most variability in a dataset. Unfortunately, a simplistic
application of PCA can be susceptible to outliers (e.g. a
few FPGA CAD runs gone bad) so outliers are removed
using the boxplot method. Assume that Q1 and Q3 refer
to the first and third quantiles of Y and IQR (the Inter-
Quantile Range) is the difference between @3 and Q1. We
filter out all results where TNS > @3 + IQR x 1.5 and
TNS < Q1—IQR x 1.5 as suspect outliers. It might appear
counter-intuitive to discard overly good TNS values as well
as exceedingly bad ones but because PCA uses variances to
determine parameter significance, “too good” values as well
as ’too bad” ones might skew the analysis outcome towards
certain parameters. We want to avoid getting caught in local
minima traps.

PCA in general also requires a large amount of training
data to be effective. The first significant variable, or Principle
Component (PC), is the one that causes the most variance in Y.
The subsequent PC is orthogonal to the previous one and must
cause the maximum variability among the remaining variables.
In computational terms, we find the PCs by calculating the
eigenvectors and eigenvalues of the covariance matrix, a
representation of how each data point is related to another.

By sorting the eigenvectors in order of decreasing eigen-
values, InTime picks the m largest eigenvalues to represent
the Components in order of significance. Those Components
in turn correspond to m CAD tool parameters that produce
the most variation in timing results for that design. Here, m
is determined by a process of experimentation where the m
CAD parameters corresponding to the largest m eigenvalues
were used to compile the FPGA design. The m for which
the TNS most closely matches that obtained by the full set of
CAD parameters is deemed the optimal m. We generally find
that selecting m from 5 to 20 delivered the best results across
our benchmark set.

IV. METHODOLOGY
A. Compute Setup

We conduct our experiments on the Google Compute Engine
across a series of 6 compute nodes configured for the task.
We set up an instance group of 5 high-memory machines
(machine-type nl-highmem—-4) with the configuration of
4 vCPUs (virtual cores) and 26 GB of RAM per machine.
In addition, we configured a sixth master node (machine-
type nl-standard-2) with 2 vCPUs and 7.5 GB of RAM
for hosting our CAD tools installation disk (500 GB standard
persistent disk exported over NFS to other machines). All the
instances run Ubuntu 14.10 64-bit Linux hosted on a 10 GB
persistent disk that holds the operating system. We run InTime
in server-client mode where the server runs on the master node
while clients run on each of the instance group machines.

Multiple rounds of compilation runs, or ’jobs”, are submit-
ted to the server which then farms them out to the clients
for execution. When compilation is done, the server collects

Benchmark Lines of Code LUTs FFs Estim. Freq.
(MHz)

aes 676 4439 3968 153.84

ecg 1422 14663 7443 153.84

switch 52454 9712 7020 111.11

vga 2647 1525 822 181.82

viterbi 1266 3626 1250 153.84

Xge-mac 3173 2969 1776 153.84

TABLE I: RTL and Post-Synthesis Characteristics of
Benchmarks showing varying complexities, characteristics
and logic requirements

the results into a single database which drives the learning
process. We use Altera Quartus 14.0 and 14.1 Web Edition for
our experiments and select the Cyclone IV EP4CE115F29C7
as the target FPGA. While the target FPGA is a small device,
our benchmark designs occupy significant portions of the chip
sizes stressing the CAD tool execution. We supply specific
timing targets to our benchmarks and disable insertion of 10
buffers to enable our benchmark PIs to map successfully in
cases where the number of input and output pins in a design
exceed that available on the target FPGA.

Furthermore, we specified maximum runtimes for each job
so that a run is considered a failure without any result if its
compilation runtime exceeds two times the duration of its
initial compilation runtime. In general, the CAD tools tend
not to produce better results if they cannot converge within
this timeframe guideline.

For experiments and tuning of our benchmark set, with
our machine configurations mentioned earlier, the overall
cloud compute costs were roughly $300-400 (USD). This is
extremely competitive when compared to engineering, veri-
fication and RTL modification costs that may otherwise be
necessary without our tools.

B. Benchmarks

We use a range of open-source benchmarks from opencores
repositories to support our experiments. We tabulate the post-
synthesis characteristics of these benchmarks in Table 1. These
benchmarks cover a range of application domains and varying
problem sizes that can stress our CAD flow. We intentionally
provide hard-to-achieve timing targets during our experiments
to force InTime and Quartus to work tirelessly to achieve
positive outcomes. Hence, even though the TNS values do not
reach 0, we can lower them to much greater extent than Altera
DSE as shown in the following Section V. For the Altera DSE
flow, we configure the optimization to use the “Exhaustive
Search of Exploration Space” search method when exploring
the solution space.

C. Learning Tools

We perform bulk of our learning computations using R [10]
and Weka [11] machine learning libraries. For offline PCA
analysis, we also exploit a cloud-based offering called IBM
Watson Analytics that helps identify the most important pa-
rameters for our dataset with minimal setup. We do not,
however, use Watson during online execution as the product

3 30 ,

S switch m—

5 25 - Vviterbi

8 9o | xgemac mmmmm

o) vga me—

B 15| aes

> —

& 10} ecg

! 5

§ i

L 0 1 1 1 1 1 1 L
-7000 -6000 -5000 -4000 -3000 -2000 -1000 0

Total Negative Slack (TNS)

Fig. 5: Range of timing scores (TNS) for various
opencores benchmarks with placement seed exploration

is still in beta, and lacks a reliable API. We write our own
Bayesian learning routines in R that run in each round.

V. RESULTS

We now describe the results of using InTime on our
benchmark set. We first highlight the impact of placement
seed exploration on TNS distribution, then describe the results
of running InTime in various configurations on TNS scores,
compare InTime against Altera DSE and closely inspect a few
cases to showcase the benefits of InTime.

A. Timing Slack Distribution for Placement Seed Exploration

In Figure 5, we show the result of performing placement
seed exploration runs across our benchmark set (100 runs
per benchmark). Designs with large negative values of timing
slack are furthest away from meeting their respective timing
targets. The slack distributions show an interesting effect
where those designs that are further away from achieving
timing closure tend to show larger variance in slack values
than those that are closer. InTime is capable of either (1)
improving slack values; (2) delivering lowest slack values
possible with less runtime; or (3) minimizing the area taken
up by the compiled design in the target FPGA.

B. Effect of InTime on Achieved TNS

In Figure 6, we investigate the effect of InTime learning
on the viterbi and vga benchmarks respectively while
keeping the total number of runs fixed at 100. We compare
our timing scores with the default Quartus run result and the
red bars indicate worse scores while the bars indicate
better scores. We consider multiple InTime configurations and
summarize our experimental observations below:

e 1 round 100 runs: In this scenario, there is no machine
learning and simple use of parallelism with InTime’s canned
strategies. As expected, bulk of our results show no im-
provement with a few outliers improving their results. In
such a scenario, we are simply exploiting parallelism made
available with cloud computing resources. Instead, the use
of placement seed exploration is likely to yield better results.

e 3 rounds 33 runs: Here, each round corresponds to a
learning event, and in this case, we have 3 opportunities
to enforce learning. As observed, we note a significant
improvement in timing scores after the first round which
continues until termination.

1%100 =———— 3x30 =emsues

10X10 =reerens

Total Negative Slack
(TNS)

1000
2000 |
3000 |
4000 |
5000
6000 -
7000
8000
9000

Timestamp (normalized)

Fig. 7: Tracking Timing Scores over Time for vga

benchmark
Vga aes rrrrres Xge
viterbi SWitCh e
1
x o
[}
© E3
%)
o
=
T 0.01 Eevrdeerrahesionsfermimnieeeee e,
[0
o
1 1 1 1 1 |
(= o o o o o o
=3 o o o o o S
(=] o [=} [=} [=} o S
N [S2] < 0 © ~ o
Relative Time

Fig. 8: Scaling TNS values across benchmarks

e 10 rounds 10 runs: In this scenario, we split the 100
total runs into 10 rounds with 10 distinct learning events.
One may expect, more learning to be useful, but that is
clearly not the case. In this situation, the limited number
of runs per round constrain the extent of exploration that
is needed to make intelligent judgments over the next steps
to consider. A middle ground approach where we provide
the tools enough freedom to explore before committing to
learning is ideal. Nicely resonates with what happens in real
life where taking time away to discover yourself is often
quite valuable.

C. Comparing DSE and InTime

In Figure 7, we show the impact of using various InTime
configurations on TNS convergence as a function of cloud
compute time. We can see how the 3x33 setting converges the
fastest to the lowest TNS value than the other configurations.
The 10x10 setting performs particularly poorly by taking
more time and converging to a poorer result.

In Figure 8, we see the impact of normalized slack values
as a function of time (also normalized) taken to deliver the
solution across all benchmarks. On one hand, designs such as
viterbi, xge and vga converge to their minimum slack
values relatively fast as they have low TNS scores to start
with. On the other hand, aes shows substantial improvement
in quality but does take longer due to longer compiles.

Benchmark Total Negative Slack (best)

Quartus DSE A InTime A

(1 run)
aes 2905.4 2964.8 1x 148.9 20
ecg 4767.4 49639 1x 24372 19x
vga 324 18.6 1.7x 8.8 3.6x
switch 3921.5 529.4 7.4x%x 98.2 40x
viterbi 2348.4 2289.9 1x 21.4 111x
Xge-mac 542 511.8 L.Ix 235 2.3x%
Geom. Mean 1.5x% 10.5x

TABLE II: Comparing InTime with Quartus (1-run) and
Altera Design Space Explorer

D. Comparing DSE and InTime configurations

In Table II, we compare the results of InTime exploration
with default Quartus runs as well as Altera’s DSE tool.
Across all our benchmarks, we are able to outperform DSE
with lower timing scores. In some cases, where these values
are close, the use of parallelism through Google Compute
Engine helps to accelerate convergence. The stubborn aes
benchmark in particular shows a promising reduction in slack.
The vga, viterbi and aes benchmarks have the lowest
slack scores despite high initial starting slack costs. The ecg
is a particularly tough benchmark for all tools, and even though
the reduction in slack is almost 2x the overall score still stays
high.

VI. CONCLUSIONS

Charles Darwin [12] shows us how nature manages the
process of improving life through evolution. Evolution is
a mechanism of searching and discovering better solutions
through multiple organic random trials and the survival of
the fittest. Through a combination of parallel processing with
cloud computing (multiple trials) and Bayesian classification
and learning rounds (survival of the fittest), we can automate
the process of choosing the ideal combination of FPGA CAD
tool parameters for improving timing slack. For learning to
be effective, we need to generate sufficient samples to drive
convergence. We find the configuration with 3 learning rounds
and 30 parallel CAD runs per round to generally work well for
our benchmarks. We demonstrate substantially superior timing
slack results compared to Altera’s Design Space Explorer by
7x (geomean) across a range of opencores benchmarks.
We hope to continue exploring newer machine learning al-
gorithms, predictive models based on RTL characteristics and
adaptive parallelism to further improve InTime while lowering
cost.

REFERENCES

[1] R. P. Feynman, R. Leighton, and E. Hutchings, “Surely You're Joking,
Mr. Feynman!”: Adventures of a Curious Character. W W Norton and
Company Incorporated, 1985.

[2] N. Kapre, H. Ng, K. Teo, and J. Naude, “Intime: A machine
learning approach for efficient selection of fpga cad tool parameters,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’15. New York, NY,
USA: ACM, 2015, pp. 23-26. [Online]. Available: http://doi.acm.org/
10.1145/2684746.2689081

[3] Community, “OpenCores: Free open source IP Cores and Chip Design,”
2004.

Quartus (1 run)

100000
X
[S]
K]
n 10000
o__
20
%é 1000
z
© 100
o
'_
10
o o o o o o
« 3 © @ =
Run Count
(a) 1 round 100 runs — no learning viterbi
Quartus (1 run)
100000
x
[5}
©
7] 10000
[P
=10
oz 1000
[
z
= 100
°©
'_
10
o o o o
< © [ee] o
Run Count
(c) 3 rounds 33 runs viterbi
Quartus (1 run)
100000
X
Q
)
) 10000
o
20
gE 1000
e
z
= 100
©
'_
10
o o o o o o
(Y] < © [ee] o
Run Count

(e) 10 rounds 10 runs viterbi

Quartus (1 run)

1000
x
[}
©
%}
o_ 100
=30
B
27 10
©
°
'_
1
o o o o
« 3 [
Run Count
(b) 1 round 100 runs — no learning vga
Quartus (1 run)
1000
x
[$]
©
n
o 100 F
'ﬁ‘g a2 4b
o= -
z 10 “
©
°
'_
1
o o o o o o
(8] < © [ce} o
Run Count
(d) 3 rounds 33 runs vga
Quartus (1 run)
1000
x
[}
©
o 100
o __ E
23 |
5e
27 10
©
°
'_
9
o o o o o o
[\ < © [ce} o

—

Run Count
(f) 10 rounds 10 runs vga

Fig. 6: Evolution of timing scores (TNS) for InTime-driven optimization for viterbi (left column) and vga (right column)
benchmarks. Here, green bars indicate better TNS scores, and red bars indicate worse TNS scores than a single Quartus run

[4]
[5]

R. C. Whaley and J. J. Dongarra, Automatically tuned linear algebra
software. 1EEE Computer Society, 1998.

B. C. Lee and D. M. Brooks, “Accurate and efficient regression modeling
for microarchitectural performance and power prediction,” in ASPLOS
XII: Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems. ~ACM
Request Permissions, Nov. 2006.

S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August,
“Compiler optimization-space exploration,” Code Generation and Opti-
mization, 2003. CGO 2003. International Symposium on, pp. 204-215,
2003.

R. Y. Rubin and A. M. DeHon, “Timing-driven pathfinder pathology and
remediation: quantifying and reducing delay noise in VPR-pathfinder,”
in FPGA ’11: Proceedings of the 19th ACM/SIGDA international sympo-
sium on Field programmable gate arrays. ACM Request Permissions,
Feb. 2011.

[8]

[9]

[10]

[11]

[12]

D. Sheldon, F. Vahid, and S. Lonardi, “Soft-core Processor Customiza-
tion using the Design of Experiments Paradigm,” in Design, Automation
& Test in Europe Conference & Exhibition, 2007. DATE ’07, 2007, pp.
1-6.

Q. Huang, R. Lian, A. Canis, J. Choi, R. Xi, S. Brown, and J. Anderson,
“The Effect of Compiler Optimizations on High-Level Synthesis for
FPGAs,” Field-Programmable Custom Computing Machines (FCCM),
2013 IEEE 21st Annual International Symposium on, pp. 89-96, 2013.
T. R. C. Team, R: A Language and Environment for Statistical Comput-
ing, Aug. 2013.

M. Hall, E. Frank, G. Holmes, and B. Pfahringer, “The WEKA data
mining software: An Update,” SIGKDD Explorations, vol. 11, no. 2,
2009.

C. Darwin, The Origin of Species by Means of Natural Selection, or the
Preservation of Favored Races in the Struggle for Life. HarperCollins
Publishers, 1859.

