
MixFX-SCORE: Heterogeneous Fixed-Point
Compilation of Dataflow Computations

Deheng Ye
Nanyang Technological University

Singapore
ye0014ng@e.ntu.edu.sg

Nachiket Kapre
Nanyang Technological University

Singapore
nachiket@ieee.org

Abstract—
Mixed-precision implementation of computation can deliver

area, throughput and power improvements for dataflow compu-
tations over homogeneous fixed-precision circuits without any
loss in accuracy. When designing circuits for reconfigurable
hardware, we can exercise independent control over bitwidth
selection of each variable in the computation. However, selecting
the best precision for each variable is an NP-hard problem. While
traditional solutions use automated heuristics like simulated
annealing or integer linear programming, they still rely on the
manual formulation of resource models, which can be tedious,
and potentially inaccurate due to the unpredictable interactions
between different stages of the FPGA CAD flow. We develop
MixFX-SCORE, an automated tool-flow based on FX-SCORE
fixed-point compilation framework and simulated annealing, to
address this challenge. We outsource error analysis (Gappa++)
and resource model generation (Vivado HLS, Logic Synthesis,
Xilinx Place-and-Route) to external tools that offer a more
accurate representation of error behavior (backed by proofs)
and resource usage (based on actual utilization). We demonstrate
1.1–3.5x LUTs count savings, 1–1.8x DSP count reductions, and
1–3.9x dynamic power improvements while still satisfying the
accuracy constraints when compared to homogeneous fixed-point
implementations.

I. INTRODUCTION

Reconfigurable devices such as FPGAs allow the designer
to have complete freedom in customizing the implementation
of computation in hardware. This includes the ability to select
the minimum number of bits necessary to represent variables
as demanded by the application. When compared to ISA-
based processors with a fixed set of data types (e.g. short, int,
long, float, double), FPGAs allow bit-level tuning of circuit
precision for a given application. This can deliver combined
area, throughput and power improvements over traditional
processor implementations. However, we can only reduce
bitwidth as long as certain user-supplied error constraints are
satisfied. The objective of the bitwidth minimization problem,
which we explore in this paper through MixFX-SCORE, is to
find the optimal combination of bitwidth for all variables along
the datapath subject to user-supplied error bound constraints
in a reasonable amount of time.

Bitwidth allocation is an NP-hard problem [2]. For a small
7-variable diode device model i = isat · (ev/vj − 1) (see
line 5–11 in Listing 2), we will have to consider (128− 16)7

combinations of bitwidth allocations in the range 16–128
over a non-convex optimization space. Existing approaches

for solving this problem rely on a combination of techniques
including empirical observations and measurements, paper-
pencil analysis, and automated heuristic search (interval and
affine analysis with simulated annealing, integer linear pro-
gramming and some other custom heuristics). These methods
require building analytical error and area models to estimate
precision properties and hardware costs respectively. A key
research question we investigate in this paper is the fidelity
of the resource models used in this search. As we climb the
design abstraction stack to high-level synthesis (HLS) flows,
we must prepare to handle unpredictable interactions between
HLS compiler, the logic synthesis and place-and-route steps
in the FPGA CAD flow. This makes it tricky to construct
analytical resource models that fully capture unpredictable
impacts of optimization in each CAD step. Inaccuracies in the
model result in incorrect conclusions by the search heuristic.
If we rely purely on analytical models to drive the search,
we observed consistently inferior results. Our results indicate
superior solution quality when using feedback from the logic
synthesis stage.

FX-SCORE [8], [5] shows how to find equivalent ho-
mogeneous fixed-point implementations of double-precision
floating-point circuits that include control flow as well as
elementary functions. Analysis tools such as Gappa [1] and
Gappa++ [7] are a critical component of this framework.
They enable automated mathematical analysis of relative error
models supported by proofs of correctness. FX-SCORE also
relies on Vivado HLS for generation of synthesizable hardware
for calculating resource utilization, power and performance
of the resulting hardware. However, FX-SCORE framework
only automates homogeneous fixed-point computations, e.g. a
single bitwidth for the entire computation. In this paper, we
describe an improved MixFX-SCORE framework built upon
FX-SCORE that uses adaptive simulated annealing (ASA) [4],
[3] for selecting global optimized mixed precision bitwidths
and is based on multiple resource models (analytic, post-HLS,
post-logic-synthesis).

We make the following contributions:
• Integration of FX-SCORE framework and a custom adap-

tive simulated annealing (ASA) cost function supported
by Gappa++ for estimating relative error of mixed preci-
sion implementations.

• Development of a dataflow engine for FX-SCORE that

Vivado HLS
Backend

Flopoco +
Coregen

SCORE Program
+ Input Range

Gappa++
Backend

Resource
Utilization

Analytic

HLS

Logic Synth.

Relative
Error

Range
Bound

Simulated
Annealing (ASA)

Integer
Bits

Fractional
Bits

Fig. 1: MixFX-SCORE Flow

supports the Vivado HLS and Gappa++ code-generation
backends.

• Bitwidth optimization support for elementary functions
and control flows.

• Quantification of resource, delay and dynamic power
cost of mixed-precision computations when compared to
floating-point and iso-quality homogeneous fixed-point
computations across a variety of benchmarks.

II. MIXFX-SCORE FRAMEWORK

A. Error Formulation

Double-precision implementations of computation have in-
herent errors due to rounding and truncation of intermediate
variables in the computation. We can measure this error in the
form of absolute or relative error metrics as required by the
application. FX-SCORE, and other bitwidth tuning techniques,
use relative error metric as reference for lowering and cus-
tomizing precision. In contrast with the original optimization
formulation in FX-SCORE, we pick a heterogeneous mixture
of precisions such that the relative error for the resulting
combination is lower than the reference error in double-
precision mapping as shown in Equation 4. The minimization
goal now requires a suitably accurate area model.

errdouble(f) = (fdouble − fideal)/fideal (1)
errhomogeneous(f) = (fhomogeneous − fideal)/fideal (2)
errheterogeneous(f) = (fheterogeneous − fideal)/fideal (3)

minimize areaheterogeneous

subject to errheterogeneous ≤ errdouble
(4)

B. Tool Flow

The FX-SCORE framework integrates multiple external
tools (such as Gappa++, Flopoco, Xilinx Coregen), and a com-

piler backend (Vivado HLS). We further extend FX-SCORE by
supporting an Adaptive Simulated Annealing (ASA) backend
that generates custom cost function code which internally in-
vokes three different area models. We adapt the heterogeneous
precision code generation using a DFG engine. In Figure 1,
we show an overview of this MixFX-SCORE compilation
framework.

At a high level, the MixFX-SCORE framework runs two
types of analysis to determine precision (1) fraction-width
analysis, and (2) integer-width analysis. The mathematical ana-
lytics is handled by Gappa++ through a combination of simple
interval analysis (for integer width) and error model formu-
lation (for fraction width). The framework accepts SCORE
programs annotated with interval information on the input
variables. We then translate the computation into Gappa++
scripts that encode these inputs to generate intervals for
intermediate variables as well as relative error statistics for
the outputs of the computation. We also generate Vivado HLS
code from the same intermediate representation with custom
types for each variable.

Listing 1: SCORE Description of Diode Model
1 diode (param vj=2.58e−2 , param isat=1e−3,
2 input double V [1e−7, 0.1] , output double I)
3 { state dfg(v): I = isat ∗ (exp(V/vj) − 1); }

C. Fraction-width Analysis

We show a DFG code example automatically generated
from our framework in Listing 2 using the diode device
model SCORE implementation shown in Listing 1. FX-
SCORE compiles the whole computation dataflow equation
into one single Gappa and C++ expression (see sample code in
[8]) with homogeneous precision. In contrast, MixFX-SCORE
generates code that is split into atomic statements for every bi-
nary and unary arithmetic expressions (line 5–11 from Listing
2). This allows us to specify a unique precision for individual
operation independently. Like some earlier studies [6], we use
Adaptive Simulated Annealing[4], [3], to heuristically explore
the optimization space quickly. We integrate ASA into our
flow by auto-generating the asa_usr_cost_fn function
customized for each input problem. We use the relative error
result of the Gappa++ invocation as the constraint to enforce
legality of the solutions based on Equation 4 We build the
ASA cost function based on calling the Vivado flow and
using models at different levels of the compilation process.
For fast compilations, we use an analytical area calculation,
while resorting to post-HLS and post-logic synthesis results for
increasing the accuracy of the model at the cost of substantially
larger runtime.

For basic mathematical operators, we build the area model
based on the following rule, which is similar to [6], [9]. Area
of adder is approximated as sum of input bitwidths, area of
multiplier is approximated to product of input bitwidths, area
of elementary functions is derived from its Taylor approxi-
mation while for division we build a database-driven model
through a compile sweep.

2

We optimize the runtime of the ASA search by a combina-
tion of strategies. A certain bitwidth combination is only vali-
dated when it satisfies the relative error constraints established
by the Gappa++ invocation. Combinations that fail the relative
error test do not need to run the hardware backend flow. We
restrict the range of legal bitwidths for certain operators based
on the hardware-generation limits of Coregen and Flopoco We
use the result of the homogeneous FX-SCORE framework
result as our starting point to begin the optimization. We
control the range of allowed bitwidths carefully to avoid
fruitless search of the solution space. Due the non-monotonic
nature of the optimization problem, we sometimes have to
allow intermediate variables to have larger precision than the
recorded homogeneous precision. We provide a 2-bit guard
band above this crossover limit as the initial upper bound
across all variables in the program. To compute the lower
bound for the search, we start from such a guarded bitwidth
and decrease the precision of each variable one-by-one until it
fails to meet the relative error criteria. Now we finish bounding
the lowest range. We replace the bitwidth of each variable
with the lowest bit individually. This combination of bitwidth
may not satisfy our relative error constraints. We then start
increasing all the variables’ bitwidths simultaneously until it
succeeds to meet the error constraints. Once we do this, we
collect a vector of bitwidths ranges that are tight enough as the
respective selection limits for the individual variables during
the ASA search. This heuristic gives an interval for each
ASA input parameter is sufficient to cover the solution for
the benchmark set we use. We also empirically choose the
solution of the analytical area model as the starting annealing
state for our post-HLS and post-logic synthesis invocations to
reduce annealing iterations.

Listing 2: Auto Generated Gappa++ DFG Sample
1 @fx1 = fixed<−64,ne>; ; @fx7 = fixed<−64,ne>;
2 @dbl = float<ieee 64,ne>;
3 i m =isat m∗(exp(v m/vj m)−1);
4 i dbl dbl = isat∗(exp(v/vj)−1);
5 vj = fx1 (0.0258);
6 isat = fx2 (0.001);
7 v fx = fx3 (v);
8 divide 7 = fx4 (v fx/vj);
9 exp 9 = fx5 (exp(divide 7));

10 minus 10 = fx6 (exp 9 −1);
11 i fx = fx7 (isat∗minus 10);
12 {
13 v in [1e−6, 0.1] /\
14 |i m| >= 0x1p−53 /\
15 (i dbl − i m) / i m in ? /\
16 (i fx − i m) / i m in ?
17 }

D. Integer Bitwidth Selection

FX-SCORE is customized to handle SPICE device models
and assumed a uniform 8-bit integer portion for all variables
based on worst-case interval analysis of voltage and current
values. For MixFX-SCORE, we consider many more bench-
marks, and even within a benchmark, we fully customize
the precision of individual variables. As described earlier,

we chose the fraction bits based on relative error models.
For choosing the integer bits, we obtain the dynamic range
of all variables, and then calculate the integer portion using
Equation 5.

int bits = �log2(�max(|xmax|, |xmin|) + 1�)�+ 1 (5)

III. METHODOLOGY

A. Benchmarks

We evaluate our framework using a variety of bench-
marks, including all the MiniBit [6] computations (rewritten
in SCORE syntax) and all the SPICE device models used
in FX-SCORE [8]. For the MiniBit benchmarks, we borrow
ideas from [10] to properly allocate bitwidths for fractional
input constants. For RGB to YCbCr, and DCT8x8, the input
signals are unsigned integers which changes the relative error
reference baseline. We compile these inputs and the derived
intermediate variables into Vivado uint data type. For other
benchmarks, IEEE754 double-precision is the reference pre-
cision.The mixed fixed-point precision implementations are
compiled to Vivado ap fixed data type.

B. Tools

We upgrade the Gappa++ backend to support newer version
Gappa (v1.0.0). We use Vivado Design Suite v2013.2 for
hardware compilation. We compile three versions of design
(double, homogeneous, heterogeneous) to the Kintex 7 FPGA
device xc7k160. We use the latest versions of core generators
(Flopoco v2.5.0, Coregen floating-point core v6.1, Coregen
divider core v4.0). For operators such as exp and log with
no direct fixed-point compilation support in Vivado HLS, we
use a post-synthesis drop-in replacement. We compute FPGA
dynamic power after PAR assuming default 12.5% toggle rate
and 50% BRAM activity using XPower.

IV. EVALUATION

In this section, we evaluate the experimental results of
our MixFX-SCORE framework. We define crossover as
the minimum homogeneous fractional bit-width required that
leads to lower or equal relative error over double precision
implementation obtained by invoking the original FX-SCORE
compiler on the benchmark. We tabulate the crossover bits for
all the benchmarks in Table I. We can see that crossover bit
changes on a per-application basis and covers the range 52–73
bits.

A. MixFX-SCORE Results

We now compare the resource utilization, power con-
sumption and circuit delay achieved by our MixFX-SCORE
framework using post-PAR data (ASA driven using post-
logic-synthesis resource models) with the existing best so-
lutions possible using the FX-SCORE framework. We cal-
culate heterogeneous implementation savings using the equa-
tion (old − new)/old ∗ 100%. Even though we use MiniBit
[6] benchmarks, a direct comparison with MiniBit results
is not possible due to different baseline (error in fixed-
point homogeneous implementation) and technology (FPGAs

3

TABLE I: Comparing MixFX-SCORE Results with Fx-SCORE Implementations

Benchmarks Crossover FPGA LUTs FPGA DSPs FPGA Dynamic Power(mW)
Bit Dbl. Fxscore Heter. Savings Dbl. Fxscore Heter. Savings Dbl. Fxscore Heter. Savings

Polynomial 54 4121 1217 931 23% 14 48 27 43% 267 129 93 27%
RGB to YCbCr 52 3821 939 805 14% 75 35 35 0% 136 27 27 0%
2x2 Matrix Mult 73 4644 7466 5655 24% 100 200 136 32% 101 380 273 28%
Bspine 58 9122 4670 3041 34% 39 176 132 25% 610 414 299 27%
DCT8x8 52 10296 5362 4849 9% 100 150 150 0% 537 376 372 1.1%

Diode 63 5656 5105 4036 20% 26 85 67 21% 460 234 181 22.6%
Level1 60 6878 1435 929 35% 31 48 36 25% 388 123 95 22%
Level1linear 62 1199 564 434 23% 14 28 18 35% 29 2 1 50%
Level1saturation 61 4372 855 494 42% 14 28 18 35% 325 68 61 10%
Approx1 62 21813 21914 6293 71% 76 128 77 39% 1368 1261 326 74%
Approx2 61 2017 992 731 26% 25 44 41 6% 66 128 104 18%

Geomean Savings 25.5% 14.3% 14.8%

TABLE II: Comparing MixFX-SCORE Results with FX-SCORE Implementations

Bmarks. FPGA FFs Clock (ns) Figure-of-Merit
Dbl. Fxscore Heter. Savings Dbl. Fxscore Heter. Savings Dbl. Fxscore Heter. Ratio

Polynomial 6486 2191 1972 10% 2.916 2.712 2.893 -6.6% 3.43e6 7.62e5 3.96e5 1.9x
RGB to YCbCr 6757 2046 1879 8.2% 2.743 2.608 2.840 -7.6% 1.98e6 1.15e5 1.77e5 0.7x
2x2 Matrix Mult 9517 1298 1186 8.6% 3.052 2.512 2.331 8% 2.05e6 1.09e7 5.33e6 2x
Bspine 13916 8806 7483 15% 3.052 3.353 2.936 12.5% 1.84e7 1.14e7 4.99e6 2.3x
DCT8x8 17621 6476 5897 8.9% 3.052 14.755 14.533 1.5% 2.02e7 4.64e7 4.24e7 1.1x

Diode 10379 4593 3532 23.1% 7.252 4.725 5.336 -12.7% 2.09e7 7.7e6 5.33e6 1.5x
Level1 10256 2787 2263 18.8% 3.052 2.682 2.747 -2.2% 8.88e6 7.9e5 4.3e5 1.8x
Level1linear 1799 1199 1048 12.5% 2.400 2.272 2.805 -21% 1.03e5 5.1e3 2.2e3 2.3x
Level1saturation 6602 1513 1060 29.9% 3.052 2.734 2.831 -3.7% 4.61e6 2.63e5 1.47e5 1.8x
Approx1 26285 20953 8823 57.9% 7.506 13.670 6.086 53.8% 2.44e8 4.33e8 1.59e7 27x
Approx2 3454 1815 1444 20.4% 3.052 2.743 2.753 0% 5.07e5 6.57e5 4.42e5 1.6x
Geomean Savings 16% 0.84% 2.1x

without DSP blocks). In Table I, II, we observe LUT count
savings from 9.6–71.3%, FF count improvements from 8.2%–
57.9%, DSP count reductions of 0–43.8% and dynamic power
savings of 10.3–74.1% when compared to the homogeneous
implementations of FX-SCORE. Since we desire low power,
small area, short delay design simultaneously, we formulate
Figure-of-Merit (FoM) metric which is the product of area,
clock period, and dynamic power to evaluate the overall
quality of MixFX-SCORE results. Here we compute area as
LUTs+20×(DSPs+BRAMs). We see our framework delivers
a geometric mean 2.1x improvement when compared to FX-
SCORE when using this FoM metric.

V. CONCLUSIONS

The MixFX-SCORE framework performs heterogeneous
fixed-point compilation of streaming dataflow computations to
deliver 1.1-3.5x area improvements, 1-1.8x DSP count savings
and 1-3.9x FPGA dynamic power reductions across a range
of benchmarks when compared to the homogeneous fixed-
point implementations. We integrate a carefully-tuned Adap-
tive Simulated Annealing (ASA) bitwidth search with FX-
SCORE. We support wordlength optimizations for complex
non-linear computations and control flows.

REFERENCES

[1] S. Boldo, J.-C. Filliâtre, and G. Melquiond. Combining coq and
gappa for certifying floating-point programs. Intelligent Computer
Mathematics, pages 59–74, 2009.

[2] G. Constantinides and G. Woeginger. The complexity of multiple
wordlength assignment. Applied Mathematics Letters, 15(2):137 – 140,
2002.

[3] L. Ingber. Asa package. http://www.ingber.com/#ASA.
[4] L. Ingber. Very fast simulated re-annealing. Mathematical and computer

modelling, 12(8):967–973, 1989.
[5] N. Kapre. Exploiting input parameter uncertainty for reducing datapath

precision of spice device models. In Int. Symp. on Field-Programmable
Custom Computing Machines (FCCM), pages 189–197, 2013.

[6] D.-U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, and G. A.
Constantinides. Accuracy-guaranteed bit-width optimization. IEEE
Trans. on CAD of Integrated Circuits and Sys., 25(10):1990–2000, 2006.

[7] M. D. Linderman, M. Ho, D. L. Dill, T. H. Meng, and G. P. Nolan.
Towards program optimization through automated analysis of numerical
precision. In Proc. IEEE Int. Symp. on Code Generation and Optimiza-
tion, pages 230–237, New York, NY, USA, 2010. ACM.

[8] H. Martorell and N. Kapre. Fx-score: A framework for fixed-point
compilation of spice device models using gappa++. In Int. Symp. on
Field-Programmable Custom Computing Machines (FCCM), pages 77–
84, 2012.

[9] W. G. Osborne, R. C. C. Cheung, J. Coutinho, W. Luk, and O. Mencer.
Automatic accuracy-guaranteed bit-width optimization for fixed and
floating-point systems. In Int. Conf. on Field Programmable Logic and
Applications (FPL), pages 617–620, 2007.

[10] S. Vakili, J. Langlois, and G. Bois. Enhanced precision analy-
sis for accuracy-aware bit-width optimization using affine arithmetic.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, 32(12):1853–1865, 2013.

4

