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ABSTRACT
We can achieve reliable timing closure of FPGA designs us-
ing machine learning heuristics to generate input parameter
settings for FPGA CAD tools. This is enabled by running
multiple instances of CAD tool with different sets of these
input parameters and logging of resulting timing slack val-
ues into a database. We incrementally build this database
and run learning routines to develop suitable classifier mod-
els that correlate input parameter combinations to resulting
slack. As each CAD run in independent, we can trivially
parallelize our exploration. The classifier model developed
using this approach can help predict whether a given com-
bination of tool parameters will improve the timing score
of that particular FPGA design. Through repeated trials
and use of cheap cloud computing resources, we are able
to reliably improve timing scores for a variety of industrial
and academic FPGA designs. We show how to build design-
specific classifier models that easily outperform generic mod-
els that are trained by combining results across all circuits
in a benchmark.

1. INTRODUCTION
With FPGA capacities rising to millions of LUTs per chip,

the ambition and complexity of modern FPGA designs is
growing proportionally larger. FPGAs today can fit designs
requiring millions of LUTs, thousands of hard DSP-blocks,
thousands of on-chip Block RAMs, hundreds of IO ports
supporting a rich set of IO protocols, and complex wiring
requirements. Modern CAD tools have struggled to keep
up with this increase in design size and heterogeneity of the
underlying FPGA fabric resulting in long compilation cycles
for these designs. A typical single run of the CAD tool can
take hours to days of compilation time under user-supplied
constraints. Developers often iterate through this painful
compilation process multiple times hoping to improve tim-
ing scores by modifying their RTL through pipelining, logic
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Figure 1: Organization of InTime Flow. Overall goal is
to achieve timing closure for a given RTL design. In-
Time runs the RTL through multiple rounds of parallel
CAD runs with different CAD parameter configurations.
Based on history of what improved timing, we modify the
configurations for subsequent rounds of execution.

restructuring and providing suitable constraints to the CAD
tool. They can fail and in many cases are prevented from
modifying verified RTL source (e.g. black-box IP) thereby
restricting their freedom.

When RTL modifications are not possible, we can still rely
on the tuneability and configurability choices available in
the CAD algorithms itself. However, modern CAD tools are
a complex series of NP-complete heuristics that are hard to
understand and configure properly for a given design. A typ-
ical FPGA developer may require years of experience before
mastering the art of guiding the CAD tool to produce de-
sired results. These tools are organized as a series of passes
such as synthesis, technology mapping, placement, and rout-
ing before the bitstream is produced. These key stages are
NP-complete problems that are driven by tuneable heuris-
tics. Consequently, they significantly affect solution quality.
The exact selection of CAD tool parameters (command-line
options, GUI switches, and drop-down boxes) depends heav-
ily on the specifics of the user design and user constraints,



and its interaction with the exact device family selected for
mapping.

In this study, we use InTime [2, 3], a plugin for CAD tools,
that can efficiently select these parameters for each combi-
nation of RTL design, FPGA device, and timing constraint
combination. InTime helps designs achieve timing closure by
running multiple CAD runs in parallel with different param-
eter selections and refines these selections per design through
machine learning. This addresses the long runtimes of the
CAD tools inherent in the edit-compile-debug loop of a typ-
ical FPGA design, as well as select input CAD parameters
for the CAD tool in an automated fashion. In this paper,
we focus on the selection of appropriate machine learning
algorithms and techniques to identify and tune the most
promising solution. The goal is to deliver timing closure
with high classifier accuracy and consequently fewer itera-
tions to timing closure. The principle of operation of InTime
has already been established in prior work [2, 3].

The key contributions of this report include:

• Development of plugins for InTime to evaluate the im-
pact of design specificity on the overall solution of our
learning algorithms.

• Quantification and characterization of design-specific
learning routines across various real-world open-source
benchmarks.

2. INTIME

2.1 Execution Flow
As described in [2, 3], InTime is a plugin for FPGA CAD

tools from Altera and Xilinx that helps the developer select
a suitable combination of CAD tool parameters to achieve
timing closure. Modern FPGA CAD tools employ tune-
able heuristics that export hundreds of parameters. Some
of these are boolean (on/off) parameters, some offer dis-
crete choices, while others are continuous. In all these cases,
selecting the combination of assignments to these param-
eters to guide timing closure is hard and usually handled
through experience or trial-and-error. For Altera Quartus
14.1 CAD tool with 80 selected boolean parameters, a triv-
ial brute-force exploration of all possible combinations will
take 280 runs of the CAD tool which is clearly infeasible us-
ing contemporary computing technology. Instead, InTime
learns these insights through automated parallel trials of far
fewer combinations and accumulating wisdom through ma-
chine learning. As shown in Fig. 1, InTime is organized as
an iterative computation broken down into a series of par-
allel CAD runs. Each iteration (or round) is an opportunity
to acquire data for the learning database. Typically, we
need 30 runs in each round to acquire sufficient data points
to drive the learning algorithms. In [3, 2], InTime used a
Naive Bayesian learning framework to classify the timing
results and drive the learning process (maximum observed
accuracy of ≈70%). While these results were promising, our
work differs from InTime by clearly exploring design speci-
ficity.

We evaluate the classifier accuracy gap between general
models that are trained in a single-shot with all design data
vs. a design-specific learning flow where each circuit trains
its own classifier. FPGA vendor DSE (design space explo-
ration) tools typically use the generic approach to greatly
save on the compute time and compute costs required by

running a pre-calibrated set of CAD parameter combina-
tions. More importantly, we also consider the scenario where
different machine learning routines may be suitable for dif-
ferent kinds of benchmarks. This requires a further meta
analysis of how to select the most appropriate learning ap-
proach for a given circuit benchmark.

2.2 Formal Model
The key idea in InTime is to track which CAD parameter

combinations improve timing slack and which combinations
make timing worse over a reference baseline. Thus, we can
formulate a supervised learning approach to develop a clas-
sifier model that can determine if a given combination of
CAD parameter assignments will help the design converge
towards timing closure. The combinations themselves can
be generated statistically. We represent this formally in Fig-
ure 2 where xij are the boolean parameters for each CAD
parameter i and yj is a timing slack result for a given CAD
execution j.
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Figure 2: Data Structures used to build classifier model.
We tabulate all combinations of CAD parameters tested
in various runs, and record the resulting TNS (Total Neg-
ative Slack). This is used to drive a supervised learning
routine that classifies timing scores better than a refer-
ence baseline as GOOD or BAD. This then trains a model
which is used to generate better candidates for subse-
quent CAD runs.

3. METHODOLOGY
In this section, we introduce our set of benchmark circuits

used to evaluate the various learning algorithms, and the
system setup required to run these experiments.

3.1 R Packages
We wrote machine learning routines as plugins for In-

Time using R [5] and appropriate R libraries and packages.
The interface supplies a CSV-formatted dataset with input
columns containing the boolean values of the various input
CAD parameters and an output column containing the re-
sulting timing score. We make extensive use of caret [1] to
train our models. It provides a unified interface to use mul-
tiple machine learning algorithms. The runtime of running
these algorithms on the data are minuscule (few seconds)
compared to the much longer runtimes of the CAD algo-
rithms.



3.2 Benchmarks
In Table 1, we list the key characteristics of the FPGA

benchmarks used in this study that are taken from Open-
Cores as well as industrial designs. These benchmarks were
compiled using Quartus 14.1 and mapped to the Cyclone de-
vices using the free Web Edition licenses. Certain industrial
designs also targeted other Altera devices and tool versions.
These benchmarks occupy a range of sizes and the operating
frequencies also cover a spectrum of values thereby stress-
testing our toolflow with design-specific requirements and
constraints. In particular, the viterbi benchmark has a
high TNS score and highest number of failing paths and is
painful for timing closure. Our framework also works with
Xilinx ISE and Vivado flows and the resulting mapping costs
are listed in Table 2.

Table 1: Opencore Benchmarks (Altera)

Bench. FFs LUTs P&R Freq. TNS Fail/Tot.
mins. MHz Paths

Open-Cores Examples
aes 6K 11K 22 500 0.2 5/5.7K
switch 0.5K 2.6K 15 250 0.7 14/2.3K
vga 0.7K 1K 12 400 1.7 17/262
viterbi 1.6K 4K 20 285 22.8 300/6.6K
xge 1672 2.5K 17 333 10.8 79/1.7K
bitcoin 14K 22.3K 28 78 2.8 10/96K

Industrial Examples
SOC 4.9K 3.5K 5 150 0.6 10/42K
flow 20.7K 21.8K 12 320 5.9 47/87K
vip 62.3K 80.1K 58 150 0.6 15/435K
eight 3.3K 3.5K 2 174 1.02 10/16K

Table 2: Opencore Benchmarks (Xilinx)

Bench. FFs LUTs P&R Freq. TNS Fail/Tot.
mins. MHz Paths

aes 6K 11K 0 500 1219 4630 / 5775
switch 800 2.4K 0 200 42.3 57 / 2190
vga 966 106 0 400 108 128 / 290
viterbi 3.5K 4K 0 333 5081 4399 / 7299
xge 1.6K 1.6K 0 250 50 229 / 1778

3.3 Compute Resources
We ran all our experiments on the Google Compute En-

gine [4]. We configured an instance group template using n1-

standard-2 CPU configuration with 2 virtual CPUs (Intel
Xeon E5s) and 7.5G RAM each. We chose this configuration
over the dense 32-CPU configurations to make optimum use
of the free web-edition licenses and to ensure sufficient RAM
state is available for the CAD tool executions. We also en-
abled the Google auto-scaling feature to trigger the launch
of parallel VM instances (up to 10 machines launched in par-
allel) when the CPU utilization threshold got over 65%. This
allowed us to keep costs low and only spawn machines are
needed during the benchmarking process. The cumulative
costs of using the Google machines for our entire experiment
set for over a fortnight was under ≈500$ USD1. This means

1summer 2015 prices, not considering InTime licensing
costs.
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Figure 3: Comparing ROC [6] characteristics of various
Machine Learning routines for the aes benchmark. Each
curve is a particular Machine Learning algorithm. Even
the worst-performing Design-Specific model does better
than the best-performing Generic model.

for a single design we roughly needed a couple of days of
cloud compute time which compares favorably against an
RTL engineer struggling to manually deliver timing closure.

4. RESULTS
To evaluate the effectiveness of the various machine learn-

ing algorithms, we measure several metrics: (1) Prediction
Accuracy, (2) F1 score or FMeasure, and (3) ROC [6] (Re-
ceiver Operating Characteristics) plots. To understand these
metrics mathematically, we define TP as True Positives, TN
as True Negatives, FP as False Positives and FN as False
Negatives in our prediction set. Ideally, we want high TP
and TN and low values for FP and FN . These are defined
based on a classification threshold and can be thought of as a
tag or attribute assigned to each row in Figure 2 of the test-
ing set. High prediction accuracy A = TP+TN

TP+TN+FP+FN
is

useful as it helps us correctly determine how a given combi-
nation of FPGA CAD parameters affects timing slack. How-
ever, this is not sufficient as we are ultimately interested
in generating good candidates that are positively correlated
with reducing timing slack. Additionally, false positive rate
(FPR) helps us determine if we are making judicious use of
our parallel compute resources during the exploration phase
by avoiding wasted compute on false positives. It should be
noted that we do want certain bad combinations (FP com-
binations) to teach us what kinds of combinations to avoid
in the future. Even a failed CAD run is a teachable moment
for InTime flow. We also calculate the FMeasure that is a
harmonic mean of precision and recall metrics F = 2·P ·R

P+R
that provides a unified view of the classifier effectiveness.
Precision is the fraction of positive predictions that are rel-
evant P = TP

TP+FP
while Recall is the fraction of relevant

predictions that are positive R = TP
TP+FN

. A great visual
tool for evaluating the effectiveness of the machine learning
algorithm is the ROC (Receiver Operating Characteristics)
curve. This provides a complete picture of the tradeoffs be-
tween accuracy of the prediction and wasted time on fruitless
CAD runs.



Table 3: Features Ranked by Chi-Squared ( χ2 ) for aes.

Rank Design-Specific Generic Model

1
Optimize Ioc Register
Placement For Timing

Remove Redundant
Logic Cells

2
Physical Synthesis
Register Retiming

Remove Duplicate
Registers

3 State Machine Proces. Auto Ram Recog.

4
Physical Synthesis
Map Logic To
Memory For Area

Not Gate Push Back

5 Auto Rom Recognition
Physical Synthesis
Register Duplication

6
Synth Timing
Driven Synthesis

Allow Synch Ctrl Usg.

7 Extract Vhdl
State Machines

Auto Resource Shar.

8 Dsp Block Balancing Physical Synthesis Eff.

9
Fitter Aggressive
Routability Optimiz.

Allow Any Ram Size
For Recognition

10
Cycloneii Optimiz.
Technique

Optimize Timing

One may be tempted to consider building a generic global
model for timing score in a manner that is not specific to
a particular design. FPGA vendors are likely to prefer a
single design-agnostic model that they can train using their
customer benchmarks in-house and ship a single model with
their CAD tools to all customers. A key benefit of such
an approach is the ability to construct such a model of-
fline across a wide range of benchmarks without resorting
to an online learning-based incremental approach advocated
in this paper. Additionally, the model can operate in feed-
forward manner and execute a set of canned strategies (CAD
parameter mixes) based on some design criteria. In contrast,
a design-specific model is tailored to each individual design
and involves an online learning phase with feedback as de-
scribed earlier in Section 2.

4.1 ROC for Design-Specific Models
In Fig. 3, we show the ROC plot for the various machine

learning routines applied to the aes benchmark. Here, we
observe that the cluster of design-specific models offer higher
accuracy at the expense of higher false positives. Across
other benchmarks as well, the prediction accuracy of the
general model hovers around 50–55% which is no worse than
a random coin toss. It is interesting to note that even the
worst-fitted model built from the design-specific scenario is
still better than the best-case generic model. There is a
clear case for constructing and developing the correct model
tailored for each individual design.

4.2 CAD Parameter Ranking
Next, we rank the most important CAD tool parameters

with the χ2 metric in Table 3. This ranking is computed by
identifying the CAD tool parameters when modified cause
the most impact on the final TNS result. Here, again, we see

that the top-10 features for the aes benchmark have nothing
in common with the top ranked features when considering
the generic model that ignores the effect of design-specific
preferences. While this is admittedly an extreme case sce-
nario, it highlights the need for a design-specific model yet
again. The kind of CAD parameter that matters for a
given design is also related to the underlying architecture
when we see the Cyclone-II specific optimizations becoming
prominent. In general, we expect the combination of design,
FPGA architecture and possibly even the CAD tool version
having a joint influence on these rankings. This implies we
need our models to be built in a manner that is specific to
the FPGA architecture and CAD tools version in addition
to design alone.

5. CONCLUSIONS
Machine learning algorithms can be configured to deliver

timing closure for digital designs in the presence of rising
complexity and noise in modern FPGA CAD toolflows. To
achieve these goals, we use cheap, parallel cloud comput-
ing resources to run multiple instances of the CAD tools
guided by these machine learning routines. Across a range
of benchmarks, we show that design-specific learning rou-
tines outperform generic models. Overall, we observe that
InTime works well when the timing constraints are realis-
tic and we observed a few cases where none of the machine
learning algorithms delivered useful performance.
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