
Mocarabe: High-Performance Time-Multiplexed
Overlays for FPGAs

Frederick Tombs
fgjtombs@uwaterloo.ca
University of Waterloo

Ontario, Canada

Alireza Mellat
amellat@uwaterloo.ca
University of Waterloo

Ontario, Canada

Nachiket Kapre
nachiket@uwaterloo.ca
University of Waterloo

Ontario, Canada

Abstract—Coarse-grained reconfigurable array (CGRA) over-
lays can improve dataflow kernel throughput by an order of mag-
nitude over Vivado HLS. This is possible with a combination of
carefully floorplanned high-frequency (645–768 MHz) design and
a scalable, communication-aware compiler. Our 2D torus CGRA
architecture supports versatile processing element (PE) function-
ality and a configurable number of communication channels to
match application demands. Compared to recent FPGA overlays
like CGRA-ME’s ADRES and HyCUBE implementations, our
design operates at 1.8–3.4× faster clock frequency, while scal-
ing to an orders-of-magnitude larger array size of 19×69 on
Xilinx Alveo U280. Our communication-aware compiler targets
HLS objectives such as initiation interval (II) and minimizes
communication cost using an integer linear programming (ILP)
formulation. Unlike SDC schedulers in FPGA HLS tools, we treat
data movement as a first-class citizen by encoding the space and
time resources communication network of the overlay in the ILP
formulation. Given the same constraints on operational resources
as Vivado HLS, we can retain our target II and achieve up to 9.2×
higher frequency. Our ILP scheduler outperforms a PathFinder
space-time router implementation in quality of result by up to
nearly 2×.

I. INTRODUCTION

With the slowdown in Moore’s Law limiting improvements
to CPU performance scaling [1], specialized accelerators can
increase computational throughput and efficiency of computa-
tions across various application domains. Field-Programmable
Gate Arrays (FPGAs) are being adopted by cloud service
providers such as Microsoft, IBM, and Intel [2] [3] [4],
but low-level register-transfer level (RTL) development for
these platforms is difficult and expensive. One solution is the
use of High-Level Synthesis (HLS) to express the desired
algorithmic behavior in high-level C/C++ rather than low-
level RTL, but this approach can suffer from inefficiencies
and overheads resulting in low frequency at scale (up to 9×
away from peak, demonstrated in Section VI). We still need
to complete FPGA place and route times that can take hours
or days of run-time for large cloud-scale designs. Instead, we
can use structured coarse-grained FPGA overlays with careful
floorplanning that trade-off FPGA flexibility in exchange for
performance guarantees and potential for faster application
mapping times [5].

Coarse-grained reconfigurable arrays (CGRAs) are a class
of programmable logic devices consisting of several coarse
logic blocks such as adders and multipliers connected together

0,N-1 M-1,N-1

0,0 M-1,0

Router

PE PE

C

C

I

PEPE

Fig. 1. An M ×N Mocarabe array with I-input PEs and a C channel NoC.

with reconfigurable interconnect to provide high performance
for specific classes of applications. Each logic block can have
multiple inputs and outputs, a configurable ALU, and provide
support for storage and data movement. In contrast to FPGAs
that contain finer-grained logic blocks (e.g. look-up-tables)
supported by bit-level interconnect, CGRAs are less flexible
and provide ALU-like building blocks with bus-oriented in-
terconnect. One can naively overlay existing CGRAs on top
of modern FPGAs [3] [4], but these overlays do not fully
leverage the benefits of operating on an FPGA. They have
small fixed array sizes (e.g. 4 × 4 [6] [7][8]), and operate at
low frequencies (226–382 MHz [6][8]).

In this work, we introduce Mocarabe, a flexible FPGA
overlay CGRA that supports variable array sizes (up to 19×69)
and operates at high frequencies (645–768MHz) even for
large array sizes on the Xilinx Alveo U280 chip. Mocarabe
offers rich interconnect flexibility in the form of multiple
channels and logic block I/Os that are essential for sup-
porting communication-rich dataflow kernels. Our compiler
is an interconnect-aware ILP scheduling formulation which
routes data movement in space and time while minimizing
communication costs.

The key contributions of this work are:
• Design of a CGRA architecture with pipelined inter-



connect for high-frequency operation with support for
multiple communication channels.

• A CGRA compiler with a communication-aware ILP
scheduler formulation backbone that encodes intercon-
nect resources in the ILP.

• Comparison of the ILP scheduler with a PathFinder-based
space-time router.

• A carefully floorplanned implementation of a 19×69 Mo-
carabe configuration with up to 3 channels on the Xilinx
Alveo U280 for 645–693 MHz operation frequency.

II. BACKGROUND

In this section, we will cover notable and relevant CGRAs.
CGRAs are surveyed in-depth in [9] [10] [11] [12]. We
summarize results in Table I.

TABLE I
REVIEW OF EXISTING CGRAS

CGRA Frequency (MHz) FPGA/Technology size

FPGA
ADRES 382 Ultrascale+ 4× 4
ADRES 260 Stratix 10 4× 4
HyCUBE 307 Ultrascale+ 4× 4
HyCUBE 226 Stratix 10 4× 4
ASIC
HyCUBE 704 28 nm 4× 4
ULP-SRP 100 40nm 3× 3
Cascade 510 40nm 4× 4

• ADRES [13] is composed of multiple PEs arranged in
a 2D array, and couples the reconfigurable array with
a Very Long Instruction Word (VLIW) processor by
integrating them into a single architecture. Each PE is
connected to a Register File (RF) and its neighboring
PEs, and has an ALU that operates on the data it receives
from the RF or the neighboring PEs. The PEs at the top
row are more capable and form the VLIW view.

• Ultra low-power Samsung Reconfigurable Processor
(ULP-SRP) [6] is a variation of ADRES that has runtime-
configurable low and high performance modes. ULP-SRP
is composed of a 3×3 reconfigurable array and a VLIW
processor. In high performance mode, the entire 3 × 3
array is active, while a 2 × 2 subset of the array is
used for low performance mode. Every application must
be mapped to both modes. ULP-SRP is implemented in
40nm ASIC and runs at 100MHz.

• HyCUBE [14] is a CGRA with reconfigurable single-
cycle multi-hop interconnect. The single-cycle multi-hop
interconnect enables distant PEs to exchange data with
minimal timing overheads. HyCUBE is implemented as
a 4× 4 array on 28nm ASIC and operates at 704 MHz.

• Cascade [7] aims at high-throughput data streaming by
decoupling memory accesses from computations. By
moving the address generation outside the CGRA, Cas-
cade reduces address generation overhead and makes the
array focus on computations. Cascade is implemented as
a 4 × 4 array in 40nm CMOS and reaches a maximum
operating frequency of 510 MHz.

C
:1

C
:1

CTX

CTX

CTX

CTX

CTX
ALU

Operand1

Operand2

Input NoC

Channels

Output to NoC

Channels

PE

C

II

C

(a) PE internals

3:1
3:1

3:
1

CTX CTX

CTX

SW

E

N

PEi

PEo

II

(b) Router internals

Fig. 2. Building blocks of Mocarabe CGRA (CTX=Context Memory).

• CGRA Modelling and Exploration (CGRA-ME) [15]
is an open-source framework that allows describing
arbitrary CGRA architecture and enables mapping,
placement, and scheduling C benchmarks to the arbitrary
CGRA. It generates Verilog code for the resulting
design for simulation and synthesis. CGRA-ME also
allows for area and performance modeling of CGRAs
[16] by synthesizing commonly occurring primitives in
isolation and adding component wise results together.
ADRES and HyCUBE are implemented as FPGA
overlays using CGRA-ME on Intel Stratix 10 (S10) and
Xilinx Ultrascale+ (US+) in [8]. After optimizations,
the ADRES and HyCUBE overlays operate at up to
226–382 MHz on S10 and US+.

HLS schedulers, such as Vivado’s scheduling SDC formu-
lation [17], have to contend with many types of constraints:
data dependency constraints, timing constraints such as latency
and frequency constraints, and resource constraints. A well-
designed CGRA architecture and compiler can alleviate the
need to account for all those issues in the scheduler while still
effectively coordinating data movement. While SDC schedul-
ing is a powerful tool, it provides no frequency guarantees and
must balance the aforementioned constraints, which hurts its
resource sharing performance as shown in Section VI.

III. CGRA ARCHITECTURE

The Mocarabe architecture consists of a 2D array of build-
ing blocks connected by a directional torus network-on-chip
(NoC) as shown in Figure 1. Each block contains both a PE to
execute operations on incoming data and a set of NoC routers
to control data movement.

• A PE can be configured as either an operator (multiply or
add) or a data input/output. PEs store incoming operands
in shift registers and select the relevant stored operands
as inputs to their ALU at each cycle, as shown in Figure
2a. Operand selection at each cycle is extracted from the
compiler output.

• A key feature of our architecture is the variable number
of parallel physical communication channels [18]. Every
router accepts inputs from the local PE and the south and
west neighbors on the same channel and sends outputs
north, east, and to the local PE. A single-channel router
is shown in Figure 2b.



TABLE II
PE AND ROUTER RESOURCE USAGE FOR II=4

LUT (logic) LUT (memory) FF DSP blocks

Adder PE 35 64 197 0
Multiplier PE 3 48 169 3
Router 99 0 290 0

Table II shows the resource consumption of each PE
and router on average. The entire architecture is designed
for statically-scheduled, time-multiplexed operation. With an
initiation interval or (context count) II , every routing and
functional resource will repeat the same task, accept inputs,
and drive outputs in a repeating phase of II cycles. II is thus
also the number of operations mapped to a resource which
can enable larger applications to be mapped to fewer blocks
at the cost of more LUTs to drive multiplexer select lines
(context memories are labeled “CTX” in Figures 2a and 2b).
II is the number of cycles in the modulo schedule found
by the compiler. Operation execution and data movement are
statically scheduled and encoded as multiplexer select line
memories, as outlined in section IV.

Unlike other CGRAs [13][6][14], which have fixed array
sizes, an application can be mapped over a subset of all
available PEs and unrolled (repeated) by tiling over the full
array.

If the number of communication channels is greater than
one, PE inputs are fanned in from each channel to both
shift registers. Figure 1 shows an M × N array with C
communication channels. Each PE has two inputs and fan-in
muxes are used to connect PEs to the NoC.

IV. COMPILER

The Mocarabe compiler framework extracts the data-flow
graph (DFG) from a C kernel (with gcc and GIMPLE) and
generates an architecture configuration and a schedule to
coordinate data movement. The compiler flow, shown in Figure
3, consists of four phases: 1 operator allocation, 2 DFG
partitioning, 3 placement, and 4 scheduling; the objective
is to find a feasible schedule with a minimum number of
channels. We use simple linear search for channels, and most
of our benchmarks need two or three channels when scheduled
with ILP, except for one outlier, deriche, which needs four.

DFG II

Allocation

Partitioning

Placement

Scheduling

Mocarabe Configuration

ChannelCount++

Feasible? Infeasible?

1

2

3

4

Fig. 3. Mocarabe compiler flow.

Compared to SDC scheduling [17], data dependencies are
handled differently in our scheduler. We schedule each DFG

edge in isolation, but use rotating registers to ensure correct
alignment of data dependency. Frequency constraints (‘cycle
time’) found in SDC schedulers are not found in the compiler,
as the overlay is guaranteed to run close to the FPGA fabric
fmax (645–768 MHz).

Unlike the CGRA-ME ILP scheduler [19] that unifies
partitioning, placement, and scheduling into a monolithic ILP
formulation, we split these tasks into separate disjoint phases
to ensure feasible computational runtime for large problem
sizes. The CGRA-ME scheduler routinely times out after 24
hours for a benchmark with an operation count under 30. Our
compiler can tackle 80 operations in less than 30 minutes, with
most benchmarks taking less than a minute.

A. Formal Description

The DFG is encoded in a hypergraph format [20] to retain
multi-fanout attributes. A DFG is comprised of a set of nodes,
Ops, which represent operations, inputs, and outputs, while
edges, V als, represent the data dependencies between Ops.
The kernel in Figure 4 is mapped to the architecture as a
motivating example, with II = 2 (dual-context).

B. Operator Allocation and Partitioning 1 2
Given a context count II , the compiler allocates

M × N = K PEs DFG Ops are partitioned among the
K PEs, each PE holding at most II Ops to allow for time-
multiplexed operator sharing. We use an ILP formulation for
hypergraph partitioning [21] that is solved using the Gurobi
solver [22].

Variables: The formulation has two binary variables.
• V alInPartitionj,k = 1 indicates that DFG edge j is

entirely in partition k.
• OpInPartitionop,k = 1 indicates that DFG node op is

in partition k.
Constraints:
Every operator must be in exactly one partition.

K∑
k

OpInPartitionop,k = 1,∀op ∈ Ops (1)

No more than II operators can be mapped to one partition.
Ops∑
op

OpInPartitionop,k ≤ II,∀k ∈ K (2)

Graph dependency is encoded with the following constraint.
Op(j) denotes all DFG nodes incident on edge j.

OpInPartitionop,k >= V alInPartitionj,k,

∀j ∈ V als,∀op ∈ Op(j),∀k ∈ K (3)

There is a fixed number of partitions for each operator type.
K(op) denotes the partitions reserved for op’s operator type
(e.g. ‘*’).

K(op)∑
k

OpInPartitionop,k = 1,∀op ∈ Ops (4)



+

∗
∗
y

x

+

a

Fig. 4. Example Dataflow for y = (2a+ x)× x2.

∗
∗ Multiplier PE

y IO PE

x a IO PE

+
Adder PE

+

Fig. 5. Partitioned DFG into CGRA PEs.

CTX 0 +

CTX 1CTX 1 +

x

a

y

*

*

(0,0)

(0,1)

(1,0)

(1,1)

CTX 0 CTX 1

Fig. 6. Placement and schedule if CGRA

Objective Function:
The objective function is set to minimize the sum of cut nets
(V als), which is encoded as the maximization of uncut nets.

Maximize

V als∑
j

K∑
k

V alInPartitionj,k (5)

A partition may only group operations of the same type
into groups no larger than II . The motivating example has
four operator types (input, add, multiply, output) and the
resulting partitioning is shown in Figure 5. Here, the sum is
two uncut nets, one between both adds and another between
both multiplies. Note that in general, operations need not be
neighbours to be in the same partition.

C. Placement 3

Every DFG operator is now mapped to one of K partitions,
which must then be placed in a specific (x, y) location. We
use simulated annealing [23], an approach which has been
used in other CGRA compilers [15]. Any PE location can
be fixed to be any type of operator. The placer’s objective
is to minimize the minimal torus distance a net must travel,
as in (6). The placer and the scheduler are decoupled, but
the aim is to provide the next stage with a placement that
will enable it to find a feasible solution using the fewest
parallel channels. Moves from one placement state to another
are unrestricted. The cost of a certain placement is the sum,
across every source-destination pairs, of the squared distance
each net would have to travel through the torus interconnect.
The result is a mapping from every DFG operator to its PE,
which is used to create a netlist to be scheduled in the next
step.

Minimize

V als∑
j

(MinTorusDistance(source(j), dest)

∀dest ∈ dests(j)).

(6)

D. Scheduler 4

SDC schedulers encode the execution cycle of an operation
as an integer. Our scheduling problem, formulated as an ILP
and solved with the Gurobi solver [22], encodes resource

occupancy in space and time as boolean unknowns. The
resulting ILP is larger, but we make it feasible by limiting
schedule length (the time dimension) to II and realigning
dependencies after scheduling. The input is a netlist of sources
and destinations on the array with the same number of Ops
and V als as the input DFG, but with decoupled dataflow
dependencies (which will be realigned after scheduling). The
resulting modulo schedule has up to II cycles. We now show
how to set up this formulation.

1) ILP Variables: We define six sets of binary variables,
grouped into pairs. The connectivity between some of these is
illustrated in Figure 7.

• Rh
(x,y,t,c),j and Rv

(x,y,t,c),j : routing resource at (x, y) on
channel c is used by value j in cycle t. Horizontal
and vertical routing resources are denoted by h and v ,
respectively. Rh,v indicates that a constraint applies to
both types of resources independently.

• EnterRouting(x,y,t),j : At cycle t, value j leaves PE
(x, y). EnterChannel(x,y,t,c),j specifies which channel
to use.

• ExitRouting(x,y,t),j : At cycle t, value j enters PE (x, y).
ExitChannel(x,y,t,c),j specifies which channel to use.

Rh(x, y, t, 0)

Rh(x, y, t, 1)

Rv(x, y, t, 1)Rv(x, y, t, 0)

Rv(x, (y + 1)%N, (t+ 1)%II, 1)Rv(x, (y + 1)%N, (t+ 1)%II, 0)

Rh((x+ 1)%M,y, (t+ 1)%II, 0)

Rh((x+ 1)%M,y, (t+ 1)%II, 1)

EnterChannel(x, y, t, 0)
ExitChannel(x, y, (t+ 1)%II, 0)

EnterChannel(x, y, t, 1)
ExitChannel(x, y, (t+ 1)%II, 1)

Fig. 7. ILP Variables for Scheduling.

For the sake of brevity, we denote the tuple (x, y, t) as “i”.
For example, Rh

(i,c),j represents value j’s use of the horizontal
routing resource at (x, y, t) on channel c. A denotes M×N×
II , the cube over the 2D array and the schedule length II .

2) ILP Constraints and Objective Function: We present a
number of constraints for the ILP formulation. The first six
sets are somewhat trivial, while the last is the core of how the



formulation encodes data movement.
Source/Destination Mapping: A value must leave its source
exactly once, but can do so any time. For all values j in V als,
with source PE srcx,y(j),

T∑
t=0

EnterChannel(srcx,y(j),t,c),j = 1. (7)

A value j must enter all of its destinations exactly once.
For every j in V als with destination destx,y(j),and for all
t ∈ II ,

T∑
t=0

exitRouting(destx,y(j),t),j = 1. (8)

A value cannot enter or exit any PE that is not its source or
one of its destinations. For every j in V als, and every location
which is not one of j’s destinations, notDestx,y(j), and for
all t ∈ II ,

T∑
t=0

exitRouting(notDestx,y(j),t),j = 0. (9)

Routing Resource Exclusivity: Each routing resource may be
used by at most one value in each cycle.

V als∑
j

Rh,v
(i,c),j ≤ 1,∀i ∈ A,∀c ∈ C. (10)

PE Output: A PE can emit at most one value per cycle, and
cannot enter multiple channels simultaneously.

V als∑
j

EnterChannel(i,c),j ≤ 1,∀i ∈ A,∀c ∈ C

V als∑
j

EnterRouting(i),j ≤ 1,∀i ∈ A.

(11)

Single-Channel Entry: When a value enters the NoC, it must
choose a single channel. For all i ∈ A, c ∈ C, j ∈ V als,

C∑
c

EnterChannel(i,c),j ≥ EnterRouting(i),j (12)

EnterChannel(i,c),j ≤ EnterRouting(i),j . (13)

PE Input: A PE can absorb at most 2 values from the NoC
each cycle.

V als∑
j

ExitChannel(i,c),j ≤ 2,∀i ∈ A,∀c ∈ C. (14)

Single-Channel Exit: Similarly, when a value exits a PE, it
must choose a single channel. For all i ∈ A, c ∈ C, j ∈ V als

C∑
c

ExitChannel(i,c),j ≥ ExitRouting(i),j (15)

ExitChannel(i,c),j ≤ ExitRouting(i),j . (16)

Value Propagation: These core constraints illustrate the
interconnect’s torus connectivity and modulo scheduling.

This constraint ensures that information cannot be created
from nothing. This is encoded for horizontal routing (17),
vertical routing (18), and for leaving the NoC (19). For all
(x, y, t) ∈ A, c ∈ C, j ∈ V als,

Rh
(x,y,t,c),j +Rv

(x,y,t,c),j + EnterChannel(x,y,t,c),j ≥
Rh

((x+1)%M,y,c,(t+1)%II),j ,
(17)

Rh
(x,y,t,c),j +Rv

(x,y,t,c),j + EnterChannel(x,y,t,c),j ≥
Rv

(x,(y+1)%N,c,(t+1)%II),j ,
(18)

Rh
(x,y,t,c),j +Rv

(x,y,t,c),j + EnterChannel(x,y,t,c),j ≥
ExitChannel(x,y,c,(t+1)%II),j .

(19)

A value must fan-out to at least one routing resource, i.e.
information cannot be destroyed. For all ∀i ∈ A,∀c ∈ C,∀j ∈
V als

Rh
((x+1)%Nx,y,c,(t+1)%II),j +Rv

(x,(y+1)%Ny,c,(t+1)%II),j+

ExitChannel(x,y,c,(t+1)%II),j

≥ Rh
(i,c),j +Rv

(i,c),j + EnterChannel(x,y,t,c),j .
(20)

Objective Function: Our objective function minimizes the
sum of all routing resources used, across every PE and every
location.

A∑
i

C∑
c

V als∑
j

Rh
(i,c),j +Rv

(i,c),j (21)

Scheduling concludes the generation of a repeatable sched-
ule for a fixed size array, which can then be replicated over a
chip. Figure 6 illustrates a schedule of the motivating example.
Inputs leave the IO PE at (0, 1) and both use the same router
and the same channel in different contexts (cycles). Both x
and a propagate to the adder PE at (0, 0) and, in x’s case, to
the multiplier PE at (1, 1), and so on until the final multiply
is propagated to the IO PE at (1, 1). This dual-context run
(II = 2, represented by two close parallel lines) was mapped
with C = 2 channels which is required because of PE self-
communication (e.g. the result of one add is the input to
another, and there is one adder).

E. Configuration

After an appropriate schedule is computed, we generate a
hardware configuration with the final channel count, II , and
PE operator arrangement. The static schedule is processed to
generate context memories for all routers, PE input multiplex-
ers, and operand rotating register addresses, which are then
fed into the synthesis tool. Here, the array can be unrolled to
the greatest extent allowed by the chip-specific implementation
(e.g. a 3x19 array can be unrolled 23 times to utilize the entire
overlay).



V. CGRA IMPLEMENTATION AND FLOORPLANNING

We implement the Mocarabe overlay using parametric Ver-
ilog for PEs and switches. We use Xilinx Vivado 2020.1 to
synthesize, place, and route the design on a Xilinx Alveo U280
card for analysis. We design hand-crafted placement scripts to
effectively map the design and make use of FPGA resources
while keeping the operation frequency high. Each logical block
containing PE and switches is assigned to a physical block
(Pblock) on the chip. We define an arbitrary estimate for each
Pblock’s size as the number of logic slices it contains, with
each slice containing Look-Up Tables (LUTs) and flip flops.
For instance, a 10 × 10 Pblock can span the chip from slice
X0Y0 to slice X9Y9, creating a rectangular area over the
device that contains 100 slices.

As the first step, we use folded layout for the physical
placement of logic blocks and routers to reduce the torus
critical path delay.

During our floorplanning experiments we notice that the
unused portions at each Pblock add to routing delay. We place
and route a 10 × 10 array for varying Pblock sizes up to
100 slices shown in Figure 8. Compact Pblocks generally
deliver higher frequency with the 8 × 10 PE achieving the
highest frequency of 980MHz. To scale up the CGRA and

9x7 8x8 10x7 8x9 9x8 8x10 10x8 9x9 8x11 9x10 10x9 8x12 9x11 10x10
Pblock size

871
893
915
937
959
981

Fr
eq

ue
nc

y 
(M

H
z)

Fig. 8. Frequency as a function of block size for a 10× 10 Mocarabe array.

span the FPGA, we set the array size to 20 × 60, with the
same configuration of having multipliers on the first column
and the rest of the blocks being adders. Spanning the entire
FPGA required communication between different Super Logic
Regions (SLRs) which lead to large routing delays between
SLRs. We fixed Pblock size to 10×10 in order to avoid having
single Pblocks spread among multiple SLRs. Furthermore, we
added extra pipeline registers to each router’s output to the
nearby routers and registered the incoming data. We forced
Vivado to map the router registers that had incoming or
outgoing SLR crossing nets to SLR crossing Laguna registers,
which are connected together by Super Long Lines (SLLs),
inside the router’s corresponding Pblock. We use Vivado’s
“phys opt design” compiler option to include various physical
optimizations (e.g. an SLR-crossing optimization), once after
placement and once after routing to enable the 20× 60 array
to run at 650 MHz+.

Although the 20 × 60 array operates at 650 MHz, the
operation frequency is not stable between different operator
configurations. For instance, having all blocks performing
multiplication results in a noticeable frequency drop to 400
MHz. The drop in frequency is because some PEs use DSPs
placed far away outside their Pblocks. To overcome this issue,
we modify the placement scripts to force each PE to only use

the DSPs located inside its Pblock and added paddings to array
placement on the chip to make sure each Pblock contained at
least the amount of DSP blocks needed by each PE.

TABLE III
CGRA SIZES AND FREQUENCIES

CGRA Frequency (MHz) Array size

Mocarabe (C=1) 711–768 19× 69
Mocarabe (C=2) 691–750 19× 69
Mocarabe (C=3) 645–693 19× 69
Mocarabe (C=1) 813–921 4× 4
ADRES (Ultrascale+) 382 4× 4
ADRES (Stratix10) 260 4× 4
HyCUBE (Ultrascale+) 307 4× 4
HyCUBE (Stratix 10) 226 4× 4

The 10× 10 size for each Pblock is a suitable option here
as well to make sure all Pblocks receive the resources they
need. By using the updated placement scripts, we are able
to scale the array size to 19 × 69, spanning the entire chip
and operate at 640 MHz for an array composed only from
multiplier PEs. To further increase the operation frequency we
pipelined the router outputs to PEs, which improved operation
frequency, taking the all-multiplier 19×69 array frequency up
from 640 – 740MHz. Since some applications at a given II
require higher channel counts, we support 1–3 channel, two-
input PE configurations.

VI. EXPERIMENTAL RESULTS

In the following section, we showcase our benchmark
results, compare our overlay to similar recent CGRA over-
lays, evaluate our CGRA against Vivado HLS, and compare
a PathFinder implementation with our ILP implementation.
Experiments were run with GNU parallel [24].

A. Benchmarks

Table IV shows an overview of every benchmark’s size and
minimum channel count obtained by our ILP scheduler. All
benchmarks can run on an implemented channel count of 3 or
fewer, except deriche with II = 4 which requires 4.

TABLE IV
MOCARABLE COMPILER II AND CHANNEL COUNT RESULTS

Benchmark DFG Size Channel Count
I/Os Adds Multiplies II=1 II=2 II=3 II=4 II=5

adder chain 5 3 0 2 2 2 2 2
approx1 6 4 3 2 2 2 3 3
bellido 4 5 3 2 2 2 2 3
caprasse 6 3 6 2 2 2 2 2
dct 23 32 22 3 3 2 2 2
deriche 49 35 45 3 3 3 4 3
fig3 4 2 1 2 2 2 2 2
fir32 67 32 33 2 3 2 2 2
gaussian 19 8 9 2 2 2 2 2
iir8 31 7 14 2 2 2 2 2
level1 linear 5 2 2 2 2 2 2 2
level1 saturation 7 5 2 2 2 2 3 3
poly10 12 9 9 2 2 2 2 2
poly20 21 19 9 3 2 2 2 3
poly3 5 2 3 2 2 2 2 3
poly4 6 3 4 2 2 2 2 3
poly6 8 5 6 2 2 2 2 2
poly8 10 7 7 2 2 2 2 2
poly quadratic 5 2 2 2 2 2 2 2
rgb 15 3 9 2 2 2 2 3
sobel 11 11 4 2 2 2 2 3



ad
de

r_
ch

ai
n

ap
pr

ox
1

be
llid

o
ca

pr
as

se dc
t

de
ric

he fig
3

ga
us

sia
n

iir
8

le
ve

l1
_li

ne
ar

le
ve

l1
_s

at
ur

at
io

n
po

ly
10

po
ly

20
po

ly
3

po
ly

4
po

ly
6

po
ly

8
po

ly
_q

ua
dr

at
ic rg
b

so
be

l0
100
200
300
400
500
600
700

Fr
eq

ue
nc

y 
(M

Hz
)

II=1

ad
de

r_
ch

ai
n

ap
pr

ox
1

be
llid

o
ca

pr
as

se dc
t

de
ric

he fig
3

ga
us

sia
n

iir
8

le
ve

l1
_li

ne
ar

le
ve

l1
_s

at
ur

at
io

n
po

ly
10

po
ly

20
po

ly
3

po
ly

4
po

ly
6

po
ly

8
po

ly
_q

ua
dr

at
ic rg
b

so
be

l

II=2

ad
de

r_
ch

ai
n

ap
pr

ox
1

be
llid

o
ca

pr
as

se dc
t

de
ric

he fig
3

ga
us

sia
n

iir
8

le
ve

l1
_li

ne
ar

le
ve

l1
_s

at
ur

at
io

n
po

ly
10

po
ly

20
po

ly
3

po
ly

4
po

ly
6

po
ly

8
po

ly
_q

ua
dr

at
ic rg
b

so
be

l

II=3

ad
de

r_
ch

ai
n

ap
pr

ox
1

be
llid

o
ca

pr
as

se dc
t

de
ric

he fig
3

ga
us

sia
n

iir
8

le
ve

l1
_li

ne
ar

le
ve

l1
_s

at
ur

at
io

n
po

ly
10

po
ly

20
po

ly
3

po
ly

4
po

ly
6

po
ly

8
po

ly
_q

ua
dr

at
ic rg
b

so
be

l

II=4

ad
de

r_
ch

ai
n

ap
pr

ox
1

be
llid

o
ca

pr
as

se dc
t

de
ric

he fig
3

ga
us

sia
n

iir
8

le
ve

l1
_li

ne
ar

le
ve

l1
_s

at
ur

at
io

n
po

ly
10

po
ly

20
po

ly
3

po
ly

4
po

ly
6

po
ly

8
po

ly
_q

ua
dr

at
ic rg
b

so
be

l

II=5
Vivado HLS This work

Fig. 9. Vivado HLS fmax vs. this work (deriche at II = 4 needs C=4 that is not supported).

B. CGRA Overlay

We implemented Mocarabe on a Xilinx Alveo U280 using
the floorplanning described in Section V to carefully optimize
the design. Mocarabe is available in four different configura-
tions:

• A 19× 69 single-channel (C = 1), single-input PE
• A 19× 69 two-channel (C = 2), two-input PE
• A 19× 69 three-channel (C = 3), two-input PE
• A 4 × 4 single-channel (C = 1), single-input PE (to

compare with other CGRAs)
To demonstrate high operation frequencies across a spec-

trum of operator configurations (multipliers and adders), each
CGRA configuration was tested with 10–100% of PEs as
multipliers (in steps of 10%), randomly distributed across the
array, with the remaining PEs configured as adders. Figure 10
shows the operation frequencies of different configurations.
The single-channel C = 1, 16 × 69 array ran at 748 MHz
on average, the two- channel C = 2, 16 × 69 array ran at
717 MHz on average, the three-channel C = 3, 16 × 69
array ran at 675 MHz on average, and the 4 × 4 array ran
at 864 MHz on average. There are small frequency variations
between different PE configurations, and Mocarabe maintains
high operation frequencies regardless of the PE configurations
because of Pblock sizing and adequate pipelining.

10 20 30 40 50 60 70 80 90 100
Percentage of blocks as multipliers

100

200

300

400

500

600
640
680
720
760
800
840
880
920

Fr
eq

ue
nc

y 
(M

H
z)

1 channel, 1 input PE
2 channels, 2 input PE
3 channels, 2 input PE
4x4 single channel

Fig. 10. Frequency for different channel-count and PE configurations.

We compare Mocarabe to recent CGRA-ME [8] overlay
implementations of ADRES [13] and HyCUBE [14]. In [8],
the authors implement 4 × 4 ADRES and HyCUBE CGRAs
as overlays on the Xilinx Ultrascale+ XCVU3P and the Intel
Stratix 10 GX850. The 32-bit ADRES overlay operates at up
to 382 MHz on average on the Ultrascale+ and up to 260MHz
on average on the Stratix 10. The 32-bit HyCUBE overlay
operates at up to 307 MHz on average on the Ultrascale+
and up to 226 MHz on average on the Stratix 10. Mocarabe

maintains higher operation frequencies while having orders-of-
magnitude larger array sizes. In Table III, we show operating
frequencies for different CGRAs. For Mocarabe we provide
frequency ranges, as frequency varies in different operator
configurations. In Table V, we show the clock frequency
gains for different Mocarabe configurations when compared
to ADRES and HyCUBE overlays.

TABLE V
MOCARABE FREQUENCY GAINS OVER OTHER CGRAS

CGRA C=1 C=2 C=3 C=1 (4× 4)

ADRES (U+) 1.8− 2× 1.8− 2× 1.7− 1.8× 2.1− 2.4×
ADRES (S10) 2.7− 3× 2.7− 2.9× 2.5− 2.7× 3.1− 3.5×
HyCUBE (U+) 2.3− 2.5× 2.3− 2.4× 2.1− 2.3× 2.6− 3×
HyCUBE (S10) 3.1− 3.4× 3.1− 3.3× 2.9− 3.1× 3.6− 4×

C. Vivado HLS

To compare with Vivado HLS, we implement each bench-
mark with a given initiation interval and unroll the resulting
array to take advantage of every available PE (19 × 69).
We give Vivado HLS the same benchmark, II , unroll factor
and frequency target. Though Vivado provides the option to
constrain the number of adders and multipliers, we outperform
Vivado without providing these constraints, as shown in Figure
9. Vivado HLS can, in some cases, retain a high fmax for
benchmarks with no resource sharing (II = 1), but this
quickly drops off by factors of up to 2× for II = 2, 4.5× for
II = 3, and 5.5× for II = 4 as more operations are assigned
to one functional unit. At II = 5, the lowest fmax achieved
by Vivado HLS is with the poly10 benchmark at II = 5
at 78.06 MHz, 9× away from the peak at 750 MHz. These
results do not apply any resource constraints to Vivado HLS.

For all benchmarks, Mocarabe has met the target II . Vivado
HLS can also meet target II when not given any resource
constraints. However, when we count the number of functional
units we use and force Vivado HLS to use the same, Vivado’s
resource sharing simply fails beyond II = 1, as shown in
Figure 11. II can increase by up to 2 cycles for II = 4, and
up to 4 for II = 5. Vivado HLS timed out (did not finish in 24
hours) for one benchmark, fir32. Table VI compares Vivado
HLS resource usage to Mocarabe resource usage. Mocarabe
uses a similar number of DSP blocks in most cases while
using more LUTs, which is in part due to the communication
network. Vivado HLS failed to implement dct, poly10,
and poly20 for targeting II = 5 with the same unroll



ad
de

r_
ch

ai
n

ap
pr

ox
1

be
llid

o
ca

pr
as

se dc
t

de
ric

he fig
3

ga
us

sia
n

iir
8

le
ve

l1
_li

ne
ar

le
ve

l1
_s

at
ur

at
io

n
po

ly
10

po
ly

20
po

ly
3

po
ly

4
po

ly
6

po
ly

8
po

ly
_q

ua
dr

at
ic rg
b

so
be

l

1
2
3
4
5
6
7
8
9

10

Ac
hi

ev
ed

 II
 

Target II
II=1 II=2 II=3 II=4 II=5

Fig. 11. Achieved II vs. Target II for various dataflow benchmarks in Vivado
HLS. Mocarabe always meets target II.

as us. Furthermore, deriche could not be implemented on
our current design for targetting II = 4 as it needs more
channels. Implementation failures are indicated by “0” in the
table. However, as each multiplier PE uses 3 DSP blocks in
our design, we are providing comparison data for deriche
II = 4 DSP usage. Table VII compares Mocarabe latency in
cycles to Vivado HLS latency. Mocarabe latency can be up to
5.6× (2.1× - 2.4× mean) larger than Vivado HLS depending
on the number of communication channels. This is because
the PE takes 6-8 cycles and the router takes 2-3 cycles for
high-frequency pipelined operation.

D. PathFinder Space-Time Scheduler

To explore possible tradeoffs between quality-of-result
(channel count) and runtime, we implement a space-time
scheduler with a PathFinder approach, inspired by [25] which
can be swapped in to replace the ILP scheduler in our com-
piler. The algorithm routes over a Modulo Routing Resource
Graph (MRRG [15]), which is a graph representation of every
PE and routing resource over time, with multiple stages of rip-
up and re-route. As shown in Figure 12, the algorithm almost
never outperforms the ILP formulation by mapping to a lower
channel count configuration, and channel count can be as high
as 2× higher with the PathFinder scheduler. In all cases the
ILP formulation was faster with the exception of deriche
for II = 2.

0
1
2
3
4
5
6
7
8

C 
(g

eo
 m

ea
n)

II=1
ILP
Pathfinder

II=2
ILP
Pathfinder

ad
de

r_
ch

ai
n

ap
pr

ox
1

be
llid

o
ca

pr
as

se dc
t

de
ric

he fig
3

ga
us

sia
n

iir
8

le
ve

l1
_li

ne
ar

le
ve

l1
_s

at
ur

at
io

n
po

ly
10

po
ly

20
po

ly
3

po
ly

4
po

ly
6

po
ly

8
po

ly
_q

ua
dr

at
ic rg
b

so
be

l

102

103

ru
nt

im
e(

s)

ad
de

r_
ch

ai
n

ap
pr

ox
1

be
llid

o
ca

pr
as

se dc
t

de
ric

he fig
3

ga
us

sia
n

iir
8

le
ve

l1
_li

ne
ar

le
ve

l1
_s

at
ur

at
io

n
po

ly
10

po
ly

20
po

ly
3

po
ly

4
po

ly
6

po
ly

8
po

ly
_q

ua
dr

at
ic rg
b

so
be

l

ILP PathFinder

Fig. 12. ILP vs PathFinder Scheduler, Channel Count and Runtime.

TABLE VI
MOCARABE VS VIVADO HLS RESOURCE USAGE

(MOCARABE/VIVADO HLS)

Benchmark II=1 II=2 II=3 II=4 II=5
DSP LUT DSP LUT DSP LUT DSP LUT DSP LUT

adder chain – 22.6 – 18.8 – 18.6 – 5.3 – 4.9
approx1 1.0 23.4 1.0 9.4 1.0 7.5 1.0 10.6 1.0 7.2
bellido 1.0 46.3 0.9 16.1 1.0 7.9 1.0 9.2 1.0 9.5
caprasse 1.5 21.2 1.0 6.7 1.0 5.1 1.5 9.3 1.5 7.4
dct 1.0 47.9 1.0 13.8 1.0 6.8 1.0 4.0 0 0
deriche 1.4 58.5 1.0 19.0 1.0 9.2 1.0 0 1.0 6.5
fig3 1.0 20.4 1.0 16.1 1.0 12.0 1.0 6.0 1.0 6.6
gaussian 1.0 31.9 1.0 10.5 1.0 7.8 1.0 4.1 1.0 3.2
iir8 0.9 12.7 1.0 10.8 1.0 7.3 1.0 3.9 1.0 3.5
level1 lin 1.0 25.7 1.0 8.0 1.0 9.7 1.0 6.7 1.0 6.4
level1 sat 1.0 21.3 1.0 9.3 1.0 5.1 1.5 10.5 1.5 9.4
poly10 0.9 19.4 1.0 5.6 1.0 4.3 1.0 2.9 0 0
poly20 0.9 24.3 1.0 5.1 1.0 4.7 1.0 3.0 0 0
poly3 1.0 16.7 1.0 6.9 1.0 8.2 1.0 7.1 1.0 8.2
poly4 1.1 33.8 1.0 4.3 1.0 6.9 1.1 12.3 1.1 7.8
poly6 1.0 25.0 1.0 5.4 1.0 3.8 1.0 4.0 1.0 4.0
poly8 0.9 20 1.0 4.8 1.0 4.0 1.0 2.6 1.0 2.8
poly quad 1.0 85.4 1.0 13.3 1.0 37.4 1.0 8.0 1.0 8.2
rgb 1.0 28.2 1.0 11.3 1.0 10.6 1.0 4.7 1.0 7.0
sobel 4.0 32.6 2.0 14.9 1.0 14.1 1.0 12.5 1.0 18.8

TABLE VII
MOCARABE VS VIVADO HLS LATENCY IN CYCLES

(MOCARABE/VIVADO HLS RATIO IS SHOWN IN RED)

Benchmark II=1 II=2 II=3 II=4 II=5
Moc HLS Moc HLS Moc HLS Moc HLS Moc HLS

adder chain 52 10 (5.2) 56 10 (5.6) 58 13 (4.5) 56 10 (5.6) 58 11 (5.3)
approx1 80 30 (2.7) 66 34 (1.9) 74 28 (2.6) 74 31 (2.4) 84 29 (2.9)
bellido 64 23 (2.8) 74 25 (3.0) 82 22 (3.7) 78 20 (3.9) 80 22 (3.6)
caprasse 66 30 (2.2) 88 27 (3.3) 94 28 (3.4) 92 31 (3.0) 96 29 (3.3)
dct 78 98 (0.8) 98 88 (1.1) 100 82 (1.2) 92 89 (1.0) 88 87 (1.0)
deriche 328 212 (1.5) 216 186 (1.2) 222 155 (1.4) 0 172 (0.0) 234 172 (1.4)
fig3 54 17 (3.2) 52 17 (3.1) 60 17 (3.5) 60 17 (3.5) 62 18 (3.4)
gaussian 120 45 (2.7) 130 58 (2.2) 126 43 (2.9) 144 45 (3.2) 152 56 (2.7)
iir8 158 119 (1.3) 170 166 (1.0) 180 136 (1.3) 190 140 (1.4) 210 131 (1.6)
level1 lin 54 25 (2.2) 60 24 (2.5) 62 24 (2.6) 66 24 (2.8) 66 25 (2.6)
level1 sat 66 31 (2.1) 62 28 (2.2) 72 30 (2.4) 70 32 (2.2) 68 30 (2.3)
poly10 202 104 (1.9) 210 106 (2.0) 218 108 (2.0) 222 101 (2.2) 230 98 (2.3)
poly20 432 206 (2.1) 410 238 (1.7) 430 233 (1.8) 444 214 (2.1) 460 210 (2.2)
poly3 76 32 (2.4) 72 34 (2.1) 78 31 (2.5) 74 33 (2.2) 80 32 (2.5)
poly4 100 44 (2.3) 94 40 (2.4) 96 48 (2.0) 98 41 (2.4) 106 40 (2.6)
poly6 130 64 (2.0) 130 62 (2.1) 142 59 (2.4) 148 68 (2.2) 142 68 (2.1)
poly8 166 83 (2.0) 158 82 (1.9) 172 84 (2.0) 174 80 (2.2) 192 96 (2.0)
poly quad 60 25 (2.4) 56 25 (2.2) 58 24 (2.4) 68 24 (2.8) 66 25 (2.6)
rgb 44 33 (1.3) 50 47 (1.1) 46 36 (1.3) 36 34 (1.1) 46 54 (0.9)
sobel 102 32 (3.2) 98 32 (3.1) 110 30 (3.7) 102 29 (3.5) 104 33 (3.2)
geomean 2.2 2.1 2.3 2.4 2.3

VII. FUTURE WORK

To extend this work, accelerating FPGA placement by
leveraging tools such as RapidWright [26] and exploiting the
regular structure of out architecture (as in [27]) may eliminate
the very painful task of finding an optimal floorplan for each
target device and speed up the end-to-end flow. Breaking up
the DFG into separate but adjacent arrays, when possible,
would allow for even larger applications to be easily mapped.
Coalescing different operations (e.g. sequential multiply and
add) into one PE could reduce communication between PEs.

VIII. CONCLUSION

We introduce Mocarabe, a new CGRA overlay architecture
for Xilinx FPGAs and its associated communication-aware
compiler. We present a scalable and flexible FPGA overlay im-
plementation engineered with generous pipelining and careful
floorplanning to achieve 650MHz+ operation. Our implemen-
tation outperforms other CGRA overlay implementations on
FPGAs with 1.8–3× higher frequency. At scale, our overlay
outperforms Vivado HLS with up to 9.2× higher frequency.
We can share functional resources very effectively while HLS
struggles to do so at higher II . Mocarabe code can be found
at: https://git.uwaterloo.ca/watcag-public/mocarabe.

https://git.uwaterloo.ca/watcag-public/mocarabe


REFERENCES

[1] T. N. Theis and H. S. P. Wong, “The end of moore’s law: A
new beginning for information technology,” Computing in Science and
Engg., vol. 19, no. 2, p. 41–50, Mar. 2017. [Online]. Available:
https://doi.org/10.1109/MCSE.2017.29

[2] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and
K. Wang, “Enabling fpgas in the cloud,” in Proceedings of the 11th
ACM Conference on Computing Frontiers, ser. CF ’14. New York,
NY, USA: Association for Computing Machinery, 2014. [Online].
Available: https://doi.org/10.1145/2597917.2597929

[3] Jian Ouyang, Shiding Lin, Wei Qi, Yong Wang, Bo Yu, and Song Jiang,
“Sda: Software-defined accelerator for large-scale dnn systems,” in 2014
IEEE Hot Chips 26 Symposium (HCS), 2014, pp. 1–23.

[4] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constan-
tinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
M. Haselman, S. Hauck, S. Heil, A. Hormati, J. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger,
“A reconfigurable fabric for accelerating large-scale datacenter services,”
IEEE Micro, vol. 35, no. 3, pp. 10–22, 2015.

[5] H. K.-H. So and C. Liu, FPGA Overlays. Cham: Springer
International Publishing, 2016, pp. 285–305. [Online]. Available:
https://doi.org/10.1007/978-3-319-26408-0 16

[6] C. Kim, M. Chung, Y. Cho, M. Konijnenburg, S. Ryu, and J. Kim, “Ulp-
srp: Ultra low-power samsung reconfigurable processor for biomedical
applications,” ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 3,
Sep. 2014. [Online]. Available: https://doi.org/10.1145/2629610

[7] D. Wijerathne, Z. Li, M. Karunarathne, A. Pathania, and T. Mitra,
“Cascade: High throughput data streaming via decoupled access-execute
cgra,” ACM Trans. Embed. Comput. Syst., vol. 18, no. 5s, Oct. 2019.
[Online]. Available: https://doi.org/10.1145/3358177

[8] I. Taras and J. H. Anderson, “Impact of fpga architecture on area and
performance of cgra overlays,” in 2019 IEEE 27th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2019, pp. 87–95.

[9] A. Chattopadhyay, “Ingredients of adaptability: A survey of reconfig-
urable processors,” VLSI Design, vol. 2013, 07 2013.

[10] L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei,
“A survey of coarse-grained reconfigurable architecture and design:
Taxonomy, challenges, and applications,” ACM Comput. Surv., vol. 52,
no. 6, Oct. 2019. [Online]. Available: https://doi.org/10.1145/3357375

[11] A. Podobas, K. Sano, and S. Matsuoka, “A survey on coarse-grained
reconfigurable architectures from a performance perspective,” IEEE
Access, vol. 8, pp. 146 719–146 743, 2020.

[12] V. Tehre and R. Kshirsagar, “Survey on coarse grained reconfigurable
architectures,” International Journal of Computer Applications, vol. 48,
pp. 1–7, 06 2012.

[13] B. Mei, S. Vernalde, D. Verkest, H. Man, and R. Lauwereins, “Adres:
An architecture with tightly coupled vliw processor and coarse-grained
reconfigurable matrix,” 09 2003, pp. 61–70.

[14] M. Karunaratne, A. Mohite, T. Mitra, and L.-S. Peh, “Hycube: A cgra
with reconfigurable single-cycle multi-hop interconnect,” 06 2017, pp.
1–6.

[15] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-
Azumi, and J. Anderson, “Cgra-me: A unified framework for cgra
modelling and exploration,” in 2017 IEEE 28th International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
Seattle, WA, 2017, pp. 184–189.

[16] K. Niu and J. H. Anderson, “Compact area and performance modelling
for cgra architecture evaluation,” in 2018 International Conference on
Field-Programmable Technology (FPT), 2018, pp. 126–133.

[17] J. Cong and Zhiru Zhang, “An efficient and versatile scheduling al-
gorithm based on sdc formulation,” in 2006 43rd ACM/IEEE Design
Automation Conference, 2006, pp. 433–438.

[18] B. Van Essen, A. Wood, A. Carroll, S. Friedman, R. Panda, B. Ylvisaker,
C. Ebeling, and S. Hauck, “Static versus scheduled interconnect in
coarse-grained reconfigurable arrays,” in 2009 International Conference
on Field Programmable Logic and Applications, 2009, pp. 268–275.

[19] S. A. Chin and J. H. Anderson, “An architecture-agnostic integer linear
programming approach to cgra mapping,” in DAC ’18. San Francisco,
CA: ACM, 2018.

[20] A. Ritz, B. Avent, A. Pratapa, and T. Murali. (2018) halp:
Hypergraph algorithms package. [Online]. Available: https://github.
com/Murali-group/halp

[21] D. Kucar, S. Areibi, and A. Vannelli, “Hypergraph partitioning tech-
niques,” DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE
SYSTEMS SERIES A 11, 2004.

[22] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020.
[Online]. Available: http://www.gurobi.com

[23] M. Perry. (2019) simanneal: Python module for simulated annealing.
[Online]. Available: https://github.com/perrygeo/simanneal

[24] O. Tange, “Gnu parallel - the command-line power tool,” ;login: The
USENIX Magazine, vol. 36, no. 1, pp. 42–47, Feb 2011. [Online].
Available: http://www.gnu.org/s/parallel

[25] S. B. Patil, T. Liu, and R. Tessier, “A bandwidth-optimized routing
algorithm for hybrid fpga networks-on-chip,” in 2018 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2018, pp. 25–28.

[26] C. Lavin and A. Kaviani, “Rapidwright: Enabling custom crafted im-
plementations for fpgas,” in 2018 IEEE 26th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
2018, pp. 133–140.

[27] N. Zhang, X. Chen, and N. Kapre, “Rapidlayout: Fast hard block place-
ment of fpga-optimized systolic arrays using evolutionary algorithms,”
in 2020 30th International Conference on Field-Programmable Logic
and Applications (FPL), 2020, pp. 145–152.

https://doi.org/10.1109/MCSE.2017.29
https://doi.org/10.1145/2597917.2597929
https://doi.org/10.1007/978-3-319-26408-0_16
https://doi.org/10.1145/2629610
https://doi.org/10.1145/3358177
https://doi.org/10.1145/3357375
https://github.com/Murali-group/halp
https://github.com/Murali-group/halp
http://www.gurobi.com
https://github.com/perrygeo/simanneal
http://www.gnu.org/s/parallel

