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Abstract—Parallel graph algorithms expressed in a Bulk-
Synchronous Parallel (BSP) compute model generate highly-
structured communication workloads from messages propagating
along graph edges. We can expose this structure to traffic compil-
ers and optimization tools before runtime to reshape and reduce
traffic for higher performance (or lower area, lower energy,
lower cost). Such offline traffic optimization eliminates the need
for complex, runtime NoC hardware and enables lightweight,
scalable FPGA NoCs. In this paper, we perform load balancing,
placement, fanout routing and fine-grained synchronization to
optimize our workloads for large networks up to 2025 parallel
elements. This allows us to demonstrate speedups between 1.2×
and 22× (3.5× mean), area reductions (number of Processing
Elements) between 3× and 15× (9× mean) and dynamic energy
savings between 2× and 3.5× (2.7× mean) over a range of real-
world graph applications. We expect such traffic optimization
tools and techniques to become an essential part of the NoC
application-mapping flow.

I. INTRODUCTION

Real-world communication workloads exhibit structure in
the form of locality, sparsity, fanout distribution, and other
properties. If this structure can be exposed to automation
tools, we can reshape and optimize the workload to im-
prove performance, lower area and reduce energy. In this
paper, we develop a traffic compiler that exploits struc-
tural properties of Bulk-Synchronous Parallel communication
workloads. This compiler provides insight into performance
tuning of communication-intensive parallel applications. The
performance and energy improvements made possible by the
compiler allows us to build the NoC from simple hardware el-
ements that consume less area and eliminate the need for using
complex, area-hungry, adaptive hardware. We now introduce
key structural properties exploited by our traffic compiler.

• When the natural communicating components of the traf-
fic do not match the granularity of the NoC architecture,
applications may end up being poorly load balanced. We
discuss Decomposition and Clustering as techniques to
improve load balance.

• Most application exhibit sparsity and locality; an object
often interacts regularly with only a few other objects in
its neighborhood. We exploit these properties by Placing
communicating objects close to each other.

• Data updates from an object should often be seen by
multiple neighbors, meaning the network must route
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Fig. 1: NoC Traffic Compilation Flow
(annotated with cnet-default workload at 2025 PEs)

the same message to multiple destinations. We consider
Fanout Routing to avoid redundantly routing data.

• Finally, applications that use barrier synchronization can
minimize node idle time induced by global synchroniza-
tion between the parallel regions of the program by using
Fine-Grained Synchronization.

While these optimizations have been discussed indepen-
dently in the literature extensively (e.g. [1], [2], [3], [4], [5]),
we develop a toolflow that auto-tunes the control parameters
of these optimizations per workload for maximum benefit
and provide a quantification of the cumulative benefit of
applying these optimizations to various applications in onchip
network settings. This quantification further illustrates how the
performance impact of each optimization changes with NoC
size. The key contributions of this paper include:
• Development of a traffic compiler for applications de-

scribed using the BSP compute model.
• Use of communication workloads extracted from Con-

ceptNet, Sparse Matrix-Multiply and Bellman-Ford run-
ning on range of real-world circuits and graphs.
• Quantification of cumulative benefits of each stage of the

compilation flow (performance, area, energy).
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II. BACKGROUND

A. Application

Parallel graph algorithms are well-suited for concurrent
processing on FPGAs. We describe graph algorithms in a
Bulk Synchronous Parallel (BSP) compute model [6] and
develop an FPGA system architecture [7] for accelerating such
algorithms. The compute model defines the intended semantics
of the algorithm so we know which optimizations preserve
the desired meaning while reducing NoC traffic. The graph
algorithms are a sequence of steps where each step is separated
by a global BSP barrier. In each step, we perform parallel,
concurrent operations on nodes of a graph data-structure where
all nodes send messages to their neighbors while also receiving
messages. The graphs in these algorithms are known when the
algorithm starts and do not change during the algorithm. Our
communication workload consists of routing a set of messages
between graph nodes. We route the same set of messages,
corresponding to the graph edges, in each epoch. Applications
in the BSP compute model generate traffic with many com-
munication characteristics (e.g. locality, sparsity, multicast)
which also occur in other applications and compute models as
well. Our traffic compiler exploits the a priori knowledge of
structure-rich communication workloads (see Section IV-A) to
provide performance benefits. Our approach differs from some
recent NoC studies that use statistical traffic models (e.g. [9],
[10], [11], [12]) and random workloads (e.g. [13], [14], [15])
for analysis and experiments. Statistical and random workloads
may exaggerate traffic requirements and ignore application
structure leading to overprovisioned NoC resources and missed
opportunities for workload optimization.

In [9], the authors demonstrate a 60% area reduction along
with an 18% performance improvement for well-behaved
workloads. In [11], we observe a 20% reduction in buffer sizes
and a 20% frequency reduction for an MPEG-2 workload. In
[13], the authors deliver a 23.1% reduction in time, a 23%
reduction in area as well as a 38% reduction in energy for

their design. We demonstrate better performance, lower area
requirements and lower energy consumption (Section V).

B. Architecture

We organize our FPGA NoC as a bidirectional 2D-
mesh [16] with a packet-switched routing network as shown
in Figure 2. The application graph is distributed across the
Processing Elements (PEs) which are specialized to process
graph nodes. Each PE stores a portion of the graph in its
local on-chip memory and performs accumulate and update
computations on each node as defined by the graph algorithm.
The PE is internally pipelined and capable of injecting and
receiving a new packet in each cycle. The switches imple-
ment a simple Dimension-Ordered Routing algorithm [21]
and also support fully-pipelined operation using composable
Split and Merge units. We discuss additional implementation
parameters in Section IV-B. Prior to execution, the traffic
compiler is responsible for allocating graph nodes to PEs.
During execution, the PE iterates through all local nodes
and generates outbound traffic that is routed over the packet-
switched network. Inbound traffic is stored in the incoming
message buffers of each PE. The PE can simultaneously handle
incoming and outgoing messages. Once all messages have
been received, a barrier is detected using a global reduce
tree (a bit-level AND-reduce tree). The graph application
proceeds through multiple global barriers until the algorithm
terminates. We measure network performance as the number
of cycles required for one epoch between barriers, including
both computation and all messages routing.

III. OPTIMIZATIONS

In this section, we describe a set of optimizations performed
by our traffic compiler.

1) Decomposition: Ideally for a given application, as the
PE count increases, each PE holds smaller and smaller portions
of the workload. For graph-oriented workloads, unusually
large nodes with a large number of edges (i.e. nodes that
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Fig. 3: Decomposition

send and receive many messages) can prevent the smooth
distribution of the workload across the PEs. As a result,
performance is limited by the time spent sending and receiving
messages at the largest node (streamlined message processing
in the PEs implies work ∝ number of messages per node).
Decomposition is a strategy where we break down large nodes
into smaller nodes (either inputs, outputs or both can be
decomposed) and distribute the work of sending and receiving
messages at the large node over multiple PEs. The idea is
similar to that used in synthesis and technology mapping of
logic circuits [1]. Fig. 3 illustrates the effect of decomposing a
node. Node 5 with 3 inputs gets fanin-decomposed into Node
5a and 5b with 2 inputs each thereby reducing the serialization
at the node from 3 cycles to 2. Similarly, Node 1 with 4 outputs
is fanout-decomposed into Node 1a and 1b with 3 outputs and
2 outputs each. Greater benefits can be achieved with higher-
fanin/fanout nodes (see Table I).

In general, when the output from the graph node is a
result which must be multicast to multiple outputs, we can
easily build an output fanout tree to decompose output routing.
However, input edges to a graph node can only be decomposed
when the operation combining inputs is associative. Concept-
Net and Bellman-Ford (discussed later in Section IV-A) per-
mit input decomposition since nodes perform simple integer
sum and max operations which are associative and can be
decomposed. However, Matrix Multiply nodes perform non-
associative floating-point accumulation over incoming values
which cannot be broken up and distributed

2) Clustering: While Decomposition is necessary to break
up large nodes, we may still have an imbalanced system if
we randomly place nodes on PEs. Random placement fails
to account for the varying amount of work performed per
node. Lightweight Clustering is a common technique used
to quickly distribute nodes over PEs to achieve better load
balance (e.g. [2]). We use a greedy, linear-time Clustering
algorithm similar to the Cluster Growth technique from [2].
We start by creating as many “clusters” as PEs and randomly
assign a seed node to each cluster. We then pick nodes from the
graph and greedily assign them to the PE that least increases
cost. The cost function (“Closeness metric” in [2]) is chosen to
capture the amount of work done in each PE including sending
and receiving messages.

3) Placement: Object communication typically exhibits lo-
cality. A random placement ignores this locality resulting in
more traffic on the network. Consequently, random placement
imposes a greater traffic requirement which can lead to poor
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Fig. 4: Placement
(Random Placement vs. Good Placement)

performance, higher energy consumption and inefficient use
of network resources. We can Place nodes close to each other
to minimize traffic requirements and get better performance
than random placement. The benefit of performing placement
for NoCs has been discussed in [3]. Good placement reduces
both the number of messages that must be routed on the
network and the distance which each message must travel.
This decreases competition for network bandwidth and lowers
the average latency required by the messages. Fig. 4 shows a
simple example of good Placement. A random partitioning of
the application graph may bisect the graph with a cut size of 6
edges (i.e. 6 messages must cross the chip bisection). Instead,
a high-quality partitioning of the graph will find a better cut
with size of 4. The load on the network will be reduced
since 2 fewer messages must cross the bisection. In general,
Placement is an NP-complete problem, and finding an optimal
solution is computationally intensive. We use a fast multi-level
partitioning heuristic [17] that iteratively clusters nodes and
moves the clustered nodes around partitions to search for a
better quality solution.

4) Fanout Routing: Some applications may require multi-
cast messages (i.e. single source, multiple destinations). Our
application graphs contain nodes that send the exact same
message to their destinations. Routing redundant messages
is a waste of network resources. We can use the network
more efficiently with Fanout Routing which avoids routing
redundant messages. This has been studied extensively by
Duato et al. [4]. If many destination nodes reside in the same
physical PE, it is possible to send only one message instead
of many, duplicate messages to the PE. For this to work, there
needs to be at least two sink nodes in any destination PE. The
PE will then internally distribute the message to the intended
recipients. This is shown in Fig. 5. The fanout edge from Node
3 to Node 5a and Node 4 can be replaced with a shared edge
as shown. This reduces the number of messages crossing the
bisection by 1. This optimization works best at reducing traffic
and message-injection costs at low PE counts. As PE counts
increase we have more possible destinations for the outputs
and fewer shareable nodes in the PEs resulting in decreasing
benefits.

5) Fine-Grained Synchronization: In parallel programs
with multiple threads, synchronization between the threads
is sometimes implemented with a global barrier for sim-
plicity. However, the global barrier may artificially serialize
computation. Alternately, the global barrier can be replaced

3
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with local synchronization conditions that avoid unnecessary
sequentialization. Techniques for eliminating such barriers
have been previously studied [18], [5]. In the BSP compute
model discussed in Section II, execution is organized as a
series of parallel operations separated by barriers. We use
one barrier to signify the end of the communicate phase and
another to signify the end of the compute phase. If it is known
prior to execution that the entire graph will be processed, the
first barrier can be eliminated by using local synchronization
operations. A node can be permitted to start the compute phase
as soon as it receives all its incoming messages without waiting
for the rest of the nodes to have received their messages. This
prevents performance from being limited by the sum of worst-
case compute and communicate latencies when they are not
necessarily coupled. We show the potential benefit of Fine-
Grained Synchronization in Fig. 6. Node 2 and Node 3 can
start their Compute phases after they have received all their
inputs messages. They do not need to wait for all other nodes
to receive all their messages. This optimization enables the
Communicate phase and the Compute phase to be overlapped.

IV. EXPERIMENTAL SETUP

A. Workloads

We generate workloads from a range of applications mapped
to the BSP compute model. We choose applications that cover
different domains including AI, Scientific Computing and
CAD optimization that exhibit important structural properties.

1) ConceptNet: ConceptNet [19] is a common-sense rea-
soning knowledge base described as a graph, where nodes
represent concepts and edges represent semantic relationships.
Queries to this knowledge base start a spreading-activation
algorithm from an initial set of nodes. The computation

TABLE I: Application Graphs

Graph Nodes Edges Max
Fanin Fanout

ConceptNet
cnet-small 14556 27275 226 2538
cnet-default 224876 553837 16176 36562

Matrix-Multiply
add20 2395 17319 124 124
bcsstk11 1473 17857 27 30
fidap035 19716 218308 18 18
fidapm37 9152 765944 255 255
gemat11 4929 33185 27 28
memplus 17758 126150 574 574
rdb3200l 3200 18880 6 6
utm5940 5940 83842 30 20

Bellman-Ford
ibm01 12752 36455 33 93
ibm05 29347 97862 9 109
ibm10 69429 222371 137 170
ibm15 161570 529215 267 196
ibm16 183484 588775 163 257
ibm18 210613 617777 85 209

spreads over larger portions of the graph through a sequence
of steps by passing messages from activated nodes to their
neighbors. In the case of complex queries or multiple simul-
taneous queries, the entire graph may become activated after
a small number of steps. We route all the edges in the graph
representing this worst-case step. In [7], we show a per-FPGA
speedup of 20× compared to a sequential implementation.

2) Matrix-Multiply: Iterative Sparse Matrix-Vector Multi-
ply (SMVM) is the dominant computational kernel in several
numerical routines (e.g. Conjugate Gradient, GMRES). In each
iteration a set of dot products between the vector and matrix
rows is performed to calculate new values for the vector to be
used in the next iteration. We can represent this computation
as a graph where nodes represent matrix rows and edges
represent the communication of the new vector values. In
each iteration messages must be sent along all edges; these
edges are multicast as each vector entry must be sent to each
row graph node with a non-zero coefficient associated with
the vector position. We use sample matrices from the Matrix
Market benchmark [20]. In [8], we show a speedup of 2-
3× over optimized sequential implementation using an older
generation FPGA and a performance-limited ring topology.

3) Bellman-Ford: The Bellman-Ford algorithm solves the
single-source shortest-path problem, identifying any negative
edge weight cycles, if they exist. It finds application in
CAD optimizations like Retiming, Static Timing Analysis
and FPGA Routing. Nodes represent gates in the circuit
while edges represent wires between the gates. The algorithm
simply relaxes all edges in each step until quiescence. A
relaxation consists of computing the minimum at each node
over all weighted incoming message values. Each node then
communicates the result of the minimum to all its neighbors
to prepare for the next relaxation.

B. NoC Timing and Power Model

All our experiments use a single-lane, bidirectional-mesh
topology that implements a Dimension-Ordered Routing func-
tion. The Matrix-Multiply network is 84-bits wide while Con-
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TABLE II: NoC Timing Model

Mesh Switch Latency
Tthrough (X-X, Y-Y) 2
Tturn (X-Y, X-Y) 4
Tinteface (PE-NoC, NoC-PE) 6
Twire 2
Processing Element Latency
Tsend 1
Treceive (ConceptNet, Bellman-Ford) 1
Treceive (Matrix-Multiply) 9

TABLE III: NoC Dynamic Power Model

Datawidth Block Dynamic Power at diff. activity (mW)
(Application) 0% 25% 50% 75% 100%
52 (ConceptNet,
Bellman-Ford)

Split 0.26 1.07 1.45 1.65 1.84
Merge 0.72 1.58 2.1 2.49 2.82

84 (Matrix-Multiply) Split 0.32 1.35 1.78 2.02 2.26
Merge 0.9 1.87 2.45 2.88 3.25

ceptNet and Bellman-Ford networks are 52-bits wide (with 20-
bits of header in each case). The switch is internally pipelined
to accept a new packet on each cycle (see Figure 2). Different
routing paths take different latencies inside the switch (see
Table II). We pipeline the wires between the switches for high
performance (counted in terms of cycles required as Twire).
The PEs are also pipelined to start processing a new edge
every cycle. ConceptNet and Bellman-Ford compute simple
sum and max operations while Matrix-Multiply performs
floating-point accumulation on the incoming messages. Each
computation on the edge then takes 1 or 9 cycles of latency
to complete (see Table II). We estimate dynamic power
consumption in the switches using XPower [22]. Dynamic
power consumption at different switching activity factors is
shown in Table III. We extract switching activity factor in
each Split and Merge unit from our packet-switched simulator.
When comparing dynamic energy, we multiply dynamic power
with simulated cycles to get energy. We generate bitstreams
for the switch and PE on a modern Xilinx Virtex-5 LX110T
FPGA [22] to derive our timing and power models shown in
Table II and Table III.

C. Packet-Switched Simulator

We use a Java-based cycle-accurate simulator that im-
plements the timing model described in Section IV-B for
our evaluation. The simulator models both computation and
communication delays, simultaneously routing messages on
the NoC and performing computation in the PEs. Our results in
Section V report performance observed on cycle-accurate sim-
ulations of different circuits and graphs. The application graph
is first transformed by a, possibly empty, set of optimizations
from Section III before being presented to the simulator.

V. EVALUATION

We now examine the impact of the different optimizations
on various workloads to quantify the cumulative benefit of
our traffic compiler. We order the optimization appropriately
to analyze their additive impacts. First we load balance our
workloads by performing Decomposition. We then determine
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how the workload gets distributed across PEs using Clustering
or Placement. Finally, we perform Fanout Routing and Fine-
Grained Synchronization optimizations. We illustrate scaling
trends of individual optimizations using a single illustrative
workload for greater clarity. At the end, we show cumulative
data for all benchmarks together.

A. Impact of Individual Optimizations

1) Decomposition: In Fig. 7, we show how the Concept-
Net cnet-default workload scales with increasing PE
counts under Decomposition. We observe that, Decomposition
allows the application to continue to scale up to 2025 PEs
and possibly beyond. Without Decomposition, performance
quickly runs into a serialization bottleneck due to large nodes
as early as 100 PEs. The decomposed NoC workload manages
to outperform the undecomposed case by 6.8× in performance.
However, the benefit is lower at low PE counts, since the
maximum logical node size becomes small compared to the
average work per PE. Additionally, decomposition is only
useful for graphs with high degree (see Table I). In Figure 8
we show how the decomposition limit control parameter
impacts the scaling of the workload. As expected, without
decomposition, performance of the workload saturates beyond
32 PEs. Decomposition with a limit of 16 or 32 allows the
workload to scale up to 400 PEs and provides a speedup
of 3.2× at these system sizes. However, if we attempt an
aggressive decomposition with a limit of 2 (all decomposed
nodes allowed to have a fanin and fanout of 2) performance
is actually worse than undecomposed case between 16 and
100 PEs and barely better at larger system sizes. At such
small decomposition limits, performance gets worse due to an
excessive increase in the workload size (i.e. number of edges
in the graph). Our traffic compiler sweeps the design space
and automatically selects the best decomposition limit.

2) Clustering: In Fig. 9, we show the effect of Clustering
on performance with increasing PE counts. Clustering pro-
vides an improvement over Decomposition since it accounts
for compute and message injection costs accurately, but that
improvement is small (1%–18%). Remember from Section III,
that Clustering is a lightweight, inexpensive optimization that
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attempts to improve load balance and as a result, we expect
limited benefits.

3) Placement: In Fig. 10, we observe that Placement
provides as much as 2.5× performance improvement over
a random placed workload as PE counts increase. At high
PE counts, localized traffic reduces bisection bottlenecks and
communication latencies. However, Placement is less effective
at low PE counts since the NoC is primarily busy injecting and
receiving traffic and NoC latencies are small and insignificant.
Moreover, good load-balancing is crucial for harnessing the
benefits of a high-quality placement (See Figure 15 with other
benchmarks).

4) Fanout-Routing: We show performance scaling with
increasing PEs for the Bellman-Ford ibm01 workload using
Fanout Routing in Fig. 11. The greatest performance benefit
(1.5×) from Fanout Routing comes when redundant messages
distributed over few PEs can be eliminated effectively. The
absence of benefit at larger PE counts is due to negligible
shareable edges as we suggested in Section III.

5) Fine-Grained Synchronization: In Fig. 12, we find that
the benefit of Fine-Grained Synchronization is greatest (1.6×)
at large PE counts when latency dominates performance. At
low PE counts, although NoC latency is small, elimination
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of the global barrier enables greater freedom in scheduling
PE operations and consequently we observe a non-negligible
improvement (1.2×) in performance. Workloads with a good
balance between communication time and compute time will
achieve a significant improvement from fine-grained synchro-
nization due to greater opportunity for overlapped execution.
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Fig. 12: Clustering, Placement, Fanout-Routing and
Fine-Grained Synchronization (ibm01)
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B. Cumulative Performance Impact

We look at cumulative speedup contributions and relative
scaling trends of all optimizations for all workloads at 25 PEs,
256 PEs and 2025 PEs.

At 25 PEs, Fig. 13, we observe modest speedups in the
range 1.5× to 3.4× (2× mean) which are primarily due
to Fanout Routing. Placement and Clustering are unable
to contribute significantly since performance is dominated

10%
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Fig. 16: How we compute area savings

by computation. Fine-Grained Synchronization also provides
some improvement, but as we will see, its relative contribution
increases with PE count.

At 256 PEs, Fig. 14, we observe larger speedups in the
range 1.2× to 8.3× (3.5× mean) due to Placement. At
these PE sizes, the performance bottleneck begins to shift
to the network, so reducing traffic on the network has a
larger impact on overall performance. We continue to see
performance improvements from Fanout Routing and Fine-
Grained Synchronization.

At 2025 PEs, Fig. 15, we observe an increase in speedups
in the range 1.2× to 22× (3.5× mean). While there is an im-
provement in performance from Fine-Grained Synchronization
compared to smaller PE cases, the modest quantum of increase
suggests that the contributions from other optimizations are
saturating or reducing.

Overall, we find ConceptNet workloads show impressive
speedups up to 22×. These workloads have decomposable
nodes that allow better load-balancing and have high-locality.
They are also the only workloads which have the most
need for Decomposition. Bellman-Ford workloads also show
good overall speedups as high as 8×. These workloads are
circuit graphs and naturally have high-locality and fanout.
Matrix-Multiply workloads are mostly unaffected by these
optimization and yield speedups not exceeding 4× at any
PE count. This is because the compute phase dominates
the communicate phase; compute requires high latency (9
cycles/edge from Table II) floating-point operations for each
edge. It is also not possible to decompose inputs due to the
non-associativity of the floating-point accumulation. As an
experiment, we decomposed both inputs and outputs of the
fidapm37 workload at 2025 PEs and observed an almost
2× improvement in performance.

C. Cumulative Area and Energy Impact

For some low-cost applications (e.g. embedded) it is impor-
tant to minimize NoC implementation area and energy. The
optimizations we discuss are equally relevant when cost is the
dominant design criteria.

To compute the area savings, we pick the smallest un-
optimized PE count that requires 1.1× the cycles of best
unoptimized case (the 10% slack accounts for diminishing
returns at larger PE counts (see Figure 16). For the fully
optimized workload, we identify the PE count that yields
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Fig. 17: Area Ratio to Baseline
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Fig. 18: Dynamic Energy Savings at 25 PEs

performance equivalent to the best unoptimized case. We
report these area savings in Figure 17. The ratio of these two
PE counts is 3–15 (mean of 9), suggesting these optimizations
allow much smaller designs.

To compute energy savings, we use the switching activity
factor and network cycles to derive dynamic energy reduction
in the network. Switching activity factor is extracted from the
number of packets traversing the Split and Merge units of a
Mesh Switch over the duration of the simulation Activity =
(2/Ports)× (Packets/Cycles). In Figure 18 we see a mean
2.7× reduction in dynamic energy at 25 PEs due to reduced
switching activity of the optimized workload. While we only
show dynamic energy savings at 25 PEs, we observed even
higher savings at larger system sizes.

VI. CONCLUSIONS AND FUTURE WORK

We demonstrate the effectiveness of our traffic compiler
over a range of real-world workloads with performance im-
provements between 1.2× and 22× (3.5× mean), PE count
reductions between 3× and 15× (9× mean) and dynamic
energy savings between 2× and 3.5× (2.7× mean). For large
workloads like cnet-default, our compiler optimizations
were able to extend scalability to 2025 PEs. We observe that
the relative impact of our optimizations changes with system

size (PE count) and our automated approach can easily adapt
to different system sizes. We find that most workloads benefit
from Placement and Fine-Grained Synchronization at large PE
counts and from Clustering and Fanout Routing at small PE
counts. The optimizations we describe in this paper have been
used for the SPICE simulator compute graphs which are dif-
ferent from the BSP compute model. Similarly we can extend
this compiler to support an even larger space of automated
traffic optimization algorithms for different compute models.
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