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ABSTRACT
OpenCL pipes o�er a powerful construct for synthesizing multi-
kernel FPGA applications with inter-kernel communication depen-
dencies. The communication discipline between the FPGA kernels
is restricted to producer-consumer style patterns supported with
on-chip FPGA FIFOs. While this provides few restrictions on the
usage, the OpenCL compiler is unable to provide guarantees on
bu�ering capacity or schedulability of the connected kernels. With-
out these guarantees, an OpenCL developer may over-provision
hardware resources or assume pessimistic timing during sched-
uling. We propose imposing a communication discipline inspired
from models of computation (e.g.Ptolemy) such as synchronous
data�ow (SDF), and bulk synchronous (BSP). These models o�er a
restricted subset of communication patterns that enable implemen-
tation tradeo�s and deliver performance and resource guarantees.
This is useful for OpenCL developers operating within the con-
straints of the FPGA device. We provide a preliminary analysis of
our proposal and sketch programmer and compiler responsibilities
that would be needed for integrating these features into the FPGA
OpenCL environment.

CCS CONCEPTS
• Hardware → Recon�gurable logic and FPGAs; • Theory of
computation → Parallel computing models;
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1 INTRODUCTION
Modern FPGAs span the computing landscape from low-end em-
bedded devices, and mid-range closely-coupled CPU-FPGA devices,
to high-end, at-scale deployment in datacenters. For certain work-
loads, FPGAs deliver superior performance, and energy e�ciency
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compared to the alternatives. They can also be recon�gured as
needed to support varying demands of user applications. However,
FPGAs have traditionally been di�cult to con�gure as program-
mers describe their applications as low-level circuits rather than
high-level software programs. However, at a fundamental level,
hardware circuits are specialized parallel programs. This means,
it should be possible to convert a high-level parallel computation
into a circuit, if certain restrictions are imposed. While reasoning
about parallelism is di�cult even for traditional architectures, the
adoption of OpenCL makes this task more structured, and also
delivers functional portability across platforms. OpenCL [4] is a
framework for describing portable parallel computations that can
be implemented across a variety of devices such as CPUs, GPUs,
DSPs, and FPGAs. OpenCL allows SIMD/SIMT style of parallelism
to be expressed easily but arbitrary parallel computations are not
supported. This makes it easier to describe correct parallel programs
and sacri�ces some expressive freedom for portable implementa-
tions. The rapid acceptance of OpenCL in the traditional computing
landscape opens the door to ease programmer burden for exotic
hardware platforms such as FPGAs as well. Both Xilinx [8] and
Intel [3], the two large FPGA vendors, ship OpenCL compilers.

While circuits implemented on FPGAs are parallel, they di�er
from traditional architectures in one fundamental way – the dat-
apaths and organization of hardware components on the FPGA
can be completely customized to the application. Modern FPGAs
provide millions of con�gurable Lookup Tables, hundreds of high-
throughput specialized integer and even single-precision �oating-
point DSPs, hundreds on small, distributed on-chip SRAMs (scratch-
pads), and millions of con�gurable high-speed wires to transport
data across the chip. Implementations of computation that expose
spatial parallelism work particularly well with FPGAs. Spatial par-
allelism exposes communication dependencies directly to the FPGA
fabric in the form of wires. On traditional architectures, this data
reuse pattern is supported through expensive multi-ported register
�les, and coherent caches with large overheads. With OpenCL, we
can harness the con�gurability, and rich connectivity on FPGAs by
generating custom datapaths within an OpenCL kernel, and using
OpenCL pipes to connect multiple kernels together.

In this position paper, we discuss the use of OpenCL pipes for
FPGA design using models of computation. A Model of Compu-
tation [6] (MoC) provides the semantics of concurrent execution
of computation components, and their interactions between them-
selves. Employing MoCs in the design process can o�er advantages
in the form of analytical methods to compute resource bounds, run-
time guarantees, proofs of correctness, amongst others. For FPGA-
based computation, we are interested in MoCs that are amenable
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to FPGA implementation such as data�ow MoCs that promote
streaming applications. In this paper, we highlight the limitations
of current FPGA OpenCL compilers from Xilinx and Intel, and
present a proposal for improvements guided through the use of
models of computation. We expect the tool vendors to adopt some
of the ideas presented here to deliver better outcomes for FPGA
developers using OpenCL Pipes in their designs.

The key contributions of this paper are enumerated below:
• We show how to apply the Synchronous Data�ow [5] (SDF) MoC

to compute bu�ering bounds, and get guidance on scheduling of
kernels on the FPGA fabric.

• We also describe a strategy for using the Bulk Synchronous
Parallel [7] (BSP) MoC for irregular message-passing between
compute kernels on the FPGA.

• We also sketch a straw man implementation proposal for integrat-
ing these models in an OpenCL kernel from both the programmer
and compiler development perspectives.

2 IDEA
Both Xilinx SDAccel and Intel FPGA SDKs support OpenCL 2.0
Pipe implementation to varying degrees. These implementations
support a subset of the complete OpenCL 2.0 Pipe speci�cation,
and impose further constraints on how and when they can be used.
In both cases, the implementations allow producer-consumer style
relationships between two OpenCL kernels. It is also possible to
connect an OpenCL Pipe to an IO interface on an FPGA board with
suitable setup. The advantages of using OpenCL pipes in a FPGA
context are (1) localization of data transfers within the chip over
FPGA interconnect and FIFO bu�ers instead of relying on external
global DRAM for staging of intermediate results, and (2) improved
performance through concurrent evaluation of multiple OpenCL
kernels on the FPGA.

However, despite these advantages, the OpenCL API support is
a mixture of restrictions and permitted behavior that may scare
prospective programmers. The API allows non-blocking calls to
the pipe which could be potentially confusing to a programmer if
they are used without care. We can implement blocking calls as
well by checking the return values of the non-blocking calls. With
blocking calls alone, and a bu�er depth of 1, an OpenCL program
could implement CSP [1] (Communicating Sequential Processes)
model of computation with rendezvous. While this is simple to
understand and implement, but is unlikely to take full advantage
of parallel resources. With non-blocking calls, the producer and
consumer are decoupled exposing additional parallelism under the
Kahn Process Networks model of computation. However, this model
assumes unbounded FIFOs that cannot be realized with �nite hard-
ware. The FPGA OpenCL compilers impose additional (arbitrary)
restrictions on the use of Pipes that may violate the semantics of
CSP and Kahn models of computation, further confusing a potential
developer. We need additional guidance, better models of compu-
tation, that are more amenable to FPGA realization. Thus, with
the right discipline, we can improve programmability (expressive
freedom), performance, as well as storage costs for realizing pipes
on an FPGA.

Kernel 0

Kernel 1

__attribute__((sdf)) c0

write_pipe();
write_pipe();

read_pipe();
__attribute__((sdf)) c1

write_pipe();

read_pipe();
read_pipe();

Figure 1: Visual representation of a Synchronous Data�ow
Pipe. The presence of this attribute will indicate to the
OpenCL compiler how to determine work-item behavior,
compute a schedule for the OpenCL kernels and deter-
mine resource use for desired throughput. Each kernel is
an NDrange kernel (workgroup shown as a 3D cube) with
a static ordering of work-items.
2.1 Synchronous Data�ow (SDF) in OpenCL
A programmer constructs an SDF model [5] by specifying a set
of computation components (called actors), and interconnecting
them using FIFO-like pipes. Every actor must be speci�ed with
production and consumption rates. These rates specify the number
of data tokens that are produced, and consumed with one execution
of the actor. Note that the SDF MoC [5] is a special type of data�ow
MoC where the order in which the actors execute is pre-computed
and �xed. SDF o�ers several bene�ts that include the ability to
statically compute schedules, and bu�er sizes for the FIFO pipes.
One can map an SDF actor to an OpenCL kernel in a manner shown
in Figure 1 and accompanying code Listing 1. Here, we have two
kernels setup in a feedback arrangement through two pipes. Each
work-item in the �rst kernel writes twice as many tokens as a work-
item in the second kernel. Multiple call sites is unsupported by the
FPGA OpenCL compiler, and feedback pipes are poorly supported.
SDF models allow both of these.

We show the code for this SDF example in Listing 1. As we can
see, sdf_kernel0 reads two tokens from pipe c1 and writes two to-
kens to pipe c0. Then sdf_kernel1 consumes one token from pipe
c0 and writes one token to pipe c1. The programmer must simply
annotate the pipes with __attribute__ ((sdf)) and rely on the
compiler to size bu�er depths for c0 and c1 while also guaranteeing
a valid schedule. In an FPGA design, this may involve design deci-
sions such as unrolling, vectorizing, or replicating sdf_kernel1 by
a factor of two, if resources are available, to match the production
rate of sdf_kernel0. Alternatively, one could also enable resource
sharing for sdf_kernel0 to halve its Initiation Interval to save area
and match the consumption rate of sdf_kernel1. Neither of these
decisions are exposed to the programmer and would become the
responsibility of the compiler. Additionally, the compiler may use
a Network-on-Chip to transport the data streams between the ker-
nels if wiring resources are insu�cient. While not recommended, a



Applying Models of Computation to OpenCL Pipes for FPGA Computing IWOCL ’17, May 16-18, 2017, Toronto, Canada

__global sdf_kernel0(
__attribute__ ((sdf)) pipe int c1,
__attribute__ ((sdf)) pipe int c0)

{
int i=get_local_id(0);

int x;
read_pipe(c1, &x);
write_pipe(c0, f(x)); // some func f
read_pipe(c1, &x);
write_pipe(c0, f(x)); // some func f

}
__global sdf_kernel1(__global int *x,

__attribute__ ((sdf)) pipe int c0,
__attribute__ ((sdf)) pipe int c1)

{
int i=get_local_id(0);
int y;
read_pipe(c0, &y);
write_pipe(c1, g(y)); // some func g

}

Listing 1: OpenCL code example showing the use of an Syn-
chronous Data�ow Pipe with a new ((sdf)) attribute on the
Pipe. No other syntactical changes are needed to the code.
We expect the compiler to use this knowledge to enforce
work-item execution, scheduling, and bu�er sizing.

compiler may also be directed to o�oad excess pipe state to o�-chip
DRAM storage if insu�cient on-chip resources are available.

With SDF semantics, the programmer need not worry about
synchronization between each producer and consumer. We can
freely use non-blocking pipe calls and discard the return values,
because the compiler can guarantee availability of input data on
a read, and presence of empty space on a write. All these bene�ts
come at the expense of the restriction that work-items may not
diverge in data-dependent manner.

We discuss speci�c limitations of the existing FPGA compilers
for SDF operation below:
• The Intel OpenCL compiler [2, 3] will warn a programmer if there

is work-item-variant code in the OpenCL kernel that may causes
non-deterministic ordering of data written to the OpenCL chan-
nel1. With SDF pipes, wemodify the compiler tomake this
warning become an error condition. E�ectively, we prevent
data-dependent divergence across the di�erent work-items.

• The Intel OpenCL compiler also disallows multiple call sites
to the same pipe, or loop unrolling with pipes This should
be supported by enforcing dependence constraints on the
OpenCL pipe write port and relaxing the Initiation Inter-
val of the kernel by 1. Multi-rate behavior is natively supported
by the SDF model.

• Feedback pipes are poorly supported by the Intel compilers, and
are discouraged. With a suitable way to describe initializa-
tion tokens, pipes that loopback to the samekernel should
su�er no performance penalties.

1Intel provides better support for vendor-speci�c channels extension, than OpenCL
2.0 pipes.

• The Intel OpenCL compiler attempts to perform bu�er sizing
based on scheduling information of the read and write operations.
This is done in a simplistic fashion for a single execution iteration
of the kernels, and a global scheduling view of the interacting
kernels is needed to compute exact bounds. The Xilinx SDAccel
compiler [8, 9] requires bu�er depth to be explicitly speci�ed
by the programmer. With SDF scheduling, since the rates
of production and consumption are known statically, we
can determine the bu�er sizes neededwithin a scheduling
interval exactly.

2.2 Bulk-Synchronous Parallelism (BSP) in
OpenCL

Bulk Synchronous Parallel [7] (BSP) model of computation allows
a programmer to express irregular parallelism with simpler, coarse-
grained synchronization barriers. The BSP MoC assumes multiple
processing elements connected via a network with message passing
between pairs of processing elements, and a mechanism to synchro-
nize across all subsets of the processing elements. The execution
of actors in a BSP MoC proceeds in a sequence of computation
and communication supersteps. Computation supersteps perform
operations, and communication supersteps transfer data between
processing elements and perform basic communications between
them. Instead of synchronizing for each producer-consumer re-
lationship, a single global barrier is used to drive computation
progress forward. This decouples the producer and consumer ker-
nels, and allows a greater degree of parallelism to be processed
under the right conditions.

In Figure 2, we show a high-level view of kernels interacting
through a Bulk-Synchronous pipe. The di�erent work-items in the
producer kernel deposit their tokens onto the pipe in any order. This
relaxes the sequential ordering restriction that the FPGA OpenCL
compilers impose on kernels interacting with pipes. It is important
to note that we now need to know the index information of the
destination location (work-item, or absolute address) for each write
access to the pipe. Before the consumer kernel is allowed to read
the pipe values, a barrier must be inserted to ensure consistent

Producer Kernel Consumer Kernel

__attribute__((bsp))
barrier(CLK_BSP_MEM_FENCE);

write_bsp_pipe() read_bsp_pipe()

Figure 2: Visual representation of a Bulk Synchronous
Pipe with asynchronous, arbitrarily ordered updates from
multiple kernels. An explicit global synchronization
CLK_BSP_MEM_FENCE is needed along with new APIs for
write_bsp_pipe and read_bsp_pipe.
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access to tokens. It is also possible to implement a pull-based ver-
sion where the index information is supplied by the reader of the
pipe. While this may seem restrictive, global barriers are cheap to
implement on FPGAs (AND-reduce trees) and encourage aggres-
sive parallel operation within the producer and consumer kernels
by eliminating per-message synchronization needs. It is possible
to unify producer and consumer kernels if required as long as a
barrier separation between read and write operations is preserved.
If a ping-pong bu�er is used in the pipe implementation, the read
and write operations can proceed simultaneously.

In Listing 2, we show an example of how a BSP-enabled Pipe
would be programmed in OpenCL. Here, the programmer needs a
new API for reading and writing into the pipe as additional metadata
for destination location is required. For a pull-based model (not
shown), this indexing information may be supplied in the read call
to the pipe. In either case, the index information must be supplied by
the programmer. Additionally, all read operations to this pipe must
be protected with a new barrier CLK_BSP_MEM_FENCE. This ensures
consistent access to the pipe data. With a shadow (ping-pong) bu�er,
it is possible to relax this constraint (not shown). Beyond this, the
OpenCL compiler is free to parallelize the producer and consumer
kernels through loop unrolling, vectorization, or compute unit
replication. The pipe itself may be implemented using distributed
on-chip memories to store the communication state. The compiler
must also insert a network-on-chip to support to enable packetized
communication between the work-items. It is functionally possible
to support a BSP model using on-chip global memories. However,
if the number of kernels that are interconnected with this pipe is
greater than the number of ports on the RAM, we will not be able
to scale to larger kernel counts.

__global bsp_producer_kernel(__global int *x,
__global int *dest,
__attribute__ ((bsp)) pipe int c)

{
int i=get_local_id(0);

write_bsp_pipe(c, x[i], dest[i]);
barrier(CLK_BSP_MEM_FENCE);

}
__global bsp_consumer_kernel(

__attribute__ ((bsp)) pipe int c)
{

int i=get_local_id(0);

barrier(CLK_BSP_MEM_FENCE);
int y;
read_bsp_pipe(c, &y);

}

.

Listing 2: OpenCL code example showing the use of
a Bulk Synchronous Pipe with a new ((bsp)) attribute
on the Pipe, two new functions write_bsp_pipe +
read_bsp_pipe, and a new bulk synchronization func-
tion barrier(CLK_BSP_MEM_FENCE)

We discuss speci�c limitations of the existing FPGA compilers
for BSP operation below:

• Both the Intel OpenCL compiler [2, 3], and the Xilinx SDAccel
OpenCL compiler [8, 9] enforces a work-item order in both the
producer and consumer of the OpenCL pipe to ensure consis-
tent operation. In the BSP model, we must allow any pro-
ducer work-item to send a value to any consumer work-
item. This also relaxes the constraint of forcing a sequential
evaluation order across work-items. To enable this feature, we
must de�ne a new attribute __attribute__((bsp)) that allows the
producer work-item to tag a consumer work-item along with
the data being sent to the consumer kernel. This allows us to
use a single pipe declaration to capture all producer-consumer
relationships between di�erent work-items.

• Under the data�ow model, each producer and consumer kernels
synchronize implicitly with blocking calls to the pipes. To sup-
port BSP global synchronization, we need to introduce a
new fence operation CLK_BSP_MEM_FENCE to ensure that
the values generated by the producer kernel are safe to
consume. This fence is crucial to support arbitrary interleaving
of work-items when scheduling the work-group on the device.

3 CONCLUSIONS AND FUTUREWORK
OpenCL 2.0 Pipes are well-suited for exploiting spatial parallelism
in modern FPGA applications. While both Xilinx and Intel OpenCL
compilers recognize pipes, the support is preliminary with many
restrictions. In this paper, we sketch a proposal for integrating
two models of computation with OpenCL Pipes to deliver better
outcomes for an FPGA developer. These models deliver resource
guarantees (FIFO depths), throughput optimization (area-time trade-
o�s), and performance results (faster solutions). In particular, we
take a closer look at SDF (synchronous data�ow), and BSP (bulk-
synchronous parallel) models and discuss their applicability to the
FPGA OpenCL platform. Our proposal includes new programmer
attribute annotations to the pipe declarations for SDF and BSP mod-
els, new APIs for reading and writing BSP pipes, and a new BSP
barrier. We also identify compiler transformations that the FPGA
vendor compiler need to support for implementing these models.
Going forward, we can integrate other models of computation as
appropriate within the OpenCL FPGA environment to support a
broader set of possible applications.
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