Partitioning FPGA-Optimized Systolic Arrays for Fun and Profit

Long Chung Chan, Gurshaant Malik, Nachiket Kapre
University of Waterloo
Ontario, Canada
lc6chan,gsmalik,nachiket@uwaterloo.ca

Abstract—We can improve the inference throughput of deep convolutional networks mapped to FPGA-optimized systolic arrays, at the expense of latency, with array partitioning and layer pipelining. Modern convolutional networks have a growing number of layers, such as the 58 separable layer GoogleNetv1, with varying compute, storage, and data movement requirements. At the same time, modern high-end FPGAs, such as the Xilinx UltraScale+ VU37P, can accommodate high-performance, 650 MHz, layouts of large 1920×9 systolic arrays. These can stay underutilized if the network layer requirements do not match the array size. We formulate an optimization problem, for improving array utilization, and boosting inference throughput, that determines how to partition the systolic array on the FPGA chip, and how to slice the network layers across the array partitions in a pipelined fashion. We adopt a two phase approach where (1) we identify layer assignment for each partition using an Evolutionary Strategy, and (2) we adopt a greedy-but-optimal approach for resource allocation to select the systolic array dimensions of each partition. When compared to state-of-the-art systolic architectures, we show throughput improvements in the range 1.3-1.5× and latency improvements in the range 0.5-1.8× against Multi-CLP and Xilinx SuperTile.

I. INTRODUCTION

Systolic arrays [1] organize hardware resources in a repeating grid of simple compute elements wired together using nearest-neighbour interconnect. The key idea is to inject data into the array in rhythmic fashion (to a systolic beat) and exploit data reuse through the nearest-neighbour connectivity. They can be configured to solve a variety of problems including matrix operations that are a common kernel in machine learning workloads. The hardware realization of these arrays is layout friendly and modern chips such as the Google TPU [2] have adopted this design style.

FPGA architectures are well-suited for efficient realization of 2D systolic arrays due to their regular arrangement of resources. Hard resources such as the Xilinx DSP48 math blocks, BRAM18 and URAM288 on-chip memories are laid out in a columnar fashion throughout the chip. Furthermore, Xilinx UltraScale+ devices naturally support systolic data movement using hard interconnect cascades along these columns. With careful floorplanning, it is easily possible to get 650 MHz+ operation [3], [4] on the Xilinx UltraScale+ VU9P–37P device(s).

A key limitation of mapping convolutional neural networks to systolic arrays is the threat of low array utilization. In a deep neural network, each layer has its own unique computational requirements and may be unable to use the full capacity the systolic array. As seen in Figure 1, the number of operations in each layer across the 58-layer GoogleNetv1 topology varies quite dramatically. This mismatch can be remedied by tailoring the array size [5], [6] uniquely to each layer within the constraints of total chip capacity. Fortunately, the FPGA fabric naturally supports configuration opportunities that lets us partition or fracture the array as desired for each machine learning workload.

To use partitioned systolic arrays effectively, we need to split layers of the deep neural network across different sub-arrays on the device. The number of layers assigned to a partition and the size of the partition must both be chosen for maximizing utilization of hardware. This is a non-trivial problem due to the large number of layers in modern neural networks, and the large systolic array sizes that are possible on modern FPGAs. The solutions proposed in Multi-CLP design [5], [6] allow layers to be partitioned in an arbitrary manner complicating inter-layer data movement as well as creating a larger design space than necessary. The Xilinx SuperTile [3], [7] decomposes layers in contiguous subsets.
that capture inter-layer traffic within a partition and reduces the set of choices that need to made to a tractable level. Our approach follows the Xilinx SuperTile design but simplifies it further to only require 1D partitioning of the systolic array. We can visualize this task of splitting the layers and the physical systolic array resources in Figure 1. For instance, we consider the case of contiguous partitioning on GoogleNetv1 with 58 layers mapped to a Xilinx VU37P with a 1920×9 array. If we partition the network into K contiguous subsets, we have $57 \times 56 \times 55 \times \ldots (57 - K - 1)$ possible partitions. Similarly, we can split a 1920×9 array along the first dimension (1D partition) into K contiguous sub-arrays in $(1920 - K - 1) \times (1920 - K - 2) \times (1920 - K - 3) \times \ldots (1920 - 2K - 1)$ possible ways. Thus, the total space of choices is the product of the two terms which can quickly become infeasible to naive brute-force search.

In this paper, we develop a fast optimization algorithm to contiguously partition the neural network across a systolic array to improve array utilization. We generalize the problem to arbitrary number of partitions, target a broader set of neural networks, and do so using evolutionary algorithms to guide the search. We use three strategies, two of which are inspired by evolutionary algorithms, to attack the partitioning problem: CMA-ES (Covariance Matrix Adaptation Evolution Strategy), GA (Genetic Algorithm), and Hyperopt [8] (Hyper-parameter optimization). These algorithms are inspired by evolutionary algorithms, to attack the partitioning problem: CMA-ES (Covariance Matrix Adaptation Evolution Strategy), GA (Genetic Algorithm), and Hyperopt [8] (Hyper-parameter optimization). These algorithms use an iterative approach for discovering solutions and are able to generate high-quality partitions in a few seconds.

The key contributions of this paper include:

- Formulation of an optimization problem for partitioning FPGA-optimized systolic arrays to improve their utilization when mapping deep convolutional networks.
- Development of a two phase approach to compute (1) layer assignment using a search process, and (2) resource allocation using a greedy-but-optimal approach. This formulation makes the problem tractable.
- Use of SCALEsim systolic array modeling framework to generate a cycle-accurate performance model for use with the optimization flow.
- Comparison of two evolutionary strategies CMA-ES and GA with an off-the-shelf parameter tuning framework Hyperopt for solving the optimization problem.
- Quantification of the throughput-latency trade-offs, optimization runtime, for benchmarks derived from the MLPerf [9] dataset and other ConvNets.

II. BACKGROUND

We first describe how our systolic arrays are mapped to an FPGA and then discuss evolutionary algorithms.

A. Systolic Arrays for CNNs on FPGAs

Systolic data movement is crucial for exploiting abundant data reuse opportunities in deep neural networks. A modern Xilinx UltraScale+ VU37P FPGA supports 960 URAM blocks, 9024 DSP48 slices, and 4032 RAMB18 blocks. We can build a systolic overlay of size 1920×9 where each row is a chain of 9 DSP48 blocks. We use the design from [4] in this work, where you can find a detailed discussion of the FPGA-optimized systolic array implementation. The length-9 chain is chosen to fit a 3×3 convolution while using the DSP48 cascades in the computation core. In this architecture, a pair of URAMs supplies data to 2×9 array of systolic multiply-add blocks mapped to SIMD=2 DSP48 units. By carefully staging data through the URAMs, BRAMs, and internal DSP A+B registers, we can orchestrate systolic behavior from the components. For matrix-vector multiplication, we are performance limited by the memory bandwidth of the URAM blocks. This halves the effective array size available for those layers. As seen in Figure 2, the DSP-to-DSP links form one (horizontal) dimension of the systolic array for both convolution and matrix-vector processing. The 72b URAM cascades provide an equivalent systolic lane support in the vertical dimension. For matrix-vector processing, we only need to redistribute the result vector in a systolic fashion for the next layer. For the large VU37P, the URAM capacity is large enough to hold all the weights and worst-case activations for networks like GoogleNetv1. For those designs where that is not possible, the 32×256b AXI connections to a multi-ported on-chip HBM memory bank permits rapid loading of the URAM memory structures.

B. Neuro Evolution

The Neuro-Evolution (NE) ethos proposes the use of evolution-based algorithms to solve difficult optimization problems. In an NE algorithm, candidate solutions are refined through a series of evolution step (generations) that teach the algorithm how to nurture desired characteristics. In one step, a set of mutations are performed on to produce an ensemble of potential solution models. Each of these
potential model is then evaluated for fitness specific to the optimization task, followed by a fitness-ranked selection and evolution of best-performing models into the parent set for the next generation of evolution. Reinforcement Learning (RL) [10] and Neural Network topology search for classification problems [11] have seen successful implementations of NE in recent works. NE is particularly effective for applications where computation of gradients are intractable. The efficacy of NE techniques is mainly due to the evolution mechanism that reliably discovers and nurtures desired model characteristics and suppressing detrimental ones. We discuss two broad categories of NE-based algorithms:

Evolution Strategies (ES): Evolution Strategies [12], [13] discover problem structure by representing the candidate solution as a distribution of random variables. At every generation, candidate solutions are generated using this distribution and evaluated for their fitness on the task being learned. The top performing candidates are selected via deterministic survivor selection and this is used to evolve the distribution representative of the solution space.

Genetic Algorithms (GA): GAs [14]–[16] aims to accurately mimic biological evolution by mapping the space of problem variables to a genome. Through the course of the evolution cycle, GAs use mutation and crossover of genomes to produce a set of competing and diverse candidate models. Each phase of mutation-crossover is seeded from the best performing candidates from previous generations.

III. PARTITIONING ALGORITHM

First, we motivate the need for partitioning systolic arrays for deep networks with an example that demonstrates the scale of underutilization possible in an array. Next, we formalize the objective of our partitioning algorithm and illustrate the working of one algorithm on a simple example.

A. Motivation

Large, monolithic systolic arrays of dimensions 1920×9 are now easily realizable on modern Xilinx UltraScale+ FPGAs. When mapping layers of a deep network to such an array, performance if often limited by the amount of parallelism in that layer and its memory bandwidth requirements. To concretely observe these trends, in Figure 3, we show cycle count and array utilization scaling trends for GoogleNetv1 Conv1 layer. As we scale beyond 60×9 array size, the array idle time grows beyond 50% fast approaching 90% at full system size of 960×9. The noise in array utilization is due to the quantization effect of managing reuse.

Figure 3: Cycle count and array utilization scaling trends for GoogleNetv1 Conv1 layer. As we scale beyond 60×9 array size, the array idle time grows beyond 50% fast approaching 90% at full system size of 960×9. The noise in array utilization is due to the quantization effect of managing reuse.

Layer pipelining, like classic datapath pipelining, allows a design to start computation of a next input image on an early layer of the network, while a previous image is still being processed in downstream layers of the network. While this transformation may compromise latency, it will let hardware resource stay busy with useful work, thereby improving inference throughput. In this paper, we formulate the partitioning problem in more general terms that (1) works for any network and any systolic array size, (2) provides finer-grained partitioning support down to individual row granularity, and (3) integrates with a fast neuroevolution algorithm to discover high quality partitions.

B. Optimization Formulation

The objective of our mapping algorithm is to assign contiguous non-overlapping subsets of neural network layers to physically-disjoint 1D partition of the systolic array. A brute force search of possible solutions is intractable for deep networks and large array sizes. For an N-layer network mapped to a 1920×9 array split into K partitions, we can formalize the objective function we wish to minimize as shown below:

$$\min_{l,p} \left(\max_x \left(\sum_{y \in l[x]} \text{cycles}[y][p[x]] \right) \right)$$

subject to

$$\sum_{x=0}^{K-1} p[x] = 1920$$

$$\sum_{x=0}^{K-1} l[x] = N$$

$$\forall x, p[x] \geq 1$$

$$\forall x, l[x] \geq 1$$
In Equation 1:

- \(x \) is the partition index,
- \(p(x) \) is the size of systolic array for that partition,
- \(l[x] \) is the set of layers mapped to the partition, and
- \(cycles[x] \) is the timing model for the systolic array implementing a particular neural network topology.

To solve this equation, we first construct an empirical timing model captured by the 2D array \(cycles[x] \) for each layer \(x \) of a neural network. This array is indexed first by the layer index \(y \) of the layer mapped to all possible systolic array sizes from 1x9–1920x9. This array is built from a cycle-accurate simulation of the RTL design and the DRAM interface using the SCALEsim [17] modeling framework. For a partition \(x \), we must add up the cycles needed per layer mapped to that partition (array \(l[x] \)). This is because within a partition the layers are executed sequentially. Across all partitions, the computation is pipelined, which means the overall system throughput is defined by its slowest partition. Thus, we can compute a max of the cycles required by each partition and this figure is the object of optimization minimization. This measurement is analogous to critical path analysis in determining clock frequency of RTL designs. Our optimization algorithm will aim to discover a layer assignment \(l[x] \) and associated resource allocation \(p[x] \) to minimize the worst-case cycle count across all partitions. This is captured by the objective function in Equation 1. A legal solution must ensure non-empty layer assignments (Equation 4) and non-empty partitions (Equation 5). Choosing the values of \(a \) and \(b \) in Figure 1 while selecting \(p(x) \) implies determination of \(a' \) and \(b' \) in the same example. Unlike Multi-CLP [5], we do not constrain weights and activations to fit within on-chip capacity as we rely on our optimizer to discover the best strategy.

C. Search Algorithm Design

The key idea we use to constrain the search problem is to split the process into two steps (1) layer assignment, and (2) resource allocation. This allows the search complexity of layer assignment to be decoupled from resource allocation. Furthermore, this allows the resource allocation step to be computable in polynomial time. The layer assignment process is handled by an intelligent search algorithm (CMA-ES, GA, of Hyperopt). Once we know which set of layers are assigned to which partition \(l[x] \), we can determine resource allocation \(p(x) \) in a greedy, optimal manner. This is possible because (1) we already know that the cycle count scaling trends for each layer in the \(cycles \) array are monotonically decreasing as a function of systolic array size, and (2) we are only interesting in minimizing the maximum cycle count across all partitions. The complete process is illustrated in Algorithm 1.

We illustrate the operation of this search algorithm using Figure 2 for GoogleNetv1 mapped to a 1920x9 array (max) with 5 partitions. As the evolutionary algorithm proceeds, the solutions start to change before settling down into stable values after \(\approx 6 \)–7 iterations. In each iteration, the mutation step generates multiple candidate solutions, evaluates their cost functions, and learns which combinations work well and which fail. This results in a steady improvement in resulting throughput at the expense of increased latency. At steady state, the first partition (at the bottom of the stacked bar chart) captures the first few layers of GoogleNetv1 while getting almost 50% of the resources.

A cursory glance at the operation count distribution from Figure 1 confirms this is an intuitively correct solution. Other workloads like AlphaGoZero have stubborn layers with limited parallelism, and require introspection into the parallelizability, and memory capacity + bandwidth constraints of the layer to correctly determine the layer partition and resource assignments.

IV. Experimental Setup

We show a high-level diagram of our toolflow in Figure 2. We do a one-time construction a timing (performance) model of the systolic array of specific dimensions for a particular neural network topology by sweeping each layer of the network across various systolic array sizes. We then run an optimization loop that first determines the layer assignments using an Evolutionary Strategy while deciding resource allocation using a greedy-but-optimal approach.
SCALEsim [17] systolic array modeling framework that sup-
individually by exploring all design combinations between
cycle counts needed by each layer of the network topology
topology at various systolic array sizes. We compute the
the
B. Performance Modeling
that would otherwise be too slow for RTL simulations.
scale experiments on various topologies and system sizes
provided to the performance modeling tool for allow large-
the design using Xilinx XDC constraints and implement it
the design using direct instantiation of Xilinx hard blocks such as
DSP48, RAMB18, and URAM288. We design state machine
controllers to manage data movement between the various
DSP48, RAMB18, and URAM288. We design state machine

A. FPGA Design
We construct the FPGA-optimized systolic array hardware
using direct instantiation of Xilinx hard blocks such as
DSP48, RAMB18, and URAM288. We design state machine
controllers to manage data movement between the various
resources and provide partitioning support by gating data
movement in the URAM and BRAM chains. We floorplan
the design using Xilinx XDC constraints and implement it
on a Xilinx UltraScale+ VU37P FPGA. We use the design
from [4] that is able to fit a systolic array of size 1920×9 in
this chip and operate it at a high 650 MHz clock frequency
limited solely by the URAM maximum operating frequency.
The specific cycle counts needed by our hardware array are
extracted from RTL simulation of the building blocks and
provided to the performance modeling tool for allow large-
scale experiments on various topologies and system sizes
that would otherwise be too slow for RTL simulations.

B. Performance Modeling
To realize our optimization algorithm, we need to generate
the cycle[l] timing model for each convolutional network
topology at various systolic array sizes. We compute the
cycle counts needed by each layer of the network topology
individually by exploring all design combinations between
1×9 and 1920×9 sizes in steps of one. We use the
SCALEsim [17] systolic array modeling framework that sup-
ports the flexibility of evaluating different styles of dataflow
as appropriate for convolution and matrix-vector processing
stages. We configure SCALEsim to account for memory
capacity limits of the URAM as a second stage of memory
in the architecture. We supply data to the URAMs from the
multi-ported high-bandwidth HBM memory and capture the
correctly, as smaller array sizes only have access to a propor-
tionally reduced number of URAM resources which affects
capacity and increases pressure on the DRAM interfaces.
Thus, smaller systolic arrays require higher cycle counts
due to combination of two factors including fewer resources
for exploiting parallelism and reduced memory bandwidth
to supply data. We use benchmarks from MLPerf [9] and
other ConvNets from Multi-CLP [5].

C. Evolutionary Algorithms
We compare the effectiveness of two kinds of evolution-
ary algorithms in this paper that optimize the throughput-
oriented goodness metric in Equation 1 via Algorithm 1.

CMA-ES: The first style is CMA-ES (Covariance Matrix
Adaptation Evolution Strategy) where the unknown real-
valued variables are modeled as Gaussian distributions with
a mean and variance. An evolution step involves generating
a population of solution candidates and evaluating their cost
functions. At the end of an evolution step, the top 25%
of the best solutions are retained and used to update the
mean and variance of each unknown. In our implementation,
each variable represents a percentage of layers included in
that partition. For example, an array of [0.2, 0.3, 0.5] can be
decoded as have the first 20% of layers in the first partition,
the next 30% layers in the second and the remaining 50% layers
in the final partition. We initialize the system in either
(a) all-zero assignment, or (b) valid legal assignment, for
l[x]. We reject illegal assignments with high penalty. An
illegal assignment happens when either l[x]=0 for any x,
l[x_a] < l[x_b] for x_a > x_b. These two cases capture the
condition where there is an empty partition or the layer
assignment starts at a layer index larger than where it ends
(an impossibility).

1Result not verified by MLPerf.
GA: We also evaluate the effectiveness of Genetic Algorithm approach that naturally supports integer solutions. Unlike CMA-ES, GAs can directly manipulate integer unknowns. In our implementation, we use a permutation GA approach that select K-1 partition split points from a random permutation of vector \([1, 2, \ldots, N-1]\) where \(N=\)number of layers and \(K=\)number of partitions. For example, with \(N=6\) and \(K=3\), we select 2 split-points from the first two locations of the vector and ignore the rest. If the gene has values \([3, 1, 4, 5, 2]\), we will split after first and third layers to generate three partitions. An advantage of this problem formulation is that it is guaranteed any off-spring generated using mutation will be a valid solution.

Hyperopt: Finally, we investigate a flavour of Sequential model-based Bayesian optimization using Hyperopt \([18]\). Hyperopt is able to handle integer-valued search variables with ease. As a result, in similar style to GA, we are able to define a configuration space assignment to directly optimise for \(I[x]\) without numerical reshaping. We configure Hyperopt to use the Tree-of-Parzen-Estimators (TPE) algorithm \([19]\) to optimise the search space.

V. EVALUATION

We now investigate the use of our partitioning algorithm on the resulting performance improvements on the systolic array. We measure inference throughput (img/s), end-to-end latency as a function of various experiment parameters such as number of partitions \(K\), choice of optimization algorithm, and optimization time. We also examine the quality-time tradeoffs in choice of evolutionary algorithms we use.

A. Throughput and Latency Tradeoffs

In Figure 6, we explore the effect of varying partition sizes on the resulting inference throughput and latency of the neural network. We compute throughput gain and latency penalty compared to a non-partitioned baseline where the entire array is allocated to each layer of the neural network. As we increase the number of partitions of the network, we note an improvement in throughput due to an associated increase in systolic array utilization. Beyond a certain partition count, we no longer observe any increase in throughput due to saturation of compute resources and memory bandwidth. The exact threshold where this happens varies with the workload. For instance, for large networks like GoogleNetV1, we observe throughput wins of \(\approx 10\times\) at 15 partitions at the expense of \(1.3\times\) increase in inference latency. Other networks like FasterRCNN saturates earlier at around 6–7 partitions and delivers proportional throughput improvements of \(\approx 6\times\). In the extreme end, shallow networks with 5–10 layers like AlphaGoZero and AlexNet only show limited throughput improvements of 2–3\times and only scale to limited partition counts.

We can also visualize the relative effects of changing partition size on both throughput and latency together as shown in Figure 6c. We clearly observe the almost linear relationship between throughput improvements and increase in latency of inference. Bulk of the explored design configurations only slow down inference by \(2\times\) but are able to deliver as much as \(10\times\) throughput improvements. Higher latency penalties as seen previously in Figure 6 happen when the design configurations are overpartitioning the systolic array that are dominated by strictly superior solutions.

Finally, in Figure 7 we report a Figure of Merit (FoM) score which is computed as the ratio of Throughput gain to Latency loss for each workload. As we increase partition count, we have seen that throughput gains increase at the expense of latency losses. The ratio captures a sweet spot that can be achieved where we achieve substantial improvements in throughput without sacrificing too much latency. The smallest partition size where this can be done is then reported as the ideal partition size for that workload. For benchmarks like GoogleNetV1, and Resnet50v1, we can scale to 9–10 partitions at peak FoM value. For medium-sized benchmarks like FasterRCNN, SqueezeNet, and MobileNetV1, we can scale to 6–8 partitions, while shallow networks like AlphaGoZero, YOLO_Tiny and AlexNet, scale to 3–4 partitions.
Algorithm iterations. The colors indicate the evolutionary
Each iteration operates on a population size of 100 muta-

B. Understanding Evolution

Figure 7: Best Figure-of-Merit (FOM) score for each
workload and associated smallest partition count K_{min}.

Figure 8: Improvement in Throughput for GoogleNetv1
for 10 partitions across iterations of Evolutionary Strategy.

Figure 9: Tracking the valid solutions percentage as a
function of evolution step across various workloads for
5 partitions.

Figure 10: Improvement in solution quality as a function
of time for various networks with 5 partitions.

We now look how the Evolutionary Strategy (CMA-
ES) helps navigate us towards the solution in Figure 8
for GoogleNetv1 with 10 partitions. Here, we see that
the partition solutions evolve towards better throughput and
ultimately saturate at a speedup of $8\times$ after ≈ 30 iterations.
Each iteration operates on a population size of 100 muta-
tions to determine the direction of evolution. The extent
of solution quality also improves with the evolutionary
algorithm iterations. The colors indicate the evolutionary
process as the system converges towards the best partitioned
solution. We initialize our system with an illegal all-zero
solution vector for network layers and partition sizes and
reject those combinations with high penalty. After the first
≈ 25 iterations, the optimizer has learned enough about the
solution space to no longer generate illegal candidates as we
see with the gain=0 cluster at the bottom of the plot.

We can also track the learning process in CMA-ES by in-
specting Figure 9 (valid solutions) and Figure 10 (runtime).
In Figure 9, we see the effect of zero start (illegal solution)
slow down convergence by a small amount 1–2 evolutionary
steps. In each step, we explore 100 mutations, and some of
those mutations are illegal. With a legal starting condition,
the different networks are able to observe exploration of
80% valid solutions between 3–4 iterations while a zero
start delays this to 5–6 iterations. Both cases are ultimately
able to discover the best partitioning strategy and deliver
identical throughput and latency wins. When considering
runtime required in Figure 10, we note that our evolu-
tionary strategy completes the search in a few seconds of
exploration! This illustrates the speed and robustness of the
evolutionary strategy to absence of domain knowledge in
seeding the search process.

Finally, in Figure 11, we show the differences in runtime
for a select few benchmarks across CMA-ES, GA, and
Hyperopt search algorithms for 8-partition problems. Hyperopt
runs quickly but typically settles for a lower quality result
as it is trapped in a local minima. GA generates various
permutations, slowing it down, and also resulting in a lower
quality of result. CMA-ES shines across the board with a
higher quality solution in all cases. For certain workloads
like NCF (and AlexNet, AlphaGoZero now shown) the
design space is small enough that the search completes in
the first iteration itself.

C. Comparison against state-of-the-art

Finally, in Table I we position our work against previ-
and Xilinx SuperTile [3]. The AlexNet and SqueezeNet
topologies are realized in 32b and 16b floating point preci-
sion respectively on the Multi-CLP architecture which can
constrain the largest systolic array you can fit on the device.
allowing (1) per-partition sizing of systolic array dimensions, has been made more complicated than strictly necessary by layers of a neural network. In that design, the problem explored the problem of partitioning FPGA resources across layers of a neural network. These solutions are possible due to the ability to maximize 15 partition solution (See Figure 7 to balanced terms of latency, while beating the throughput of SuperTile CLP by 1.3–1.5 \times in terms of throughput and by 1.4–4.6 \times in terms of latency, while beating the throughput of SuperTile by 1.5 \times but have a 2 \times higher latency due to throughput-maximizing 15 partition solution (See Figure 7 to balanced designs). These solutions are possible due to the ability to explore a larger search space of possible solutions.

VI. RELATED WORK

The Multi-CLP architecture presented in [5], [6] has explored the problem of partitioning FPGA resources across layers of a neural network. In that design, the problem has been made more complicated than strictly necessary by allowing (1) per-partition sizing of systolic array dimensions, and (2) arbitrary layer assignment without contiguity. The formulation faces from following challenges:

- Resource and runtime overheads of inter-partition communication. As layer sequence is not localized to a partition, we must explicitly move intermediate results which will cost us time (which may be partially overlapped) and FPGA resources.
- FPGA layout challenges for fitting multiple partitions with arbitrary sizes that do not compose in a 2D rectangular fashion. This will impact implementation frequency of the design.
- Discarded solutions due to on-chip memory capacity constraints for determining feasibility of layer assignment to partition. This may prematurely eliminate solutions that may have been adequate with some time overhead of fetching excess content from DRAM.

The Xilinx SuperTile [7] design offers a one-off multiprocessor solution for GoogleNetv1 mapped to four custom-sized systolic arrays. The layer assignment and partition sizing is done for this problem alone and no general solution is provided for arbitrary networks or chip capacities. Despite this limitation, we found SuperTile to be quite competitive with our eventual solution discussed in Table I.

VII. CONCLUSIONS

In this paper, we show how to boost inference throughput of deep networks mapped to FPGA-optimized systolic arrays. We are able to outperform state-of-the-art Multi-CLP architecture by 1.3–1.5 \times on throughput and 0.5–1.8 \times on latency, provide 1.4 \times throughput over Xilinx SuperTile at the cost of 2 \times higher latency while consuming identical systolic resources. We demonstrate the use of an evolutionary algorithm CMA-ES to tackle a two-phase formulation of the partitioning problem. We offloads 1D layer assignment in the first phase to CMA-ES while using a greedy-but-optimal resource assignment strategy in the second phase. We observe that CMA-ES delivers higher quality solutions and also successfully bootstraps from a zero start requiring no a priori knowledge of the design space.

Table I: Comparing the throughput and latency of state-of-the-art FPGA systolic arrays like Multi-CLP and SuperTile.

<table>
<thead>
<tr>
<th>Topology</th>
<th>FPGA</th>
<th>K</th>
<th>Array Size (\times9 for This Paper design)</th>
<th>Throughput (img/s)</th>
<th>Latency (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlexNet [5]</td>
<td>485T</td>
<td>4</td>
<td>[2\times64 1\times96 3\times24 8\times19]</td>
<td>61</td>
<td>62.3</td>
</tr>
<tr>
<td>AlexNet [This Paper]</td>
<td>485T</td>
<td>3</td>
<td>[10 30 10]</td>
<td>90 (1.47 \times↑)</td>
<td>42.7 (1.45 \times↓)</td>
</tr>
<tr>
<td>AlexNet [This Paper]</td>
<td>690T</td>
<td>6</td>
<td>[1\times64 1\times96 2\times64 1\times48 1\times48 3\times64]</td>
<td>80</td>
<td>70.1</td>
</tr>
<tr>
<td>AlexNet [This Paper]</td>
<td>690T</td>
<td>4</td>
<td>[11 42 9 2]</td>
<td>102 (1.27 \times↑)</td>
<td>37.8 (1.85 \times↓)</td>
</tr>
<tr>
<td>SqueezeNet [5]</td>
<td>485T</td>
<td>6</td>
<td>[6\times16 3\times64 4\times64 8\times64 18\times10]</td>
<td>913</td>
<td>6.52</td>
</tr>
<tr>
<td>SqueezeNet [This Paper]</td>
<td>485T</td>
<td>6</td>
<td>[54 32 43 24 64 32]</td>
<td>1166 (1.27 \times↑)</td>
<td>5.12 (1.27 \times↓)</td>
</tr>
<tr>
<td>SqueezeNet [This Paper]</td>
<td>690T</td>
<td>6</td>
<td>[8\times16 3\times64 11\times32 8\times64 5\times256 16\times26]</td>
<td>1167</td>
<td>5</td>
</tr>
<tr>
<td>SqueezeNet [This Paper]</td>
<td>690T</td>
<td>17</td>
<td>[96 3 8 4 16 43 3 11 20 7 16 6 4 30 3 6 34]</td>
<td>1579 (1.35 \times↑)</td>
<td>10.62 (2.1 \times↑)</td>
</tr>
<tr>
<td>SqueezeNet [This Paper]</td>
<td>690T</td>
<td>8</td>
<td>[96 13 13 43 32 24 43 46]</td>
<td>1429 (1.22 \times↑)</td>
<td>5.57 (1.14 \times↑)</td>
</tr>
<tr>
<td>GoogleNetv1 [5]</td>
<td>VU39P</td>
<td>12</td>
<td>[2\times18 32\times16 96\times16 8\times1] \times 3</td>
<td>3046</td>
<td>3.9</td>
</tr>
<tr>
<td>GoogleNetv1 [This Paper]</td>
<td>VU37P</td>
<td>14</td>
<td>[32 64 22 15 32 27 16 9 19 24 20 16 18 6] \times 6</td>
<td>5976 (1.9 \times↑)</td>
<td>14.1 (3.6 \times↑)</td>
</tr>
<tr>
<td>GoogleNetv1 [This Paper]</td>
<td>VU37P</td>
<td>15</td>
<td>[64 7 192 64 43 96 48 56 38 43 75 80 64 64 26] \times 2</td>
<td>4312 (1.4 \times↑)</td>
<td>7.26 (2 \times↑)</td>
</tr>
</tbody>
</table>

Figure 11: Exploring Throughput Gain trends for various parameter tuning algorithm for 8 partitions.
REFERENCES

