
RapidRoute: Fast Assembly of
Communication Structures for FPGA Overlays

Leo Liu, Jay Weng, Nachiket Kapre
School of Electrical and Computer Engineering

University of Waterloo, Ontario, Canada
{l276liu, j7weng, nachiket}@uwaterloo.ca

Abstract—We can implement relocatable, bus-based commu-
nication structures on Xilinx FPGAs using RapidWright while
delivering competitive frequency, single digit speedups in ex-
ecution time, and orders of magnitude reduction in memory
usage over Xilinx Vivado 2017.2. We develop RapidRoute, a
custom router that exploits symmetry in placement and routing
of bus endpoints, caching of reusable route segments, selective
multi-threading of the router engine, and abutment-friendly
tiling heuristics. The key idea is to reduce the amount of work
necessary to generate these communication structures through
the use of search heuristics, parallelism, and reuse. We are able
to outperform Vivado router by as much as 8× for topologies
ranging from 1D rings, torii, and meshes, while taking 1000×
lower memory footprint, and delivering timing within 0.2 ns of
Vivado. RapidRoute opens the door to building a family of
custom routing tools for constructing FPGA overlays for various
application domains.

Source→ https://git.uwaterloo.ca/watcag-public/rapidroute

I. INTRODUCTION

In the Japanese Edo period, Ukiyo-e genre of woodblock
printing was popular. With this technique, artists could pro-
duce complex colorful prints of intricate scenes from multiple
woodblocks, each block assigned to an individual color. The
final painting was assembled by sequential overlay of multi-
ple woodcut prints. RapidRoute can assemble communication
structures for FPGA overlay architectures in a similar manner.

The pursuit of high-level, high-performance programming
languages, and tools for FPGA design has long been the holy
grail of the FPGA community. Traditionally, FPGAs have been
programmed using low-level, register-transfer level (RTL),
hardware description languages like VHDL, or Verilog and
these continue to stubbornly remain the language of choice.
The re-emergence of High-Level Synthesis [2] (HLS) on one
hand, and the popularity of FPGA overlay architectures [3] on
the other hand gives us two different directions for overcoming
the entrapment of the RTL environment. HLS programmings
flows provide the allure of coding in high-level languages
such as C/C++ but still requires a full FPGA backend pass
that can be time consuming. FPGA overlay architectures often
require low-level RTL engineering to build the intermediate
hardware layer, but provide a potential dual benefit of high-
level programming in C/C++ while eliminating the runtime
overheads of FPGA placement and routing. This alternative
overlay approach still requires an RTL design phase and an
unwelcome optimization loop involving the fussy FPGA CAD
tool flows.

RapidWright is a new tool that can help us build FPGA
overlays quickly using a high-level Java-based programming
environment while simultaneously exposing the low-level ar-
chitecture details of the FPGA for direct manipulation. It is
possible to entirely bypass RTL as well as traditional FPGA
CAD and enjoy direct access to the FPGA architecture. Some
prior work [1], [6] has performed rapid overlay construction
through a careful floorplanning, reliance on ISE CAD toolflow
for module placement and routing, and the now-outdated
XDL [1] environment for relocation. In this paper, we build
RapidRoute, a tool that uses RapidWright to generate high-
performance layouts of communication structures directly in
Java while bypassing the FPGA CAD tools for placement
and routing. Vivado is still needed for timing analysis, and
bitstream generation. These communication blocks can then
be integrated into an overlay design that can be tiled across
the entire FPGA in Lego-like fashion.

RapidRoute constructs a range of communication structures
by exploiting symmetry and reducing the amount of wasted
effort by reusing the partial layouts. It embodies a custom
FPGA router that implements a lightweight congestion-aware
routing algorithm running significantly faster than the Vivado
router that is designed to handle arbitrary circuits. Further-
more, RapidRoute uses caching and natural physical isolation
of the communication network structures for multi-threaded
parallelization the routing algorithm.

The key contributions of this work are listed below:
• Development of a custom routing algorithm using Rapid-

Wright for mapping communication structures on FPGAs.
• Use of symmetry, lightweight congestion-aware design,

route caching, and parallelization to reduce work and time
required to route the structures.
• Quantification of runtime, memory use, and timing slack

for a range of structures like rings, tori, and meshes.

II. BACKGROUND

A. RapidWright

RapidWright [4] is an open-source tool for Xilinx FPGAs
that allows direct construction of FPGA mapped designs in the
Java programming environment. Unlike High-Level Synthesis,
there is no compilation of the code to hardware blocks. Here,
Java is used as a high-level language for describing low-level
FPGA design. The programmer is able to generate FPGA
layouts by direct manipulation of hardware blocks like LUTs,

https://git.uwaterloo.ca/watcag-public/rapidroute


as well as routing resources. A developer can construct circuits
geometrically and exploit relocation and reuse opportunities
for generating large FPGA designs from small repeating
components. The Jython frontend adds a Pythonic flavor to
construction of designs that further enhances user experience.
With RapidWright it is possible to generate high frequency
implementations that exploit regular patterns in the design that
Vivado’s general-purpose CAD tools may be unable to.

B. Xilinx Fabric

RapidWright allows a developer to directly access logic
resources such as LUTs, and FFs, and also routing resources
such as PIPs (programmable interconnect points). In Xil-
inx terminology, the BEL (Basic Element of Logic) is the
simplest building blocks in the hardware. Logic BELs like
LUTs represent compute resource of the FPGA while Routing
BELs represent data communication resources like switches.
In addition, BELs are grouped into Sites with accompanying
Site Pins for top-level connectivity, and Site Wires for internal
site connectivity. A key feature of RapidWright is the ability
to specify placement information for the Site elements. For
Logic BELs this is not different than supplying Tcl location
constraints to Vivado placer. The relocatability of the place-
ments makes it possible to copy-paste layouts far more easily
in RapidWright than Vivado. Since we can also choose to
occupy routing BELs, we are able to perform our own routing
in RapidWright. This is a crucial capability that opens to door
to the development of tools like RapidRoute presented here.

III. RAPIDROUTE

In this section, we present the architecture of RapidRoute
and the underlying algorithms, search heuristics and associated
performance optimizations.

RapidRoute targets fast, high-performance assembly of
communication structures. A communication structure is or-
ganized as a netlist of bussed register pairs connected in
a specified topology. Placement information for the register
endpoints is provided as per the geometry of the topology.
RapidRoute is seeded with an EDIF file for a bus with input
and output registers. Topology information associated with
placement of registers is encoded directly in the Java design.

RapidRoute’s algorithm core consists of two main elements:
(1) the bus router, which routes a bundle of identical wires
with register endpoints using a customized negotiation-based
algorithm, and (2) the multi-threaded global router, which
selectively assigns jobs to the bus router, caching its results,
and cloning them wherever possible. Since buses are routed
independently from each other, the global router also enacts
a conflict resolution procedure, placing emphasis on keeping
resolution changes localized within the conflicted tile.

A. Bus Routing

Our bus router is inspired by PathFinder [5] but extensively
customized to solve the specific problem of routing regular
registered busses.

In the first pass, the bus router operates by only deter-
mining wire “hops” between source and sink ignoring re-
source conflicts. This is done by ignoring PIP configuration
at switchboxes along the path, and use of caching of the
hop fanouts to avoid querying the RapidWright database
repeatedly. By ignoring the PIPs needed within interconnect
tiles, we effectively treat each tile as a black box connecting
an incoming wire to its appropriate fan-outs. In this stage we
are also routing the connections obliviously to each other and
the solution may have resource conflicts.

In the second pass, to resolve conflicts (2a) we use an
approximate delay based on which wires are part of the path
(ignoring PIP delays). This is needed to determine which route
deserves higher priority service. (2b) To resolve congestion
when filling-in PIPs, we pick one switchbox along the path.
(2c) Then we select the most expensive connection and iden-
tify the PIP resource needed to connect the two hop wires in
that connection. (2d) These resources are then locked down to
prevent their use by subsequent connections. Then, we select
the next most expensive connection and repeat the steps (2c)
onwards. If a resource needed has been previously locked
down, we reroute the less-critical connection avoiding the
locked resources. Once all connections traversing a switchbox
have a home, we proceed to the next switchbox, and repeat
the process from (2b) onwards. RapidRoute is designed to
complete routing within a single pass even if the outcomes
are marginally suboptimal than a full-blown PathFinder.

B. Global Routing

The global router achieves three objectives: (1) assign signal
buses for the bus router to compute, (2) copy and paste bus
router results to congruent configurations, and (3) resolve all
remaining congestion issues, such as the abutment between
the entrance and exit of a set of flip-flops. This additional
hierarchy provides the key advantage that routes produced by
the bus router can be infinitely reusable with negligible cost
in routing runtime. The global router identifies symmetrical
routes by checking if the sources and sink pairs are identical
and offset by the same x-y coordinates. This symmetry in nat-
urally possible when constructing communication structures
i.e. ring segment i can be copied over to create segment i+1.

The global router begins by running an analysis on all bus
connections, identifying and temporarily ignoring connections
which can be potentially routed by the copy-paste method.
Then, the remaining connections are dispatched to the bus
router, which will perform routing on separate threads and
independent from each other. After all connections are routed,
the router attempts to copy and relocate routes to symmetrical
connections.

We may encounter conflicts in routing fabric due to
copy-paste procedures coinciding over already-used resources.
Therefore, a resolution phase is also required to relieve all
congestion and conflicts. To prevent any resolution changes
from affecting the rest of the design, the global router first
attempts to localize changes to within the tile containing the
conflicted resource. Thus, only signals passing through the



interconnect will be affected, and only within the specific tile.
A similar negotiation-based approach from the bus router is
employed, with both the searching and conflict algorithms are
constrained to within only the PIPs of the tile. Effectively, it
solves an identical problem as the bus router, except sources
and sinks are now, respectively, the incoming and exiting wires
of each signal. In cases where there is no cheap solution within
the tile, the least expensive signal(s) connected to the violated
node are completed rerouted, with the node’s intrinsic cost
adjusted to infinity.

C. Optimizations

To further reduce routing runtime, we use three main
optimizations to speed up the routing operations.

Caching: To begin with, enumeration of outgoing paths in
a BFS search is an inherently slow process requiring multi-
ple queries of the RapidWright database. However, intrinsic
symmetry of Xilinx interconnect tiles allow the fan-outs of
incoming wires to be cached and repurposed for corresponding
identical wires connected to another tile. Caching is done
on-the-fly as the search is conducted, so that new types of
wires will only have its fan-outs calculated once. The benefits
of caching to the BFS algorithm are two-fold: (a) future
route searching become faster by substituting device database
queries with cache lookups, and (b) traversal for long-distance
wires now takes dramatically reduced time. Accessing the
cache requires less than 1% of the runtime needed compared
to an un-cached scan of an interconnect tile.

Fast-Forward Search: By identifying the pattern of long
wire composition in the Xilinx architecture, we develop a
fast forward mechanism to further reduce search duration for
long routes. Once a signal search has reached and identified
a reasonably long wire (distances of which are specific to
the FPGA device family), the traversal will be restricted to
connected long wires until the search reaches close to the
sink. This fast forward technique prunes the router’s ability
to exit from a long hop track down to slower wires, allowing
the search algorithm to ignore pointless, slow alternatives.

Multi-threading: Lastly, the global router also performs
selective multithreading to benefit from better hardware. In
general, parallel FPGA routing is tricky due to the challenges
of maintaining resource consistency across threads. We iden-
tify all unique routing patterns in our communication topology
that are guaranteed to not interfere with each other. Each
pattern is assigned to a bus routing thread and can proceed
in isolation safely. Note that this is different from the copy-
paste relocation of the routing structures that is already used
by RapidRoute – in this case, we identify distinct routes
within a bus bundle that are needed to generate the relocatable
layout that can then be copy-pasted. Multithreading is also
used during the final congestion resolution phase, since the
resolution procedure is localized to within the conflicted tile.
Thus, a separate thread is used for resolving each tile conflict
in complete physical isolation.

2 4 6 8 10
Ring size

2.5

2.0

1.5

1.0

0.5

0.0

W
or

st
 s

la
ck

 (n
s)

2x2 3x3 4x4 5x5 6x6
Torus size

2x2 3x3 4x4 5x5 6x6
Mesh size

RapidRoute
Vivado Quick

Vivado MoreGlobalIterations
RapidWright

Fig. 1. Timing slack of RapidRoute and Vivado for various system sizes with
chip-spanning layout.

IV. EVALUATION

In this section, we measure execution time, memory usage,
and timing slack performance of RapidRoute against Xilinx
Vivado. We evaluate RapidRoute with Xilinx Vivado 2017.2
running on a 32-core 2.6GHz Intel Xeon CPU. We use the
UltraScale XCKU115 device for our experiments but have
also validated against Kintex UltraScale+ XCKU5P part. We
generate various communication topologies such as rings, torii,
meshes of different sizes and 8b widths. Compared designs are
provided with the same placement constraints, and an identical
1 ns timing constraint. The placement constraints are designed
to stress the router by forcing them to use the full device
extents and uniformly spacing the registers across the entire
device. For Vivado, we provide a placed DCP generated by
RapidWright to ensure identical placement starting points for
both routers. We restrict both RapidRoute and Vivado to the
same number of threads. We compute timing slack of the
resulting design in Vivado due to lack of timing analysis
support in RapidWright. We configure the Vivado router in
resource-based mode to optimize for execution time rather
than quality due to the simplicity of the layout.

A. Timing Slack

A fundamental requirement of RapidRoute is that it is able
to match the quality of Vivado routing output. In Figure 1, we
show timing slack observed for an impossible-to-meet 1 ns
timing target. RapidRoute is able to demonstrate its ability
to remain competitive with Vivado across our experiments.
Specifically, in the worst case, we observed that RapidRoute
produced designs which are no more than 0.2 ns slower than
Vivado. At larger system sizes we observed a faster clock rate
due to reductions in distance between register hops.

B. Routing Runtime

In Figure 2, we first show the execution time (averaged
across 3 runs) comparison of both RapidRoute and Vivado.
For Vivado we only measure the execution time of the routing
phase and do not include DCP loading times. For RapidRoute,
we measure the complete runtime including DCP loading
times as it is an external tool. It is clear that RapidRoute is
consistently 4-8× faster than Vivado for various topologies



2 4 6 8 10
Ring size

0

20

40

60

80

100

120
E

xe
cu

tio
n 

tim
e 

(s
)

2x2 3x3 4x4 5x5 6x6
Torus size

2x2 3x3 4x4 5x5 6x6
Mesh size

RapidRoute
Vivado Quick

Vivado MoreGlobalIterations
RapidWright

Fig. 2. Average wall clock (real) runtime of RapidRoute and Vivado, routing
various network topologies and sizes.

1D Ring Torus Mesh
Topology

0

5

10

15

20

25

R
un

tim
e 

(s
)

8

18
19

RapidWright API
Fan-out retrieval

BFS search
Congestion resolution

Other

Fig. 3. Average time usage of RapidRoute and Vivado for the each network
topology with largest sizes tested from Figure 2.

and system sizes. For RapidRoute we see stable runtimes
even as we increase system size due to the use of caching
optimizations in the routing algorithm. Vivado is slower, but
also relatively stable at larger system sizes as well. A key
placement insight we inferred was to pack at most 8 endpoint
registers out of 16 in a CLB site to eliminates entry/exit
congestion at that CLB. The other registers can be used locally
for pipelining.

Next, in Figure 3, we show a breakdown of router runtime
for the largest sizes networks (1×10 ring, 6×6 torus and
mesh). For RapidRoute, it is clear that the traversal opera-
tions during BFS is the key bottleneck. The resources access
RapidWright APIs limit our ability to support even faster BFS.
We also spend quite a bit of time in our customized congestion
resolution phase, and are looking for further avenues for
improvements as future work.

C. Memory Usage

Since both RapidRoute and its underlying library, Rapid-
Wright, are designed to be lightweight, we expect memory
consumption for routing to be orders of magnitude less than
that of Vivado. We collect peak memory usage over the
lifetime of router execution using the Unix time tool. In the
worst case, RapidRoute uses only 2–3 MB of RAM during
execution, while greedy Vivado allocates 2.7 GB of memory
in contrast.

1 10 100 1000
Runtime (s)

Baseline
Route Reuse

Caching
Fast-Forward

Multi-threading

Fig. 4. Cumulative runtime improvements of RapidRoute optimizations for
1×6 ring with 150-tile separation.

D. Effects of Optimizations

We now quantify the impact of each optimization technique
on execution time such as reuse, caching, fast-forwarding,
and multithreading. For a 1D ring, shown in Figure 4, route
caching is the dominant cause of performance improvement.
Route reuse is also important as it allows copying the results
from one XY location on the chip to another. Fast forwarding
and multi-threading have limited but noticeable impact. For a
6×6 mesh, multi-threading gives us a near-linear 8× speedup
for 8 threads and diminishing returns beyond.

V. CONCLUSIONS

We present RapidRoute, a custom router built around Rapid-
Wright to implement relocatable, bus-based communication
structures on Xilinx FPGAs. We are able to deliver compara-
ble frequency and single digit speedups over Vivado 2017.2
routing. RapidRoute exploits the natural symmetry available
in communication structures like rings, torii, and meshes to
reduce the amount of work needed in the Breadth-First Search
phase of routing. We also develop fast congestion resolu-
tion techniques that avoid the cost of full-blown Pathfinder
routing to generate abutment friendly copy-pasteable layouts.
RapidRoute outperforms Vivado by as much as 8× while
staying with 0.2 ns of Vivado timing slack while requiring
1000× lower memory footprint for chip-spanning rings, torii,
and mesh structures.

Source→ https://git.uwaterloo.ca/watcag-public/rapidroute

REFERENCES

[1] C. Beckhoff, D. Koch, and J. Torresen. The xilinx design language (xdl):
Tutorial and use cases. In 6th International Workshop on Reconfigurable
Communication-Centric Systems-on-Chip (ReCoSoC), pages 1–8, June
2011.

[2] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang.
High-level synthesis for fpgas: From prototyping to deployment. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 30(4):473–491, April 2011.

[3] A. K. Jain, S. A. Fahmy, and D. L. Maskell. Efficient overlay architecture
based on dsp blocks. In 2015 IEEE 23rd Annual International Symposium
on Field-Programmable Custom Computing Machines, pages 25–28, May
2015.

[4] C. Lavin and A. Kaviani. Rapidwright: Enabling custom crafted im-
plementations for fpgas. In 2018 IEEE 26th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
volume 00, pages 133–140, Apr 2018.

[5] L. McMurchie and C. Ebeling. Pathfinder: A negotiation-based
performance-driven router for fpgas. In Third International ACM Sym-
posium on Field-Programmable Gate Arrays, pages 111–117, Feb 1995.

[6] M. X. Yue, D. Koch, and G. G. F. Lemieux. Rapid overlay builder for
xilinx fpgas. In 2015 IEEE 23rd Annual International Symposium on
Field-Programmable Custom Computing Machines, pages 17–20, May
2015.

https://git.uwaterloo.ca/watcag-public/rapidroute

