
Timing-aware routing in the RapidWright
framework

Leo Liu
School of Electrical and Computer Engineering

University of Waterloo
Ontario, Canada

l276liu@uwaterloo.ca

Nachiket Kapre
School of Electrical and Computer Engineering

University of Waterloo
Ontario, Canada

nachiket@uwaterloo.ca

Abstract—We can extract approximate, fine-grained timing
information of routing resources of Xilinx FPGAs using the
RapidWright open-source framework. The absence of timing
information makes it difficult to implement timing-aware FPGA
CAD tools using RapidWright. It is impractical to invoke
Vivado’s timing analysis engine for each choice within an op-
timization loop of your custom CAD algorithm as that would
slow down execution by orders of magnitude. We route a set of
one-time calibration tests on the FPGA using Vivado to extract
path delays, and setup a system of linear equations based on the
unknown delays associated with each routing resource used in
the calibration route. We run this calibration for an interconnect
tile but generalize the result to the entire FPGA due to device
symmetry. We then solve these equations using least squares
approximation as the resulting system is low-rank. This is due
to the routing restrictions imposed by the FPGA fabric for
legality of the connection and correctness of Vivado’s timing
analysis. We are able to learn an approximate timing model
for RapidWright that is within 1% error (0.01 ns) of Vivado
timing analysis by running ≈30 calibration runs and needing
under 60 seconds of Vivado timing analysis. We demonstrate
this technique on Xilinx XCKU115 FPGA (-3, -2, and -1 speed
grades). The open-source RapidRoute custom router previously
lost to Vivado by as much as 0.3–0.4 ns on timing slack when using
a crude timing model. With our timing model enhancements, we
allow RapidRoute to close the slack gap with Vivado and even
outperform Vivado marginally on occasion. Our timing model
generation is lightweight and can be discovered for each FPGA
device instead of bundling memory-hungry timing libraries with
RapidWright.

I. INTRODUCTION

FPGA development has long been plagued by slow CAD
runtimes and tedious low-level Register-Transfer Level (RTL)
design. This development barrier has hurt FPGA adoption and
prevented high-level software programmers from considering
these devices for broader use. FPGAs provide a compelling
combination of performance and power efficiency for those
trained to exploit this potential. High-Level synthesis [2]
tools have addressed the development challenge somewhat by
making it possible to program in higher levels of abstraction in
C/C++ programming languages. However, these languages are
not the right abstractions for communicating parallel intent and
do nothing to address the long development cycles associated
with FPGA CAD.

The RapidWright framework [9] is an important step that
can tackle both challenges in one go. First, it provides a

Java-based high-level programming environment for accessing
and traversing low-level FPGA hardware resources. Second, it
makes it possible to generate datapaths directly by composing
these hardware resources in a generative manner without the
need for time consuming FPGA CAD. The programmer is
now in control of design description, as well as placement
and routing of the design. For repetitive designs with reusable
layouts, or custom FPGA CAD tools, RapidWright provides a
scalable design flow that is flexible, avoids the need for RTL
design capture, while also eliminating the wait times of the
slow FPGA CAD tools.

While this is promising, RapidWright has one key weakness
– the absence of timing knowledge of FPGA resources. When
building layouts, RapidWright provides a mechanism for nav-
igating the connectivity structure of a modern FPGA device
but does not carry any information, fine-grained or otherwise,
of individual resource delays. One has to invoke the timing
analysis engines in Vivado for a given netlist to evaluate timing
properties of the design. This still does not provide the capacity
of break down individual resource delays. The absence of
timing information creates two main challenges:
• It makes it intractable to create timing-aware CAD tools.

In such tools, we must use timing information to make in-
formed implementation choices. Performing Vivado timing
analysis in the inner loop of such tools is infeasible and will
results in orders of magnitude slowdown in runtime, defeat-
ing the purpose of the lightweight RapidWright framework.
• If we ignore timing information entirely, delay minimiza-

tion must use assumptions that may contradict resource
delays. A short path that minimizes geometric hop count
need not be the actual shortest path. The use of crude delay
estimates in RapidRoute [11], a custom router built with
RapidWright, was shown to result in 0.3–0.4 ns error in
predicting the timing delays of paths.
Adding a timing database to RapidWright in a manner

similar to Vivado would be exorbitantly expensive in terms of
memory footprint. Each FPGA family, size, and speed grade
requires a unique timing model that would be challenging
to ship with RapidWright from a legal as well as technical
perspective. Can we identify timing properties of resources
without bloating RapidWright? In this paper, we show how
to cheaply extract timing information of FPGA interconnect



resources of each device and enrich RapidWright with a
timing model for routing. This is achieved through a one-time
device characterization phase where a set of valid calibration
routes are implemented on that FPGA device. These routes are
exported to DCP (Design Checkpoint) for timing analysis via
Vivado. We then build a system of linear equations based on
the number of interconnect resources of each type organized
within the FPGA fabric. The number of equations will be
the number of calibration runs performed. The RHS (right
hand side) of this set of equations is the delay vector built
on the results of Vivado timing analysis. As the routing fabric
imposes restrictions on connectivity the resulting system of
equations has low rank. We use a Least Squares Approxima-
tion technique to solve this system of equations and identify
path delays to within a 1% margin of error.

The key contributions of this work include:
• The design of an offline characterization tool to generate

calibration paths and to extract timing delays of FPGA
interconnect resources using RapidWright. Identification of
the set of calibration paths necessary to extract sufficient
timing visibility into the device. Offline characterization of
the UltraScale+ KCU115 devices takes ≈60 s for 30 runs.
• The evaluation of accuracy of timing analysis of point-to-

point interconnect paths using our enhancements to Rapid-
Wright and comparison against timing analysis engine in
Vivado. Our models are able to predict path delays that
are within 1% of Vivado’s prediction and less than 0.01 ns
error. We also explore accuracy-model fidelity tradeoffs to
potentially reduce calibration cost.
• Adaptation of the open-source RapidRoute custom router

built using RapidWright to take advantage of this ap-
proximate timing knowledge. For bussed communication
networks like rings, torii, and meshes, the timing-enhanced
router is indistinguishable from Vivado and can even out-
perform it marginally on occasion.

II. BACKGROUND

A. RapidWright

As discussed earlier, RapidWright presents a different ap-
proach for implementing computations on FPGAs by exposing
the low-level details of the FPGA architecture fabric directly
to the developer. This may seem counter-intuitive to the goal
of raising the abstraction of FPGA programming, but it targets
custom “overlay” developers and custom “CAD tool” builders
rather than software programmers directly. It follows the
footsteps of and inherits the legacy of similar tools in the past
like Xilinx XDL [1], ReCoBus-Builder [8], RapidSmith [10].

Overlays provide a coarser-grained view of hardware re-
sources as a collection of custom ALUs, Memory (SRAM)
blocks, and can be programmed with a custom set of in-
structions. These instructions are higher-level, word-oriented
operations than low-level bit-oriented configuration of LUT
contents and routing paths. FPGA experts can develop these
overlays with software programmers in mind who understand
traditional CPU blocks like ALUs, Memories, and Instruction
Sets (ISAs). Overlays can be customized per application

by expert FPGA programmers and programmed by software
developers using custom Overlay-specific ISAs. The overlays
themselves can be fully optimized to exploit the features of the
underlying FPGA fabric in a manner automated tools, or naive
software programmers attempting RTL design cannot hope
to match. The overlays can then be “relocated” and “tiled”
across the FPGA fabric to exploit regularity and provide an
easy pathway to scaling performance at the cost of resources.
RapidWright has been used to demonstrate the generation of
arrays of Picoblaze processors with Linkblaze [12] intercon-
nect.

Custom CAD tools serve to overcome the limitations of
conventional FPGA CAD tools like Xilinx Vivado. Vivado
is a monolithic, industry-class, software program with broad
set of features to support a wide variety of customer RTL
design requirements. This makes it bloated, sluggish, memory-
intensive, and sometimes with bugs that make it difficult to
exploit specific features advertised in datasheets. Custom CAD
tools can be developed if a convenient representation of the
underlying physical FPGA fabric is available. RapidWright-
based CAD tools such as SAT Routing for inter-SLR (Super
Logic Region) crossing [4], RapidRoute [11] show the benefit
of providing device resource visibility for the development
of routers. Post-implementation debug insertion [7] is another
popular target for such custom tooling.

B. Routing

For arbitrary circuits implemented on FPGAs, routing algo-
rithms such as Pathfinder [13] are vital to deliver a timing-
and congestion-aware mapping solution. Pathfinder operates
in an iterative manner by allowing routes to compete for
resources and incrementally develop a picture of congestion
in the FPGA interconnect network. This allows the routes
to negotiate their way to the resources they need to meet
timing and area constraints of the developer. For inter-SLR
routing [4], or for regular layouts [11], we have additional
design constraints that could be exploited effectively to create
custom routing solutions. This is possible as placement of
the communication objects have specific constraints depending
on the application. For instance inter-SLR crossings impose
placement requirements on the usage of Laguna tiles. For
overlay designs, there is an abundance of symmetry in the
physical layout of the design. For these cases, the inbuilt
Vivado router can be too slow to deliver the required solution
which is a must for fast overlay generation, or even fail to
meet timing requirements due to the odd nature of inter-SLR
communication. However, RapidWright currently does not
expose an interface to extract fine-grained resource delays that
would be necessary for timing-aware routing. While tempting,
it would be tricky to add Vivado’s timing databases directly
into RapidWright. These databases hold detailed timing infor-
mation for each device, speed grade, family combinations that
would quickly bloat the RapidWright distribution.



Switch
Box

CLBx,y CLBx+1,y

Fig. 1: Xilinx CLB and Switchbox architecture exposed by
RapidWright. Red wires are horizontal and vertical global
interconnect. Black wires allow CLB IOs to enter the global
interconnect. PIPs inside the Switch Box allow a router to
establish a path between source-destination pairs.

C. Architecture View for FPGA Interconnect

Bulk of the delays in modern FPGA design arises from
interconnect. When looking at interconnect structures, modern
FPGAs are typically organized in a hierarchical manner. A
cluster of LUTs has rich intra-cluster connectivity using local
interconnect and data movement between clusters is supported
with an inter-cluster network using global interconnect. We
show a closeup of one Switchbox and two CLBs in Figure 1.
In Xilinx Architecture terminology the FPGA is organized as
a collection of BELs (Basic Element of Logic) with input
and output pins. These may be of two types: Logic BEL and
Routing BEL. In the simplest case Logic BELs are LUTs,
and Routing BELs are programmable multiplexers in the
interconnect. Within a Routing BEL, there are programmable
connections between inputs and outputs within a BEL called
PIPs (Programmable Interconnect Points). BELs are connected
to each other using Wires. From Figure 1, we observe that
Xilinx bundles the traditional cbox and sbox switches from
island-style FPGA [14] into a single Switchbox block. When
modeling FPGA interconnect delays using the Elmore approx-
imation [15], [3], we need to know the individual resources
delays of various buffered wire segments, and programmable
switching points (PIPs). These quantities are then summed
together to extract overall path delay between a source and des-
tination pair. These are typically LUT or FF outputs (source)
and LUT or FF inputs (destination). However, this fine-grained
breakdown of delays is not available in RapidWright.

III. TIMING CHARACTERIZATION WITH RAPIDWRIGHT

In this section, we will inspect the cost of ignoring timing
information during routing, the process to acquire timing
information using RapidWright, and the use of this information
during routing to determine the fastest path between two points
on an FPGA.

A. Cost of ignorance

RapidWright ships with an in-built router for constructing
overlays. It is not an industry-strength router and it does not

TABLE I: Comparing routing resources selected for timing
path between Vivado and RapidRoute. Bulk of the path is
the same, with a few strategic differences that lead to an
inferior slower solution than Vivado router. Both paths have
identical number of resources used, so minimizing hop-count
is insufficient.

Vivado Path RapidRoute Path

LOGIC OUTS E19 LOGIC OUTS E19
SINGLE DOUBLE 15 SINGLE DOUBLE 15
NN1 E BEG4 NN1 E BEG4
SINGLE DOUBLE 14 SINGLE DOUBLE 14
NN1 E BEG4 NN1 E BEG4
SINGLE DOUBLE 14 SINGLE DOUBLE 14
NN1 E BEG4 NN1 E BEG4
IMUX 7 INT OUT IMUX 7 INT OUT
BOUNCE E 11 FTS BYPASS E9
IMUX 0 INT OUT IMUX 22 INT OUT
BYPASS E2 BYPASS E2
IMUX 13 INT OUT IMUX 13 INT OUT
BYPASS E9 BOUNCE E 11 FTS
INODE 1 E 1 FTS IMUX 0 INT OUT
BYPASS E0 BYPASS E0
IMUX 12 INT OUT IMUX 12 INT OUT
BYPASS E13 BYPASS E13
IMUX 31 INT OUT IMUX 31 INT OUT
BYPASS E4 BYPASS E4
INODE 1 E 28 FTN INODE 1 E 28 FTN
BYPASS E15 BYPASS E15

0.795 ns 0.958 ns

produce high quality results. RapidRoute [11] is a custom
open-source router built on top of RapidWright for connecting
bussed networks on FPGAs. It is no surprise that it also lacks
a sophisticated timing model to drive the routing algorithm but
offers an improved QoR (quality of result) and significantly
faster runtime. In both routers, this timing obliviousness forces
the tools to aim for minimization of hops along the route.
As each hop is not made equal, the resulting route is not
the true slowest route on the FPGA. For example, let us
route a 1-bit net from X48Y20 to X48Y23 (2 tiles away) on
a Xilinx UltraScale+ XCKU115 -3 speed grade part. When
Vivado routes this net, the path takes 0.795 ns of delay but
RapidRoute takes 0.958 ns. Both paths take the same number
of interconnect hops as shown in Table I, but end up selecting
slightly different resources. If you look closely, even the
resource types are mostly identical.

B. Building a Timing Model

It is possible to develop an approximate timing model by
routing a set of calibration paths on the FPGA, recording
their delay as reported by Vivado’s timing analysis engine,
and then solving a system of equations constructed from
this experiment. RapidRoute [11] does a simplistic version
of this calibration by restricting the unknowns to wire delays.
This helps it outperform RapidWright’s internal router, but it
still loses to Vivado by a non-trivial 0.3–0.4 ns. Each path
that is routed on the device will take a specific sequence of
interconnect resources. Our goal is to identify delays of each



resource, so we can predict delays of paths that use these
resources in different combinations than our calibration set.

LOGIC OUTS
E19

SGL DBL
15

NN1 E
BEG4

SGL DBL
46

SGL
51

GLOBAL
3

INODE
E 28

IMUX
7

BOUNCE
E 11

IMUX
0

BYPASS
E2

IMUX
14

BYPASS
E13

IMUX
31

BYPASS
E4

BYPASS
E9

INODE
E 1

IMUX
22

BYPASS
E 0

IMUX
12

BYPASS
E 15

Fig. 2: Routing resource graph representation of small por-
tion of Xilinx interconnect. Investigating paths between
LOGIC OUTS E19 to BYPASS E15. You will notice that
most of the interconnect resources that show up in Table I
are visible on this resource graph.

For example, in Figure 2, we show a physical graph
representation of the interconnect resources for a small por-
tion of the switchbox. For our example, we route a set of
five connections between LOGIC OUTS E19 (source) and
BYPASS E15 (sink). These paths take different routes through
the fabric and allow us to setup a system of linear equations
as shown in Figure 3. Each resource delay is considered as an
unknown and we mark the number of times a resource is used
in the matrix location corresponding to that resource. For this
example, we have 21 unknowns and 5 equations so the system
is low rank. We use Least Squares Approximation to solve for
the unknowns. Typically, if a chunk of resources are always
used in conjunction, their delay sums are effectively a bundled
unknown for our linear system. In general, when we apply this
approach across the larger FPGA switchbox architecture, we
still end up with low rank matrices due to the connectivity
restrictions on what constitutes a legal route. This means that
our delays obtained by solving the linear system will be an
approximation with some error rather than exact delay. We see

[
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1
1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1
1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1
1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1

]
·


t0
t2

.

.

.
t19
t20

 =

[
0.324
0.547
0.567
0.559
0.533

]

Fig. 3: Linear system constructed for the five paths routed in
Figure 2. The RHS of the system is delay reported by Vivado
timing analysis. Paths are generated as DCPs via RapidWright.

later in Section IV we recover sufficient information to be able
to close the quality gap with Vivado’s timing-aware routing.

C. Linear System Setup

Xilinx switchboxes consist of many programmable PIP re-
sources, and it is not always possible to construct combinations
that isolate each of them individually. Hence, we construct
a set of calibration routes that cover many combinations of
resources. To reduce the number of unknown delays and keep
the size of the calibration set reasonable, we apply some
simplifying approximations. We study the Xilinx interconnect
fabric to identify a set of resource “types”. These types
are assumed to have a common delay. A Xilinx switchbox
is a collection of many such resource “types” with several
instances of each type connected in a certain manner. For
our application, we identify the following “types”: BOUNCE,
BYPASS, INODE, and IMUX. We also identify wire segment
types: NN1, NN2, NN4, NN12 for North-bound wiring. We
also wiring in the other three directions South, West, and East.
In addition, each resource has XY label, {E,W,S,N} direction
classification and an identifier number for each instance of that
resource within an INT tile. Finally, due to FPGA symmetry,
in most instances, we are able to reuse the delay information
generated by solving for one interconnect tile in other locations
on the chip. Certain irregularities like IO columns do interfere
with this simplification, but that is very rare.

IV. EVALUATION

We use Vivado 2018.2 for our timing analysis and routing
experiments. We use RapidWright v2018.2.5 to generate DCPs
for calibration experiments. For our calibration DCPs, we
ensure that Vivado accepts our DCP as a legal design without
any antennas or disconnected segments; we discovered this
painfully as Vivado timing analysis would deliver unpre-
dictable results for such illegal DCPs. We solve our linear
system using Least Squares Approximation technique with
the Python numpy package to obtain our timing model after
calibration. To evaluate the effectiveness of our calibration, we
partition the calibration data into training and testing sets with
30% of our runs set aside for testing. This allows us to check
against overfitting. We repeat our calibration experiments on
the XCKU115 FPGA with speed grade -3, -2, and -1. We
integrate our timing model with RapidRoute [11] and evaluate
the effectiveness on routing structures such as rings, torii, and
meshes than span the chip.



●

●

●

●

●

●
●

● ● ●
● ● ● ●

●

● ●

●
●

● ● ● ●

0.005

0.010

0.015

0.020

20 40 60 80

Number of calibration runs

T
im

in
g 

A
na

ly
si

s 
A

cc
ur

ac
y 

(n
s)

Fig. 4: Improving accuracy of timing analysis through of-
fline one-time calibration. Timing error is <0.01 ns after 30
calibration runs. Some error remains even at 100 calibration
runs to low rank system of equations and use of least squares
approximation.

A. Calibration

To build the timing model we must first run an offline
one-time calibration round per FPGA device. A calibration
round consists of a set of timing experiments. Each timing
experiment involves routing a point-to-point net (FF→FF)
that traverses the global interconnect in a manner that aims
to cover a diverse set of PIP types. Due to the nature of
FPGA connectivity, it is highly unlikely that we can guarantee
full coverage of all PIP combinations. But we observe that
we are able to characterize most PIP types in the device in
under ≈30 calibration runs. We generate a set of DCPs for a
set of nets and invoke Vivado timing analysis on each DCP
(net). This data is fed into our model building least square
approximation routine to compute timing delays of PIPs.
Armed with this timing delay, we then compare the timing
predicted by our model with that of Vivado’s timing analysis
engine. In Figure 4, we show the effect of increasing our
calibration set size on prediction accuracy of our timing model.
After around 30 runs, the calibration error drops to 0.01 ns
(<1%). While not identical to Vivado due to limited coverage
of the routing network, this is adequate for implementing a
timing-aware router as we will demonstrate in Section IV-C.
In Figure 5, we report the total Vivado timing analysis time
required to evaluate timing of the point-to-point nets in our
calibration set. The linear least squares approximation on
this data takes negligible time and runtime is dominated by
invoking Vivado timing analysis engine. For 30 calibration
runs, we need around 100 s of sequential runtime on an Intel
Xeon CPU E5-1630. This calibration is a one-time task for a
particular FPGA device and once the model is built it can be
reused freely. The model is lightweight in memory footprint
as well associating a simple floating-point delay quantity with
each of 50 or so wire and PIP parameters. Due to symmetry
we can reuse these values almost all across the chip (except
some cases with interference from IO columns).

● ●
● ●

●
● ●

●
● ●

●
● ●

●
●

●
● ●

●
●

● ●
●

0

50

100

150

200

250

0 30 60 90 120

Number of calibration runs

V
iv

ad
o 

T
im

in
g 

A
na

ly
si

s 
tim

e 
(s

)

Fig. 5: Timing model construction time (DCP generation
with RapidWright + Vivado timing analysis). Vivado timing
analysis for the entire set of calibration DCPs loaded one after
another takes <250s of runtime on Intel Xeon E5-1630.

B. Wire and PIP Delays

The primary objective of our work is to extract the fine-
grained timing information of interconnect resources such as
wires and PIPs. After calibration runs, we run least squares
approximation on the data to solve for the unknown resource
delays. We show the trends for these resources when consid-
ering KCU115 FPGA with speed grades of -1, -2, and -3. We
see several interesting trends:

• Speed grade −3 is faster than −2 which in turn is faster
than −1 grade device as expected.

• When inspecting wire delay trends (NN, SS, EE, or WW
resources) in Figure 6 for xcku115, we observe the longer
resources take longer delay as they travel further along
the die. For instance, for speed grade -1 of xcku115, the
one-hop NN1 wire takes 18.4 ps per hop while a four-
hop NN4 wire needs 59.1 ps per hop. Thus, a router can
choose NN4 instead of taking 4×18.4 ps=73.6 ps route.
The 12-hop wire NN12 is surprisingly faster at 46.9 ps
than even an NN4.

• For xcku115, the most expensive individual PIP delays
belong to LOGIC OUTS (94.4 ps), BOUNCE (79.9 ps),
INODE (79.6 ns). They happen to be larger than wire
delays and only approaching delays of the 5-hop wires.

C. Integrating with Custom Router

Finally, we investigate the effect of integrating this ap-
proximate timing model to perform customized routing in
RapidRoute [11]. RapidRoute is an open-source custom router
that generates communication structures for overlays from
the ground up for bussed networks like rings, torii, and
meshes. It exploits symmetry in the connectivity requirements
to generate routed DCPs in 8× less CPU time and 1000× less
memory footprint compared to Vivado. However, it operates
on a crude timing model and loses to Vivado in terms of
timing slack by as much as 0.3–0.4 ns. We run Vivado with
MoreGlobalIterations mode to optimize circuit timing and
provide a tough baseline to beat.



Delay (ps)

S
pe

ed
 G

ra
de 66.8

80.4
94.4

100.9
139.4
179.2

39.5
48.3
54.7
71.6
92.4

183.2

39.6
46.3
54.4
41.8
67.9

105.8

55.6
70.7
79.9
66.2

105.1
178.2

44.1
50.6
59.2
54.1
86.2

113.0

24.5
25.1
29.3
68.4

114.2
231.4

55.1
68.4
79.6
73.5

116.0
176.5

30.1
36.4
43.3
32.9
65.7

105.5

29.6
37.2
42.6
38.8
62.5

147.8

13.5
17.3
18.4
15.1
24.1
39.6

23.6
25.8
29.5
29.2
48.9

113.0

49.3
50.3
59.1
61.0

107.8
249.3

53.5
57.3
68.1
73.3

115.2
191.3

34.9
39.8
46.9
40.4
59.9
79.4

16.0
19.0
20.7
23.5
35.9
42.0

24.0
24.4
28.7
26.0
50.8

107.2

48.8
48.7
56.6
76.5

114.8
213.9

63.5
56.4
63.2
72.3

130.1
249.9

34.3
40.9
49.4
37.2
67.6
97.4

23.6
30.8
35.7
27.1
42.5
72.7

27.9
32.9
38.4
42.1
62.6
98.0

56.0
66.0
76.4
83.3

131.2
222.1

37.8
42.9
50.0
54.6
77.0

141.9

16.6
16.1
17.7
20.1
29.6
53.8

23.2
23.4
26.0
37.2
57.5
99.5

57.9
67.1
76.8
75.5

130.3
189.0

38.6
47.6
55.0
39.6
64.3
99.7

LO
G

IC
_O

U
T

S

N
O

D
E

_I
M

U
X

B
Y

PA
S

S

B
O

U
N

C
E

S
IN

G
LE

_D
B

L

Q
U

A
D

_L
O

N
G

IN
O

D
E

S
IN

G
LE

G
LO

B
A

L

N
N

1

N
N

2

N
N

4

N
N

5

N
N

12

S
S

1

S
S

2

S
S

4

S
S

5

S
S

12

W
W

1

W
W

2

W
W

4

W
W

12

E
E

1

E
E

2

E
E

4

E
E

12

−1
−2
−3
−1
−2
−3

Fig. 6: Approximate timing delays of fine-grained interconnect resources including wires and PIPs solved through least squares
method for xcku115 (top 3 rows) and xcku5p (bottom 3 rows). Nodes are Color coded to show slow resources with red fill
and fast resources with green fill.

1x2 1x4 1x6 1x8 1x10
Ring Size

1.5

2.0

2.5

3.0

C
lo

ck
 p

er
io

d 
(n

s)

2x2 3x3 4x4 5x5 6x6
Torus Size

2x2 3x3 4x4 5x5 6x6
Mesh Size

RapidRoute Vivado MoreGlobalIterations RapidRoute+Timing

Fig. 7: Effect of enhancing RapidRoute with an approximate
timing model for wire and PIP delays. Clock period is now
practically indistinguishable from Vivado’s MoreGlobalItera-
tions high-performance mode. Timing-oblivious RapidRoute
loses to Vivado by as much as 0.3–0.4 ns.

As we see in Figure 7, RapidRoute enhanced with our
approximate timing model is practically indistinguishable from
Vivado router when considering the critical path delay. In
one case we actually discover a faster route than Vivado and
another case we are slower than Vivado by 0.05 ns. Even
with the approximate nature of our timing model, the tool has
recovered enough detail to drive a router. The router can mimic
Vivado’s QoR (Quality of Result) for all practical purposes
when routing bussed communication structures on the FPGA
fabric. We do see a couple of minor outliers where we lose or
win by 0.05 ns but we attribute that to tool noise. Importantly,
after integrating a timing model, the runtime advantages of
RapidRoute are still retained and the router runs ≈8× faster
than Vivado as before.

V. RELATED WORK

While our work aims to integrate timing knowledge into
RapidWright, there is some prior art for doing a similar task
in the field of variation-aware FPGA CAD on a component-
specific basis.

In GROK-INT [5] and GROK-LAB [6], the authors aim to
extract delays of interconnect and logic blocks inside each
FPGA chip. The goal is to quantify the impact of device
variation on delay. With a detailed delay map per device,
a variation-aware CAD tool can take advantage of timing
knowledge to generate a device-specific bitstream. We solve a

different problem – extracting timing information from Vivado
through RapidWright. Our work is done purely in software
through a small set of calibration experiments with Vivado. We
are also able to extract precise information of the interconnect
resources and use that to solve a system of equations to get
fine-grained timing information. The GROK-INT and GROK-
LAB work have to abstract a series of connected resources
into DUKs (Discrete Units of Knowledge). This limits the
granularity of timing information but is adequate for device
specific CAD. We are not constrained in that manner as
RapidWright makes precise path breakdown available to the
user. There are some limits on how interconnect resources
can be chained to create legal timing paths, but this has been
sufficient for our work.

VI. CONCLUSIONS

In this paper we show how to build an approximate timing
model for interconnect resources within the Xilinx Rapid-
Wright framework. We do this by running Vivado timing
analysis on a small set of calibration routes that aim to cover a
diverse set of interconnect resources within an interconnect tile
to connect nets. We then setup a linear system of equations that
is low rank and is solved using least squares approximation.
This is necessary as the routing rules make it challenging
to generate enough path diversity for a full rank system of
equations. We achieve <1% error (0.01 ns) in our timing
predictions for FPGA nets after 30 calibration runs and under
60 seconds of Vivado timing analysis. Our timing model for
the interconnect tile can be generalized across the FPGA due
to device symmetry. Our approach also extends to FPGAs
with different speed grades as well as device families. With
our approximate timing model, we are able to enhance the
open-source RapidRoute tool to close the timing gap with
Vivado almost entirely and even surpass Vivado’s slack in
certain cases. With our tool, you can add timing awareness to
RapidWright without the need to bloat it with memory-hungry
detailed timing databases.

Acknowledgements: We would like to thank Dr. Chris
Lavin and Dr. Alireza Kaviani at Xilinx Research for assisting
us in the development of this project.

Source Code:
https://git.uwaterloo.ca/watcag-public/RapidRoute-TimExt
https://git.uwaterloo.ca/watcag-public/RapidRoute

https://git.uwaterloo.ca/watcag-public/RapidRoute-TimExt
https://git.uwaterloo.ca/watcag-public/RapidRoute


REFERENCES

[1] C. Beckhoff, D. Koch, and J. Torresen. The Xilinx Design Language
(XDL): Tutorial and use cases. In 6th International Workshop on
Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC),
pages 1–8, June 2011.

[2] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang.
High-Level Synthesis for FPGAs: From Prototyping to Deployment.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 30(4):473–491, April 2011.

[3] W. C. Elmore. The Transient Response of Damped Linear Networks
with Particular Regard to Wideband Amplifiers. Journal of Applied
Physics, 19(1):55–63, 1948.

[4] H. Fraisse and D. Gaitonde. A SAT-based Timing Driven Place and
Route Flow for Critical Soft IP. In 2018 28th International Conference
on Field Programmable Logic and Applications (FPL), pages 8–87, Aug
2018.

[5] B. Gojman and A. DeHon. GROK-INT: Generating Real On-Chip
Knowledge for Interconnect Delays Using Timing Extraction. In 2014
IEEE 22nd Annual International Symposium on Field-Programmable
Custom Computing Machines, pages 88–95, May 2014.

[6] Benjamin Gojman, Sirisha Nalmela, Nikil Mehta, Nicholas Howarth,
and André Dehon. GROK-LAB: Generating Real On-chip Knowledge
for Intra-cluster Delays Using Timing Extraction. ACM Trans. Recon-
figurable Technol. Syst., 7(4):32:1–32:23, December 2014.

[7] B. L. Hutchings and J. Keeley. Rapid Post-Map Insertion of Embedded
Logic Analyzers for Xilinx FPGAs. In 2014 IEEE 22nd Annual
International Symposium on Field-Programmable Custom Computing
Machines, pages 72–79, May 2014.

[8] D. Koch, C. Beckhoff, and J. Teich. ReCoBus-Builder — A novel tool
and technique to build statically and dynamically reconfigurable systems
for FPGAS. In 2008 International Conference on Field Programmable
Logic and Applications, pages 119–124, Sep. 2008.

[9] C. Lavin and A. Kaviani. RapidWright: Enabling Custom Crafted
Implementations for FPGAs. In 2018 IEEE 26th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), volume 00, pages 133–140, Apr 2018.

[10] Christopher Lavin, Marc Padilla, Jaren Lamprecht, Philip Lundrigan,
Brent Nelson, and Brad Hutchings. RapidSmith: Do-It-Yourself CAD
Tools for Xilinx FPGAs. In Proceedings of the 21th International
Workshop on Field-Programmable Logic and Applications (FPL’11),
September 2011.

[11] L. Liu, J. Weng, and N. Kapre. RapidRoute: Fast Assembly of Com-
munication Structures for FPGA Overlays. In 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), Apr 2019.

[12] P. Maidee, A. Kaviani, and K. Zeng. LinkBlaze: Efficient global
data movement for FPGAs. In 2017 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pages 1–8, Dec
2017.

[13] L. McMurchie and C. Ebeling. PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs. In Third International ACM
Symposium on Field-Programmable Gate Arrays, pages 111–117, Feb
1995.

[14] Jonathan Rose, Jason Luu, Chi Wai Yu, Opal Densmore, Jeffrey Goed-
ers, Andrew Somerville, Kenneth B. Kent, Peter Jamieson, and Jason
Anderson. The VTR Project: Architecture and CAD for FPGAs from
Verilog to Routing. In Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’12, pages 77–
86, New York, NY, USA, 2012. ACM.

[15] J. Rubinstein, P. Penfield, and M. A. Horowitz. Signal Delay in RC Tree
Networks. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2(3):202–211, July 1983.


	Introduction
	Background
	RapidWright
	Routing
	Architecture View for FPGA Interconnect

	Timing Characterization with RapidWright
	Cost of ignorance
	Building a Timing Model
	Linear System Setup

	Evaluation
	Calibration
	Wire and PIP Delays
	Integrating with Custom Router

	Related Work
	Conclusions
	References

