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Abstract—
Effective utilization of GPU processing capacity for scientific

workloads is often limited by memory throughput and PCIe
communication transfer times. This is particularly true for semi-
analytic Fourier-domain computations in earthquake modeling
(Relax) where operations on large-scale 3D data structures can
require moving large volumes of data from storage to the compute
in predictable but orthogonal access patterns. We show how to
transform the computation to avoid PCIe transfers entirely by
reconstructing the 3D data structures directly within the GPU
global memory. We also consider arithmetic transformations that
replace some communication-intensive 1D FFTs with simpler,
data-parallel analytical solutions. Using our approach we are
able to reduce computation times for a geophysical model of the
2012 Mw 8.7 Wharton Basin earthquake from 2 hours down to
15 minutes (speedup of ⇡8⇥) for grid sizes of 512·512·256 when
comparing NVIDIA K20 with a 16-threaded Intel Xeon E5-2670
CPU (supported by Intel-MKL libraries). Our GPU-accelerated
solution (called Relax-Miracle) also makes it possible to conduct
Markov-Chain Monte-Carlo simulations using more than 1000
time-dependent models on 12 GPUs per single day of calculation,
enhancing our ability to use such techniques for time-consuming
data inversion and Bayesian inversion experiments.

I. INTRODUCTION

The surface of the Earth constantly deforms due to the
action of earthquakes, volcanoes and hydrological processes.
Monitoring this deformation offers an opportunity to constrain
the mechanical properties of the subsurface through modeling.
One way to understand the deep properties of the lithosphere
is to study the slow relaxation that follows large earthquakes
or rapid changes of surface loads. The stress induced by
these sudden disturbances spurs an accelerated visco-elastic
transient that can deform rocks all the way down to the Earth’s
upper-mantle. Many analytical and numerical tools allow us
to simulate scenarios of visco-elastic relaxation, including
using the finite-element [1], boundary-integral [2] and Green’s
function methods [3].

The solution displacement or velocity can be obtained by
convolving the forcing terms of the governing equation with
an analytic Green’s function requiring of the order of O(N2

)

operations, where N is the number of nodes in the mesh.

Fig. 1: Three-dimensional Relax simulation of the displacement
caused by the 2012 Mw 8.7 Wharton Basin earthquake. The model

incorporates a realistic source geometry for the quake and the
Earth’s mechanical properties around the Sunda trench offshore

Sumatra, Indonesia.

When the elastic properties are assumed uniform inside the
Earth, the convolution between the Green’s function and the
forcing terms can be evaluated in the Fourier domain, taking
full advantage of the efficiency of the fast Fourier transforms.
This method offers the best asymptotic scaling with mesh size,
requiring only of the order of O(N logN) operations, which
can be also efficiently parallelized on shared- and distributed-
memory computers.

The Relax software implements a Fourier-domain Green’s
function [4], [5] to simulate three-dimensional models of
visco-elastic relaxation following sudden stress changes in-
duced by earthquakes, volcanoes and hydrological processes.
The method is sufficiently flexible to incorporate realistic
variations of visco-elastic properties and complex source mod-
els in space and time. For example, in Figure 1, we show
a visualization of the result of Relax when analyzing the
geophysical processes in action around the Sunda Trench off
the Indonesian coast. The large, thick arrows represent a slip
input into our model while the hundreds of smaller arrows
are the resulting displacement fields generated by Relax. The
method was also used to study the properties of the San



Andreas Fault around Parkfield, CA [6], and the mechanical
properties of rocks in the Taiwanese accretionary prism [7].
Despite the relative efficiency of Relax compared to other
numerical methods, multi-threaded computation of a single
model still takes a several hours on a shared-memory computer
for even the simplest datasets. This prevents us from using an
automatized data inversion framework for realistic earthquake
models. Acceleration of the Relax computation by large factors
(i.e., 5–10⇥) would open the door to many applications,
in particular Markov-chain Monte-Carlo methods for global
parameter optimization and estimation of model uncertainties
when fitting geophysical data.

Many other computational problems in science and engi-
neering are structurally similar to Relax. They stress the capa-
bilities of modern processing platforms in many ways: (1) raw
compute-intensive nature of the arithmetic, (2) sheer volume
of data being moved around (multi-GB active state), and (3)
orthogonal data-access patterns. Promisingly, the numerics are
inspired by natural phenomenon where parallelism, locality,
reuse and spatial nature of the computational structures are
abundant. GPUs are of particular interest in this context due
to the availability of hundreds of data-parallel floating-point
pipelines with large off-chip memory bandwidths unseen in
general-purpose CPU-based hardware (see Section IV). GPUs
have become relatively affordable and are increasingly easy
to program through frameworks such as CUDA making them
accessible to a broader community of users including geo-
physicists. In this paper, we describe the CUDA-parallelized
GPU-implementation of the Relax computation (which we
name Relax-Miracle – CUDA in Polish translates into “to
work miracles”) and associated bottleneck analysis and op-
timization.

The key contributions of this paper include:
• Parallelization analysis and optimization of OpenMP

multi-threaded code for Relax – a semi-analytic Fourier-
domain solver for earthquake simulations

• Optimized CUDA implementation of Relax (called
Relax-Miracle) and detailed performance/scalability anal-
ysis of the complete Fortan code suitable for scalable
parallelization.

• Demonstration of 7.7⇥ speedup when comparing the
performance of a 512·512·256-sized physical domain
simulation between a 16-threaded Intel E5-2670 CPU
implementation (MKL) versus an NVIDIA K20 GPU.

• Markov-Chain Monte-Carlo simulation of GPU-
accelerated Relax-Miracle across 12 NVIDIA K20 GPUs
to solve an inverse problem.

II. BACKGROUND

We first describe the underlying mathematics of the Relax
algorithm and motivate the challenges associated with its
efficient parallelization.

A. The Mathematics of Relax
Relax evaluates the three-dimensional, time-dependent de-

formation that follows a stress perturbation. Displacement
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Fig. 2: Relax Flowchart showing the different numerical
stages of the algorithm. Relax is an iterative computation
that repeatedly computes solution to the elastic Green’s

function with nested loops for time integration using
Runge-Kutta method and time-stepping

and velocity are obtained by solving the governing equations
and boundary conditions for elastic deformation in a half
space with a free surface. Static displacement and quasi-
static instantaneous velocity are obtained by application of
the elastic Green’s function in the Fourier domain, after
numerically Fourier transforming the body forces using a fast
Fourier transform (FFT). Time evolution is simulated using a
predictor-corrector Runge-Kutta explicit quadrature.

1) Elastic Green’s function: Solution of the elastic equation
in closed form is obtained with a pre-determined sequence of
steps from prescribed body forces. We first Fourier transform
the body forces f in three dimensions

ˆf(k) =
ZZZ 1

1
f(x)e�i2⇡k·x dx (1)
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where x and k are the coordinates and the wave numbers,
respectively. This is approximated numerically using a discrete
three-dimensional FFT. We then compute a particular solution
analytically for every wave number using the matrix-vector
product

ˆup
(k) = M ˆf(ˆk) (2)

where we defined

M(k1, k2, k3) =
1

µ(2⇡�2
)

2
⇥

2

4
(1�↵)�2�↵k1k1 �↵k1k2 �↵k1k3

�↵k2k1 (1�↵)�2�↵k2k2 �↵k2k3
�↵k3k1 �↵k3k2 (1�↵)�2�↵k3k3

3

5

(3)
with �2

= k21 + k22 + k23 . The dimensionless constant ↵ is a
function of the classic elastic parameters [4].

Eq. (2) requires a correction to satisfy the boundary con-
dition at the surface. The correction has a closed-form rep-
resentation in the Fourier domain [4] that can be estimated
using

ûp
3(k1, k2) =

Z 1

�1
ûp
3(k1, k2, k3) dk3 (4)

and
ˆtp(k1, k2) = µ

Z 1

�1
S · ˆup dk3 (5)

where we also defined

S(k1, k2) =

2

4
k3 0 k1
0 k3 k2

! k1 ! k2 k2 + (1 + !) k3

3

5 (6)

with ! = �(1�2↵)/(1�↵). The correction is given in closed
form by

ûh
1 = �

⇥
� 2B1�

2
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�
1� ↵�1 � i!3 �

� ⇤

ûh
2 = �
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�
1� ↵�1 � i!3 �

� ⇤

ûh
3 = �↵�

⇥
(!1B1 + !2B2) !3 �

� �B3

�
↵�1 � i!3 �

� ⇤

(7)

where the constants B1, B2 and B3 depend on both up
3(k1, k2)

and ˆtp(k1, k2). Finally, the solution in the space domain is
obtained using the transform

u(x) =
ZZZ 1

1
ˆu(k) ei2⇡k·xdk (8)

which is performed using a FFT.
2) Time integration: Relax implements a predictor-

corrector adaptive time step integration procedure. The ve-
locity is first evaluated at time t to obtain displacement at
time t+�t/2. The velocity at time t+�t/2 is then used to
integrate displacement (u) and inelastic stress (⌧ ) from times
t to t+�t.

At any time, the stress � can be evaluated with

� =

0

@
�✏kk+2µu1,1 µ(u1,2+u2,1) µ(u1,3+u3,1)

µ(u2,1+u2,1) �✏kk+2µu2,2 µ(u2,3+u3,2)

µ(u3,1+u1,3) µ(u3,2+u2,3) �✏kk+2µu3,3

1

A� ⌧
(9)

where ✏kk is the dilatation and ⌧ is the stress that was reduced
by viscous flow. The rate of decay of stress is a function of
the current stress and time

˙⌧ = m(�, t) (10)

and the body force can be directly obtained with

˙f = �r · m (11)

The velocity is obtained from the body-force rates of eq. (11)
using the Green’s function method. Keeping track of the
evolution of ⌧ and u allows us to model the time-dependent
evolution of displacement and stress due to viscoelastic relax-
ation.

B. Contemporary Literature Review

The use of high-performance computing in earthquake
sciences is not new [8], [9], [10]. GPUs are particularly
promising [1], [11] due to the parallel nature of the geophysics
problems and accuracy-driven choice of floating-point inten-
sive arithmetic calculations.

In [1], the authors describe the GPU parallelization
of AWP-ODC (Anealstic Wave Propagation-Olsen-Day-Cui)
real-world earthquake simulator. Their study performs 3D
finite-differences that are implemented as highly-parallel sten-
cil computations on GPUs. This tool is closely related to
Relax, but it performs calculations on hyperbolic equations
while Relax uses parabolic and elliptic ones. Furthermore,
Relax operates in the Fourier domain to perform the simulation
arithmetic for (1) lowering errors/inaccuracies, and (2) FFT
compute speed over of the slower finite-difference or finite-
element approaches. The focus of their paper is Mint - a
source-to-source translator for stencil computations - while we
emphasize the parallelizability limits and GPU optimizations
of a broader set of kernels. Their tool flow only considers a
simulation volume of 192·192·192 in contrast with our volume
of 512·512·256. We run our experiments on newer NVIDIA
K20 GPU in contrast with the NVIDIA C2050 GPU used in
their study. A similar study based on finite-differences was
also reported in [12].

In [11], the authors accelerate a 3D Fourier-migration
solver which extensively involves 3D FFTs much like our
solver. However, their approach emphasizes the development
of strategies for managing 3D FFT runtimes as it is their
bottleneck computation. In our solver, FFTs and inverse FFTs
are an important component but they do not dominate overall
runtime (see Table I). Our Relax-Miracle solver handles many
other types of parallel computations. Their smart use of
compression (type change from float to integer) may only be
applicable in scenarios with specific accuracy requirements.
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TABLE I: Asymptotic and Implemented behavior of functions in Relax

Funtion Description Complexity
⇤

Runtime
Sequential Parallel Sequential (ms)

eigenstress compute tensorial forcing term O(N) O(N
2/3
xy

) 6
bodyforce evaluate the divergence operator K1 ·O(N) K ·O(N

2/3
xy

) 22
stress compute 6 independent components of stress tensor K ·O(N2) K ·O(N

2/3
xy

) 31
Green’s Function
FFT/iFFT compute fast Fourier Transform (or inverse) O(N · ln(N)) O(ln(N)) 3.5
elastic computes the particular solution O(N) O(N

2/3
yz

) 1.1
surface summation in the 3-direction O(N) O(ln(N)) 1.9
cerruti add homogeneous solution O(N) O(N

2/3
yz

) 6.1
1 Relax Iteration ! 71.6 ms

1K is the size of the finite impulse response filter used for derivatives in strain and divergence calculations.
2N = N

x

·N
y

·N
z

TABLE II: Data-Structures

Data-Structure Description Dimension Size Memory1

u1, u2, u3 3 components of cumulative displacement 3D 3 ·N
x

·N
y

·N
z

0.75 GB
v1, v2, v3 3 components of instantaneous velocity or forcing term2 3D 3 ·N

x

·N
y

·N
z

0.75 GB
t1, t2, t3 3 components of surface traction2 2D 3 ·N

x

·N
y

3 MB
sig 6 independent components of stress 3D 6 ·N

x

·N
y

·N
z

/ 2 0.75 GB
moment 6 independent components of instantaneous power density 3D 6 ·N

x

·N
y

·N
z

/ 2 0.75 GB
tau 6 independent components of cumulative stress 3D 6 ·N

x

·N
y

·N
z

/ 2 0.75 GB
structure 3 components of the viscosity structure 1D 3 ·N

z

/ 2 1.5 KB
Total Memory ! 3.75 GB

1approximate calculations for 512 · 512 · 256-sized problem
2calculation of displacement from equivalent body force or velocity from force per unit time is performed in place.

As such, our solver needs single-precision arithmetic to meet
our accuracy goals.

In [13], the authors present a mechanism for handling
large-scale 3D FFTs that exceed GPU main memory capacity
using blocking and other performance-enhancing techniques.
While not directly relevant for our problem sizes and spatial
resolutions, their solutions presents an intriguing possibility for
splitting the complete problem across multiple GPUs which we
may consider in future work.

III. ANALYSIS, PARALLELIZATION AND GPU
OPTIMIZATION

We first attempt to understand the computational structures
inherent in Relax to study its parallel potential, and suitability
for GPU acceleration.

A. Understanding Computational Limits

In Table I, we list the key functions in Relax (similar to
the ones shown in Figure 2. In Table II, we highlight the core
data structures used throughout the Relax computations. From
these results, we can make some preliminary observations and
attempt to draw some (hasty) conclusions:
• Relax has an iterative computation where the bulk of time
is spent in the bodyforce and stress functions (53 ms
out of 71 ms).

Conclusion 1: We only need to accelerate the most-
frequently used portion of the code on the GPU while
leaving the rest of the program running on the CPU host.
• For a problem size of 512·512·256, we need around
3.75 GB of actively used state. To a large extent, we
can perform computations in place simplifying the address
calculations and reducing the amount of memory bandwidth
required.
Conclusion 2: This can easily fit in the CPU main memory
and we can stream this data over PCIe bus and/or offchip
storage.
• Most of the computations are asymptotically linear in
problem size (O(N)) as well as highly data parallel along
each dimension (O(

3
p
N2

)).
Conclusion 3: Writing and tuning parallel OpenMP and
CUDA versions of such code should be relatively straight-
forward.
However, these hasty conclusions are incorrect due to the

large-scale 3D organization of the computed data. A deeper
analysis of the code and first-cut programming effort reveals
a nuanced picture of the computational trends and bottle-
necks.
• When dealing with such physically derived 3D models,
we frequently need to access data in multiple different
ways (orthogonal dimension orders) making it challenging,
if not impossible, to pre-fetch or pre-order data in one right
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way. This problem will be exacerbated if the data must be
transferred over the long-latency, low-bandwidth PCIe bus
instead of the superior local DRAM interface.
• Amdahl’s law cautions us against selective parallelization
of certain subsets of the computation as it limits overall
application speedup. If we only accelerate bodyforce

and stress, we are capping the peak theoretical speedup
at ⇡3.8 (from Table I). Additionally, we are ignoring the
impact of this apparently sensible CPU-GPU partitioning
on the cost of performing memory transfers over the PCIe
bus. This strategy will require us to move a large chunk of
the 3D dataset repeatedly back-and-forth between the host
CPU and GPU in every iteration. From Table II we can
estimate the cost of transferring 1.5 GB (cumulative input to
function from Figure 3) over PCIe bus at ⇡250ms assuming
an ideal PCIe throughput of 5.8 GB/s (PCIe v3.0). Compare
this to the sequential cost of the iteration ⇡71ms (last row
of Table I).
• GPUs present a completely different data-parallel substrate
that is substantially different from multi-core CPUs. This
allows us to rethink the nature of the underlying arithmetic
in a manner that best exploits data-parallelism.

B. GPU Parallelization

The original Relax source is written in Fortran and en-
hanced to use OpenMP parallelization extensively. In our
exploratory implementation, we only offloaded the Green’s
Function to the GPU and observed a slowdown instead of
speedup. As discussed earlier in Section III-A, the size of data
structures moved between host and device limits performance
severely. In the same experiment, we noted the ability of PCIe
3.0-capable GPU cards with lower floating-point throughput
(NVIDIA GT650M) to outperform a PCIe-2.0-capable GPU
card that offered 2–3⇥ higher floating-point processing capac-
ity (NVIDIA K20). This curious result confirmed our suspicion
that we have to reformulate the entire Relax computation to
avoid (or minimize) memory transfers between the host CPU
and the GPU over the PCIe bus. We subsequently made two
significant changes to the GPU code:
• Complete offload: We knew we had to perform GPU par-
allelization to avoid data transfers entirely by constructing
and storing the data structures exclusively in the GPU main
memory itself. This was only possible if we converted most
of Relax functions (barring file I/O and visualization) to
CUDA kernels. We can convince ourselves from Table I that
this is indeed possible due the data-parallel nature of the rest
of the functions. As a software-engineering strategy, we re-
wrote Relax functions incrementally (one-by-one) to target
GPUs using CUDA while retaining rest of the program
functionality intact. This allowed us to gradually move
over the entire computation to the GPU while retaining
confidence over accuracy and correctness of the underlying
arithmetic.
• Arithmetic Reformulation: We also made algorithmic
changes to enhance parallelism through arithmetic refor-
mulation of the calculations. For the cerruti kernel, the
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Fig. 3: Dataflow diagram for the Relax computation with
data transfer size annotations for a 512 · 512 · 256-sized

problem

original CPU implementation used FFT-based calculations.
When considering the data-parallel GPU target, we were
able to replace these with data-parallel analytical equations.
This is not generally possible but in this specific instance,
the arithmetic allows this change resulting in an ⇡60%
runtime improvement.
A flow diagram of the parallelized code annotated with data

structure interactions is shown in Figure 3. As we can see,
we have minimized the CPU$GPU communication to a few
kilobytes at the start and end of the computation. All internal
multi-GB transfers stay local on the GPU.

IV. EXPERIMENTAL SETUP

For our parallelization experiments, we consider both multi-
core as well as GPU platforms. The key specifications of the
platforms are listed in Table III. As we can clearly see, the
motivation for considering GPUs is a combination of high
floating-point throughput (⇡10⇥) as well the substantially
larger offchip memory bandwidth (⇡4⇥). For the Monte-Carlo
simulation, we parallelize the computation across a cluster
of 12 NVIDIA K20 GPU cards. For software development
and functional correctness, we focus on the cheaper GTX680
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TABLE III: Computing Platforms

Platform Device Technology Die Size Theoretical FLOPs Off-chip Memory Ratio
(nm) (mm2) (TFLOPs) Capacity Bandwidth FLOPs Bandwidth

Intel Multi-core E5-2670 32 416 0.333 128GB 51.2 GB/s 1 1
NVIDIA GPU GTX680 28 294 3.09 2 GB 192 GB/s 9.3 3.7

C2075 40 520 1.03 4.68 GB 144 GB/s 3 2.8
K20c 28 561 3.52 4.68 GB 208 GB/s 10.5 4

(and C2075) card while upgrading to the K20 for performance
optimization.

We parallelize Relax for multi-cores using OpenMP
for the data-parallel components and rely on 64-bit Intel
MKL 11.0 library (release 2013.5.192) and the 64-bit FFTW3
(libfftw3f-threads.so compiled with gcc-3.3.3) li-
brary for the multi-threaded 3D FFT implementations on the
CPU. For GPU programming we use CUDA 5.0.35 toolkit
along with the included cuFFT library. We also use the
NVIDIA Visual Profiler for performance analysis and opti-
mization. For the Markov-Chain Monte-Carlo simulations, we
use Matlab 2013.a with a shell interface to Relax-Miracle. We
use PAPI [14] to measure runtime on multi-core CPUs while
using CUDA timers for GPU performance measurements. Our
measurements are averaged across 100s of runs. We performed
power measurements using the NVIDIA NVML library and
recorded steady-state readings of 118–119W.

Accurate simulations of the deformation associated with
earthquakes - or other sudden stress changes in the Earth
- require a large 3D computational space. This is to offer
simultaneously a fine sampling of the region considered, and
to make this region as large as possible. We consider problem
sizes 128·128·128, 256·256·256 and (preferred) 512·512·256
to consider varying degrees of accuracy. We are currently
unable to model larger spaces due to offchip memory capacity
limits of the NVIDIA K20 GPU but are aware of ideas [13] for
solving this problem in the future. For visualizing the result
of the Relax-Miracle simulations we use Paraview 3.1 (used
to create Figure 1).

V. PERFORMANCE RESULTS

We first describe the parallelizability of Relax computation
using OpenMP on CPUs. Once we understand the limits of
speedup possible using multi-threaded code, we discuss our
performance results using GPUs. We will highlight the key
causes of scaling issues and identify bottlenecks that prevent
ideal performance through a series of questions and associated
answers.

A. CPU Performance

Q: What is the impact of OpenMP multi-threading on Relax
performance? Does the choice of MKL or FFTW3 affect
scalability?

In Figure 4, we quantify the performance and scalability
trends of parallel Relax computation running across multiple
threads (1!32) when using MKL and FFTW3 libraries. When
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Fig. 4: Impact of parallelizing Relax using OpenMP across
1–32 threads when using MKL and FFT3 libraries

compared to ideal scaling behavior (Tseq/PE), we observe
saturation in total Relax runtimes at ⇡7⇥ with 16 threads for
the Intel MKL libraries. This is less than ideal but accept-
able when compared the the FFT3 library. We encountered
scalability challenges with the multi-threaded FFTW3 library,
hence we focus on the optimized MKL library for our speedup
calculations. Across both libraries, we observe a distinct
slowdown when increasing total thread count from 16 to 32
. We attribute this systematic performance loss to the 2-chip
Intel E5-2670 solution that can only support 16 hyper-threads
per chip (but 32 total).

From Table I, we expect different functions in Relax to
parallelize to different degrees on the multi-core platform.
Certain data-parallel functions with high arithmetic intensity
(flops/words ratio), should parallelize efficiently, while others
should parallelize less well. In Figure 5, we observe the
impact of scaling thread count on individual Relax functions.
The bottleneck functions bodyforce and stress dominate
parallel runtime across all threads. Observing the slope of the
runtime scaling, we can conclude that the stress function
starts to lose scalability beyond 2-4 threads due to limits of
cache capacity and memory bandwidth. We see this behavior
more clearly in Figure 6 where we separate out the individual
speedups of the different functions.

Q: How does Relax performance change with varying
simulation volume (problem size)?

In Figure 7, we show the impact of scaling problem size
on single-thread and 16-thread performance on an Intel E5-
2670 CPUs when using the Intel MKL library. As we can see
the runtime scales close to linearly with problem size for the
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single-thread solution but non-linearly when considering 16
threads. We should expect this due to the scaling trends of
memory bandwidth for the 3D data structure accesses. A dis-
tinct runtime gap opens up above problem size of 256·256·128
due to low arithmetic utilization of small problems. As a
consequence, we observe a speedup of 3.6⇥ at problem size of
128·128·128 while it increases to 7.2⇥ at the largest problem
size we consider 512·512·256.

To better understand the impact of size on individual func-
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tions in Relax, we plot the breakdown of overall runtime in
Figure 8 as a function of different problem sizes. We note
that the bodyforce and stress function calls continue to
take up the bulk of overall runtime at all sizes considered. The
variation in runtimes between the fastest and slowest calls is as
large as ⇡28⇥ at large problem sizes (512·512·256) while the
gap is smaller ⇡21⇥ at smaller problem sizes (128·128·128)
considering the asymptotics.

B. GPU Performance

Q: When compared to the optimized 16-thread CPU imple-
mentation using Intel MKL library, how much speedup can the
GPU offer?

In Figure 9, show the speedups for the CUDA GPU imple-
mentation on an NVIDIA K20 when compared to optimized
Intel E5-2670 CPU implementations for the largest problem
size of 512·512·256. If we consider single-thread MKL im-
plementation, we achieve a speedup of 55.5⇥ when using
the GPU. This speedup becomes a more modest 7.7⇥ when
compared to the optimized 16-threaded implementation. The
inherent parallelism in Relax is sufficiently high that multi-
core CPUs are able to extract up to 7.2⇥ speedup from the
code, but the GPUs can go a step further to deliver a speedup
of 7.7⇥ over and above the optimized CPU mapping.

Q: How can we explain the nature of GPU speedups for
Relax-Miracle? Why are we still able to achieve speedups
higher than the multi-core CPUs?

We now show the relative improvements in performance
due to GPU parallelization of Relax functions in Figure 10
(speedup) and Figure 11 (runtime).
• From the speedup plot, it is clear that bulk of the speedup is

due to the high parallelizability of stress update compu-
tation on the GPUs. This is unsurprising as we have a large
amount of data-parallelism that maps very well to GPUs.
Unlike the multi-core platforms where the scalability of the
stress update was limited, the CUDA implementation of
this function scales particularly efficiently.

• The data-parallel elastic response and surface cal-
culations also accelerate well on the GPU platform.
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• When inspecting runtime trends, the relative gaps be-
tween function performance stays unchanged except the
bodyforce kernel, which now becomes the new critical
bottleneck. These functions have a large degree of paral-
lelism and scale in proportion to the relative extents of
scalable parallelism.
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 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

512
512
256

512
256
256

256
256
256

256
256
128

256
128
128

128
128
128

S
in

g
le

 I
te

ra
tio

n
 (

se
co

n
d
s)

Problem Size

10x

7.7x

Relax-Miracle GPU
Relax-16 threads
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NVIDIA K20 GPU performance

Q: How robust are the observed GPU implementation
speedups across different problem sizes?

As we saw previously in Figure 7, multi-core speedups for
Relax shrink when considering smaller problem size due to
low arithmetic utilization of the smaller datasets. In Figure 12,
we now show the effect of increasing problem size on the
performance of Relax (16-threads CPU) and compare it to
Relax-Miracle (GPU). As we can see, high speedup 10⇥ are
possible for small problem sizes 128·128·128, which drops
to 7.7⇥ at the nominal problem size of 512·512·256. As
observed earlier, we again see the distinct slowdown in 16-
thread CPU performance when switching from 256·256·128
to 256·256·256. In comparison, the GPU performance scales
smoothly with problem size suggesting fast and uniform
memory access of the GPU memory subsystem.

Q: How does GPU performance change across GPU fami-
lies?

We investigate if our results are repeatable across GPU
platforms by running experiments on the GTX680, C2075 and
the K20 platforms. In Figure 13, we observe the performance
achieved (with individual function breakdown) across these
diverse systems. As expected, the K20 beats both the GTX680
and the C2075 due to its higher offchip memory bandwidth
and superior peak floating-point throughput. One curious ob-
servation is the slower runtime achieved by the bodyforce
function on the K20 compared to the other devices. We are
currently investigating this anomaly.

Q: Can we identify the source of GPU performance limits?
Are there clear sources of performance bottlenecks?

In Figure 14, we show the result of profiling the execution of
Relax-Miracle on the NVIDIA K20 GPU with the NVIDIA
Visual Profiler. The top three functions by runtime take up
a disproportionate 90% of overall GPU runtime. Unlike the
multi-core implementation, stress drops to the third slowest
function in the set. We observe that through our auto-tuning
effort we are able to raise occupancy for the most critical
function bodyforce to 0.7 but we are unable to further im-
prove performance due to DRAM memory bandwidth limits.
The other two functions cerruti and stress have low
occupancies of ⇡0.5 due to high registers/thread as well as
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Function Time (ms) Occupancy Warp Eff. Instr. (M) Reg DRAM Write DRAM Read Load Eff. Store Eff.
bodyforce 549 0.72 100 4,508 37 0 50 22 84

cerruti 238 0.46 98.85 2,634 60 53 38 400 0

stress 173 0.49 100 2,596 46 15 85 97 16

eigenstress 60 0.24 100 605 78 51 23 28 20

surface 21 0.5 87.21 434 55 59 96 45 0

elastic 17 0.5 87.37 445 54 63 64 45 90

FFT 4 0.49 101.79 40 41 72 72 0 100

iFFT 4 0.49 101.82 40 41 76 76 0 100

Fig. 14: Performance Analysis of CUDA Kernels
*DRAM Read/Write performance is in GB/s, Efficiency is in percentage
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DRAM bandwidth limits.

VI. SCIENTIFIC IMPACT OF RELAX-MIRACLE

The performance obtained from the CUDA/GPGPU imple-
mentation enables applications of Markov-chain Monte-Carlo

methods for Bayesian inversion of geophysical data or explo-
ration of model uncertainties and trade-offs. To illustrate this
capacity, we conduct a Metropolis-Hastings random walk of
5000 forward models to estimate the uncertainties of the depth
and the fluidity of a viscoelastic substrate using postseismic
relaxation data.

We construct a set of synthetic data using a simulation
of 2 years of viscoelastic relaxation (relaxation time tm =

1/�̇0 = 1 yr) following a strike-slip earthquake of length and
width W occurring in an elastic lid of thickness H = 2W
(viscoelastic flow occurs underneath). We use a computational
grid of 256·256·256 and a spatial sampling of � = 0.05W .
We simulate the time-dependent deformation at 13 points
at the surface of the grid corresponding to the hypothetical
location of GPS stations. We add a normally distributed signal
representing a white noise of 5%. All models are simulated
in parallel across the 12 NVIDIA K20 GPUs to achieve
linear speedup. Roughly, each GPU can replace around 5–
6 Intel multi-core systems in our compute cluster at same
performance (or deliver 5–6⇥ speedup over one CPU). Each
simulation requires about 20 time steps on average and takes
about 40 seconds. The sampling of the probability density
function of the model parameters indicates that the depth
parameter is retrieved to a level of uncertainty corresponding
to numerical accuracy. The fluidity of the ductile rocks can be
estimated within 0.2%.

The results shown in Figure 15 indicate that realistic models
of Earth’s deformation could be explored using Markov-chain
Monte-Carlo methods to optimize the fit to geodetic data sets.
Performance of our new GPU implementation allows us to
conduct this type of analysis routinely, which will permit more
thorough investigations of the mechanical properties of the
lithosphere following large earthquakes.

VII. CONCLUSIONS

The ultimate aim of the Relax package is to enable large-
scale and realistic simulations of the surface deformation due
to physical phenomena such as earthquakes, volcanoes or
hydrological processes on Earth. GPU-based systems offer the
unique opportunity to exploit the spatial parallelism inherent
in this simulation with less cost (equipment, maintenance,
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programming) that the currently used OpenMP-based multi-
core platforms.

We show how to parallelize semi-analytic Fourier-domain
calculations in Relax using the NVIDIA K20 GPU by as
much as a factor of 7.7⇥ when compared to optimized 16-
threaded Intel E-52670 multi-core CPU supported by Intel
MKL libraries for simulation sizes of 512·512·256. We are
able to achieve this speedup by completely offloading 3D data
structure construction and update to remain entirely within
the global memory of the GPU while also transforming some
of the numerical algorithms to prefer data-parallel analytical
formulations instead of FFT computations. Furthermore, this
only became feasible when all the functions that updated the
large 3D data structures in Relax were converted into CUDA
kernels to enable GPU-only storage of the data structures. We
are currently limited in simulation speed and size by the GPU
DRAM memory capacity as well as memory-bandwidth for
the kernels with low arithmetic intensity.

The new GPU implementation of the Relax algorithm opens
the door to more thorough explorations of the mechanical
parameters of the Earth using statistical methods.
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