
Appearing in IEEE International Conference on Field-Programmable Technology (FPT 2005), December 11–14, 2005

Pipelining Saturated Accumulation

Karl Papadantonakis, Nachiket Kapre, Stephanie Chan, and André DeHon
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125
kp@caltech.edu

Abstract

Aggressive pipelining allows FPGAs to achieve
high throughput on many Digital Signal Process-
ing applications. However, cyclic data dependencies
in the computation can limit pipelining and reduce
the efficiency and speed of an FPGA implementa-
tion. Saturated accumulation is an important exam-
ple where such a cycle limits the throughput of signal
processing applications. We show how to reformu-
late saturated addition as an associative operation
so that we can use a parallel-prefix calculation to
perform saturated accumulation at any data rate sup-
ported by the device. This allows us, for example, to
design a 16-bit saturated accumulator which can op-
erate at 280MHz on a Xilinx Spartan-3 (XC3S-5000-
4), the maximum frequency supported by the compo-
nent’s DCM.

1. Introduction

FPGAs have high computational density (e.g. they
offer a large number of bit operations per unit space-
time) when they can be run at high throughput (e.g.
[1]). To achieve this high density, we must aggres-
sively pipeline designs exploiting the large number of
registers in FPGA architectures. In the extreme, we
pipeline designs so that only a single LookUp-Table
(LUT) delay and local interconnect is in the latency
path between registers (e.g. [2]). Pipelined at this
level, conventional FPGAs should be able to run with
clock rates in the hundreds of megahertz.

For acyclic designs (feed forward dataflow), it is
always possible to perform this pipelining. It may be
necessary to pipeline the interconnect (e.g. [3, 4]), but
the transformation can be performed and automated.

However, when a design has a cycle which has a
large latency but only a few registers in the path, we
cannot immediately pipeline to this limit. No legal
retiming [5] will allow us to reduce the ratio between
the total cycle logic delay (e.g. number of LUTs in
the path) and the total registers in the cycle. This of-
ten prevents us from pipelining the design all the way

down to the single LUT plus local interconnect level
and consequently prevents us from operating at peak
throughput to use the device efficiently. We can use
the device efficiently by interleaving parallel prob-
lems in C-slow fashion (e.g. [5, 6]), but the through-
put delivered to a single data stream is limited. In a
spatial pipeline of streaming operators, the through-
put of the slowest operator will serve as a bottleneck,
forcing all operators to run at the slower through-
put, preventing us from achieving high computational
density.

Saturated accumulation (Section 2.1) is a common
signal processing operation with a cyclic dependence
which prevents aggressive pipelining. As such, it
can serve as the rate limiter in streaming applications
(Section 2.2). While non-saturated accumulation is
amenable to associative transformations (e.g. delayed
addition [7] or block associative reduce trees (Sec-
tion 2.4)), the non-associativity of the basic saturated
addition operation prevents these direct transforma-
tions.

In this paper we show how to transform sat-
urated accumulation into an associative operation
(Section 3). Once transformed, we use a parallel-
prefix computation to avoid the apparent cyclic de-
pendencies in the original operation (Section 2.5). As
a concrete demonstration of this technique, we show
how to accelerate a 16-bit accumulation on a Xilinx
Spartan-3 (X3CS-5000-4) [8] from a cycle time of
11.3ns to a cycle time below 3.57ns (Section 5). The
techniques introduced here are general and allow us
to pipeline saturated accumulations to any throughput
which the device can support.

2. Background

2.1. Saturated Accumulation

Efficient implementations of arithmetic on real
computing devices with finite hardware must deal
with the fact that integer addition is not closed over
any non-trivial finite subset of the integers. Some
computer arithmetic systems deal with this by us-
ing addition modulo a power of two (e.g. addition

c© 2005 IEEE 1

http://www.icfpt.org/
http://www.async.caltech.edu/~kp/
http://www.cs.caltech.edu/~nachiket/
http://www.cs.caltech.edu/~andre/

input (xi) 0 50 100 100 11 -2
modulo sum 0 50 150 250 5 3

(mod 256)
satsum (yi) 0 50 150 250 255 253

(maxval=256)

Table 1. Accumulation Example

modulo 232 is provided by most microprocessors).
However, for many applications, modulo addition has
bad effects, creating aliasing between large numbers
which overflow to small numbers and small numbers.
Consequently, one is driven to use a large modulus
(a large number of bits) in an attempt to avoid this
aliasing problem.

An alternative to using wide datapaths to avoid
aliasing is to define saturating arithmetic. Instead of
wrapping the arithmetic result in modulo fashion, the
arithmetic sets bounds and clips sums which go out
of bounds to the bounding values. That is, we define
a saturated addition as:

SA(a,b,minval,maxval) {
tmp=a+b; // tmp can hold sum

// without wrapping
if (tmp>maxval) return(maxval);
elseif (tmp<minval) return(minval);
else return(tmp)

}

Since large sums cannot wrap to small values when
the precision limit is reached, this admits economi-
cal implementations which use modest precision for
many signal processing applications.

A saturated accumulator takes a stream of input
values xi and produces a stream of output values yi:

yi = SA(yi−1, xi,minval,maxval) (1)

Table 1 gives an example showing the difference be-
tween modulo and saturated accumulation.

2.2. Example: ADPCM

The decoder in the Adaptive Differential Pulse-
Compression Modulation (ADPCM) application in
the mediabench benchmark suite [9] provides a
concrete example where saturated accumulation is
the bottleneck limiting application throughput. Fig-
ure 1 shows the dataflow path for the ADPCM de-
coder. The only cycles which exist in the dataflow
path are the two saturated accumulators. Note that we
can accommodate pipeline delays at the beginning of
the datapath, at the end of the datapath, and even in
the middle between the two saturated accumulators
(annotated in Figure 1) without changing the seman-
tics of the decoder operation. As with any pipelining
operation, such pipelining will change the number of
cycles of latency between the input (delta) and the
output (valpred).

Previous attempts to accelerate the mediabench
applications for spatial (hardware or FPGA) imple-
mentation have achieved only modest acceleration on
ADPCM (e.g. [10]). This has led people to char-
acterize ADPCM as a serial application. With the
new transformations introduced here, we show how
we can parallelize this application.

2.3. Associativity

Both infinite precision integer addition and mod-
ulo addition are associative. That is: (A + B) + C =
A + (B + C). However, saturated addition is not as-
sociative. For example, consider: 250+100-11

infinite precision arithmetic:
(250+100)-11 = 350-11 = 339
250+(100-11) = 250+89 = 339

modulo 256 arithmetic:
(250+100)-11 = 94-11 = 83
250+(100-11) = 250+89 = 83

saturated addition (max=255):
(250+100)-11 = 255-11 = 244
250+(100-11) = 250+89 = 255

Consequently, we have more freedom in implement-
ing infinite precision or modulo addition than we do
when implementing saturating addition.

2.4. Associative Reduce

When associativity holds, we can exploit the asso-
ciative property to reshape the computation to allow
pipelining. Consider a modulo-addition accumulator:

yi = yi−1 + xi (2)

Unrolling the accumulation sum, we can write:

yi = ((yi−3 + xi−2) + xi−1) + xi (3)

Exploiting associativity we can rewrite this as:

yi = ((yi−3 + xi−2) + (xi−1 + xi)) (4)

Whereas the original sum had a series delay of 3
adders, the re-associated sum has a series delay of
2 adders. In general, we can unroll this accumulation
N − 1 times and reduce the computation depth from
N − 1 to log2(N) adders.

With this reassociation, the delay of the addition
tree grows as log(N) while the number of clock sam-
ple cycles grows as N . The unrolled cycle allows us
to add registers to the cycle faster (N) than we add
delays (log(N)). Consequently, we can select N suf-
ficiently large to allow arbitrary retiming of the accu-
mulation.

2.5. Parallel-Prefix Tree

In Section 2.4, we noted we could compute the fi-
nal sum of N values in O(log(N)) time using O(N)

2

index
Table

min=0 max=88

sa
ta

dd

 saturated
accumulator

stepsize
 Table psuedo

multiply

sa
ta

dd

 saturated
accumulator

min=−32768 max=32767

(add pipelining here
 without changing semantics)

delta

index step

valpred

(4b sample)

(16b output)

(registers) (registers)

Figure 1. Dataflow for ADPCM Decode

 S[0,1] S[2,3] S[4,5] S[6,7] S[8,9] S[10,11] S[12,13] S[14,15]

 S[0,3] S[4,7]

 S[0,7]

 S[0,5]

 S[0,2] S[0,4] S[0,6] S[0,8]

 S[8,11] S[12,15]

 S[8,15]

 S[0,15]

 S[0,11]

 S[0,13] S[0,9]

 S[0,10] S[0,12] S[0,14]

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10] x[11] x[12] x[13] x[14] x[15]

y[0]

 + + + + + + + + + + + + + + + +

y[1] y[2] y[3] y[4] y[5] y[6] y[7] y[8] y[9] y[10] y[11] y[12] y[13] y[14] y[15] y[16]

k=2

k=3

k=4

k=1 associative reduce tree
prefix tree

Figure 2. 16-input Parallel-Prefix Tree

adders. With only a constant factor more hardware,
we can actually compute all N intermediate outputs:
yi, yi−1, . . . y(i−(N−1)) (e.g. [11]).

We do this by computing and combining
partial sums of the form S[s, t] which repre-
sents the sum: xs + xs+1 + . . . xt. When we
build the associative reduce tree, at each level
k, we are combining S[(2j) 2k, (2j + 1) 2k−1]
and S[(2j + 1) 2k, 2 (j + 1) 2k−1] to compute
S[(2j) 2k, 2 (j + 1) 2k−1] (See Figure 2). Conse-
quently, we eventually compute prefix spans from
0 to 2k-1 (the j = 0 case), but do not eventually
compute the other prefixes. The observation to make
is that we can combine the S[0, 2k−1] prefixes with
the S[2k0 , 2k0+2k1−1] spans (k1 < k0) to compute
the intermediate results. To compute the full prefix
sequence (S[0, 1],S[0, 2], . . .S[0, N−1]), we add a
second (reverse) tree to compute these intermediate
prefixes. At each tree level where we have a compose
unit in the forward, associative reduce tree, we add
(at most) one more, matching, compose unit in
this reverse tree. The reverse, or prefix, tree is no
larger than the reduce tree; consequently, the entire
parallel-prefix tree is at most twice the size of the
associative reduce tree. Figure 2 shows a width
16 parallel-prefix tree for saturated accumulation.
For a more tutorial development of parallel-prefix
computations see [11, 12].

2.6. Prior Work

Balzola et al. attacked the problem of saturating
accumulation at the bit level [13]. They observed they
could reduce the logic in the critical cycle by comput-
ing partial sums for the possible saturation cases and
using a fast, bit-level multiplexing network to rapidly
select and compose the correct final sums. They were
able to reduce the cycle so it only contained a single
carry-propagate adder and some bit-level multiplex-
ing. For custom designs, this minimal cycle may be
sufficiently small to provide the desired throughput.
In contrast, our solution makes the saturating opera-
tions associative. Our solution may be more impor-
tant for FPGA designs where the designer has less
freedom to implement a fast adder and must pay for
programmable interconnect delays for the bit-level
control.

3. Associative Reformulation of Saturated
Accumulation

Unrolling the computation we need to perform for
saturated additions, we get a chain of saturated addi-
tions (SA), such as:

x[
i]

SA SA SA SA
y[i]y[i−1]y[i−2]y[i−3]y[i−4]

x[
i−

1]

x[
i−

2]

x[
i−

3]
m

ax
va

l
m

in
va

l

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

We can express SA (Section 2.1) as a function using
max and min:

SA(y, x,minval,maxval) (5)
= min(max((y + x),minval),maxval)

The saturated accumulation is repeated application of
this function. We seek to express this function in such
a way that repeated application is function compo-
sition. This allows us to exploit the associativity of
function composition [14] so we can compute satu-
rated accumulation using a parallel-prefix tree (Sec-
tion 2.5)

Technically, function composition does not apply
directly to the formula for SA shown in Equation 5

3

because that formula is a function of four inputs (hav-
ing just one output, y). Fortunately, only the depen-
dence on y is critical at each SA-application step; the
other inputs are not critical, because it is easy to guar-
antee that they are available in time, regardless of our
algorithm. To understand repeated application of the
SA function, therefore, we express SA in an alternate
form in which y is a function of a single input and the
other “inputs” (x, minval, and maxval) are func-
tion parameters:

SA[x,m,M](y) def= SA(y, x, m,M) (6)

We define SA[i] as the ith application of this func-
tion, which has x = x[i], m = minval, and
M = maxval:

SA[i] def= SA[x[i],minval,maxval] (7)

This definition allows us to view the computation as
function composition. For example:

y[i] = SA[i] ◦ SA[i−1]
◦ SA[i−2] ◦ SA[i−3](y[i−4]) (8)

x[
i]

SA SA SA SA
y[i]y[i−1]y[i−2]y[i−3]y[i−4]

x[
i−

1]

x[
i−

2]

x[
i−

3]
m

ax
va

l
m

in
va

l

SA[i−3] SA[i−2] SA[i−1] SA[i]

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

3.1. Composing the SA functions

To reduce the critical latency implied by Equa-
tion 8, we first combine successive nonoverlapping
adjacent pairs of operations (just as we did with ordi-
nary addition in Equation 4). For example:

y[i] = ((SA[i] ◦ SA[i−1])
◦ (SA[i−2] ◦ SA[i−3])) (y[i−4])

To make this practical, we need an efficient way to
compute each adjacent pair of operations in one step:

SA[i−1, i] def= SA[i] ◦ SA[i−1] (9)

SA SA
y[i−3]y[i−4]

x[
i−

2]

x[
i−

3]
m

ax
va

l
m

in
va

l

SA[i−3] SA[i−2]

m
ax

va
l

m
in

va
l

SA[i−1,i]

y[i−2]

x[
i]

SA
y[i]y[i−1]

x[
i−

1]

SA[i−1] SA[i]

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

SA

Viewed (temporarily) as a function of real num-
bers, SA[i] is a continuous, piecewise linear func-
tion, because it is a composition of “min”, “max”,

y[i−2]

y[i−1]

y[i]

y[i−1]

minval

maxval

m
i
n
v
a
l

m
a
x
v
a
l

SA[i−1] S
A

[i]

x[i−1] x[
i]

y[i]

y[i−2]

maxval

minval

SA[i−1,i]

Figure 3. Saturated Add Composition

and “+”, each of which are continuous and piece-
wise linear (with respect to each of their inputs). It
is a well known fact that any composition of contin-
uous, piecewise linear functions is itself continuous
and piecewise linear (we demonstrate this for our par-
ticular case below). We can easily visualize the con-
tinuity and piecewise linearity of SA[i]:

minval

maxval

x[i]

minval−x[i]

maxval−x[i]

y

SA[i](y)

Let us now try to understand the mathematical
form of the function SA[i−1, i]. As the base func-
tions SA[i−1] and SA[i] are continuous and piecewise
linear, their composition (i.e. SA[i−1, i]) must also
be continuous and piecewise linear. The key thing
we need to understand is: how many segments does
SA[i−1, i] have? Since SA[i−1] and SA[i] each have
just one bounded segment of slope one, we argue that
their composition must also have just one bounded
segment of slope 1 and have the form of Equation 6.

We can visualize this fact graphically as shown
in Figure 3. Any input below minval or above
maxval into the second SA will be clipped to the
constant minval or maxval. Input clipping on the
first SA coupled with the add offset on the second
can prevent the composition from producing outputs
all the way to minval or maxval (See Figure 3).
So, the extremes will certainly remain flat just like
the original SA. Between these extremes, both SAs
produce linear shifts of the input. Their cascade is,
therefore, also a linear shift of the input so results in
a slope one region. Consequently, SA[i−1, i] has the
same form as SA[i] (Equation 6). As we observed, the
composition, SA[i−1, i], does not necessarily have
m = minval and M = maxval. However, if we
allow arbitrary values for the parameters m and M ,
then the form shown in Equation 6 is closed under
composition. This allows us to regroup the computa-
tion to reduce the number of levels in the computa-
tion.

4

SA[x2,m2,M2] ◦ SA[x1,m1,M1]

= ctM2 ◦ cbm2 ◦ trx2 ◦ ctM1 ◦ cbm1 ◦ trx1
I= ctM2 ◦ cbm2 ◦ ctM1+x2 ◦ cbm1+x2 ◦ trx1+x2
II= ctM2 ◦ ctmax(M1+x2,m2) ◦ cbmax(m1+x2,m2) ◦ trx1+x2
III= ctmin(max(M1+x2,m2),M2) ◦ cbmax(m1+x2,m2) ◦ trx1+x2

= SA[x1+x2,max(m1+x2,m2),min(max(M1+x2,m2),M2)]

Figure 4. Operator Composition for Chained Saturated Additions

3.2. Composition Formula

We have just proved that the form SA[x,m,M] is
closed under composition. However, to build hard-
ware that composes these functions, we need an ac-
tual formula for the [x, m,M] tuple describing the
composition of any two SA functions SA[x1,m1,M1]

and SA[x2,m2,M2].
Each SA is a sequence of three steps: TRanslation

by x, followed by Clipping at the Bottom m, followed
by Clipping at the Top M . We write these three prim-
itive steps as trx, cbm, and ctM , respectively:

trx(y) def= y + x

cbm(y) def= max(y, m)

ctM (y) def= min(y, M)
SA[x,m,M] = ctM ◦ cbm ◦ trx (10)

As shown in Figure 4, a composition of two SAs
written in the form of Equation 10 leads to a new SA
written in the same form. The calculation is the fol-
lowing sequence of commutation and merging of the
“tr”s, “cb”s, and “ct”s:

I. Commutation of translation and clipping.
Clipping at M1 (or m1) and then translating by
x2 is the same as first translating by x2 and then
clipping at M1 + x2 (or m1 + x2).

II. Commutation of upper and lower clipping.

cbm2 ◦ ctM1+x2 = ctmax(M1+x2,m2) ◦ cbm2

This is seen by case analysis: first suppose
m2 ≤ M1+x2. Then both sides of the equation
are the piecewise linear function{

M1 + x2 , y ≥ M1 + x2
m2 , y ≤ m2
y , otherwise.

(11)

On the other hand, if m2 > M1 + x2, then both
sides are the constant function m2.

III. Merging of successive upper clipping. This is
associativity of min.

Alternately, this can also be computed directly from
the composed function.

3.3. Applying the Composition Formula

At the first level of the computation, m =
minval and M = maxval. However, after each
adjacent pair of saturating additions (SA[i−1], SA[i])
has been replaced by a single saturating addition
(SA[i−1, i]), the remaining computation no longer
has constant m and M . In general, therefore, a sat-
urating accumulation specification includes a differ-
ent minval and maxval for each input. We denote
these values by minval[i] and maxval[i].

The SA to be performed on input number i is then:

SA[i](y) (12)
= min(max((y + x[i]),minval[i]),maxval[i])

Composing two such functions and inlining, we get:

SA[i−1, i](y) = SA[i](SA[i−1](y)) (13)
= min(max((min(max((y + x[i−1]),

minval[i−1]),
maxval[i−1])

+ x[i]),
minval[i]),

maxval[i])

We can transform this into:

SA[i−1, i](y) = (14)
= min(max((y + x[i−1] + x[i]),

max((minval[i−1] + x[i]),
minval[i])),

min(max((maxval[i−1] + x[i]),
minval[i]),

maxval[i]))

This is the same thing as Figure 4, as long as we
let M2 = maxval[i], m2 = minval[i], M1 =
maxval[i− 1], and m2 = minval[i− 1].

Now we define Compose as the six-input, three-
output function which computes a description of
SA[i−1, i] given descriptions of SA[i−1] and SA[i]:

x′ = x[i−1] + x[i] (15)
minval′ = max((minval[i−1] + x[i]), (16)

minval[i])

5

SA

x[
i−

1]

x[
i]x[
i−

2]

x[
i−

3]

x[
i]

SA SA SA SA
y[i]y[i−1]y[i−2]y[i−3]y[i−4]

x[
i−

1]

x[
i−

2]

x[
i−

3]
m

ax
va

l
m

in
va

l

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

SA[i−3] SA[i−2] SA[i−1] SA[i]

m
ax

va
l[i

−3
]

m
in

va
l[i

−3
]

m
ax

va
l[i

−2
]

m
in

va
l[i

−2
]

m
ax

va
l[i

−1
]

m
in

va
l[i

−1
]

m
ax

va
l[i

]
m

in
va

l[i
]

x[i−3,i] maxval[i−3,i] minval[i−3,i]

y[i−4] y[i]
SA

SA[i−3,i]

Compose Compose

x[i−3,i−2] x[i−1,i]minval[i−3,i−2]maxval[i−3,i−2] maxval[i−1,i] minval[i−1,i]

Compose

Figure 5. Composition of SA[(i− 3), i]

maxval′ = min(max((maxval[i−1] + x[i]),
minval[i]), (17)

maxval[i])

This gives us:

SA[i−1, i](y) (18)
= min(max(y + x′),minval′),maxval′)

This allows us to compute SA[i, j](y) as shown in
Figure 5. One can note this is a very similar strategy
to the combination of “propagates” and “generates”
in carry-lookahead addition (e.g. [12]).

3.4. Wordsize of Intermediate Values

The preceding correctness arguments rely on the
assumption that intermediate values (i.e. all values
ever computed by the Compose function) are math-
ematical integers; i.e., they never overflow. For a
computation of depth k, at most 2k numbers are ever
added, so intermediate values can be represented in
W+k bits if the inputs are represented in W bits.
While this gives us an asymptotically tight result, we
can actually do all computation with W+2 bits (2’s
complement representation) regardless of k.

First, notice that maxval′ is always between
minval[i] and maxval[i]. The same is not true
about minval′, until we make a slight modification
to Equation 16; we redefine minval′ as follows:

minval′ = min(max((minval[i−1] + x[i]),
minval[i]), (19)

maxval[i])

+

max

A B

SA min

maxval
minval

Figure 6. Saturated Adder

+ +

max
SA

+

max
SA

x[i]

Compose

min min

x[i−1]

x[i−1,i] maxval[i−1,i] minval[i−1,i]

maxval[i−1] minval[i−1] maxval[i] minval[i]

w−bit w−bit

(w+2)−bit

Figure 7. Composition Unit for Two Sat-
urated Additions

This change does not affect the result because it only
causes a decrease in minval′ when it is greater
than maxval′. While it is more work to do the
extra operation, it is only a constant increase, and
this extra work is done anyway if the hardware for
maxval′ is reused for minval′ (See Section 4).
With this change, the interval [minval′,maxval′]
is contained in the interval [minval[i],maxval[i]],
so none of these quantities ever requires more than W
bits to represent.

If we use (W+2)-bit datapaths for computing x′,
x′ can overflow in the tree, as the “x”s are never
clipped. We argue that this does not matter. We
can show that whenever x′ overflows, its value is ig-
nored, because a constant function is represented (i.e.
minval′ = maxval′). Furthermore, we need not
keep track of when an overflow has occured, since if
minval = maxval, then minval′ = maxval′ at
all subsequent levels of the computation, as this prop-
erty is maintained by Equations 17 and 19.

4. Putting it Together

Knowing how to compute SA[i, i−1] from the pa-
rameters for SA[i] and SA[i−1], we can unroll the
computation to match the delay through the saturated
addition and create a suitable parallel-prefix compu-
tation (similar to Sections 2.4 and 2.5). From the pre-
vious section, we know the core computation for the
composer is, itself, saturated addition (Eqs. 15, 17,
and 19). Using the saturated adder shown in Figure 6,
we build the composer as shown in Figure 7.

6

SA

Compose

Compose

Compose

Compose

SASASA

slow
f

f
fast

f
fast

Two
Pipeline
Stages

0

(register)

Figure 8. N = 4 Parallel-Prefix Saturat-
ing Accumulator

5. Implementation

We implemented the parallel-prefix saturated ac-
cumulator in VHDL to demonstrate functionality and
get performance and area estimates. We used Model-
sim 5.8 to verify the functionality of the design and
Synplify Pro 7.7 and Xilinx ISE 6.1.02i to map our
design onto the target device. We did not provide
any area constraints and let the tools automatically
place and route the design using just the timing con-
straints. We chose a Spartan-3 XC3S-5000-4 as our
target device. The DCMs on the Spartan-3 (speed
grade -4 part) support a maximum frequency of 280
Mhz (3.57ns cycle), so we picked this maximum sup-
ported frequency as our performance target.

Design Details The parallel-prefix saturating accu-
mulator consists of a parallel-prefix computation tree
sandwiched between a serializer and deserializer as
shown in Figure 8. Consequently, we decompose the
design into two clock domains. The higher frequency
clock domain pushes data into the slower frequency
domain of the parallel-prefix tree. The parallel-prefix
tree runs at a proportionally slower rate to accomo-
date the saturating adders shown in Figures 6 and 7.
Minimizing the delays in the tree requires us to com-
pute each compose in two pipeline stages. Finally,
we clock the result of the prefix computation into the
higher frequency clock domain in parallel then seri-
ally shift out the data at the higher clock frequency.

It is worthwhile to note that the delay through the
composers is actually irrelevant to the correct opera-
tion of the saturated accumulation. The composition
tree adds a uniform number of clock cycle delays be-
tween the x[i] shift register and the final saturated ac-
cumulator. It does not add to the saturated accumula-
tion feedback latency which the unrolling must cover.
This is why we can safely pipeline compose stages in
the parallel-prefix tree.

Datapath Width (W) 2 4 8 16 32
Prefix-tree Width (N) 3 3 4 4 4

Table 2. Minimum Size of Prefix Tree Re-
quired to Achieve 280MHz

Area We express the area required by this design as
a function of N (loop unroll factor) and W (bitwidth).
Intuitively, we can quickly see that the area required
for the prefix tree is roughly 5 2

3N times the area of
a single saturated adder. The initial reduce tree has
roughly N compose units, as does the final prefix
tree. Each compose unit has two W -bit saturated
adders and one (W+2)-bit regular adder, and each
adder requires roughly W/2 slices. Together, this
gives us ≈ 2 × (2× 3 + 1) NW/2 slices. Finally,
we add a row of saturated adders to compute the final
output to get a total of 17

2 NW slices. Compared to
the base saturated adder which takes 3

2W slices, this
is a factor of 17N

3 = 5 2
3N .

Pipelining levels in the parallel-prefix tree roughly
costs us 2 × 3 × N registers per level times the
2 log2(N) levels for a total of 12N log2(N)W reg-
isters. The pair of registers for a pipe stage can fit
in a single SRL16, so this should add no more than
3N log2(N)W slices.

A(N,W) ≈ 3N log2(N)W +
17
2

NW (20)

This approximation does not count the overhead of
the control logic in the serializer and deserializer
since it is small compared to the registers. For rip-
ple carry adders, N = O(W) and this says area will
scale as O

(
W 2 log (W)

)
. If we use efficient, log-

depth adders, N = O (log(W)) and area scales as
O (W log (W) log (log (W))).

If the size of the tree is N and the frequency of the
basic unpipelined saturating accumulator is f , then
the system can run at a frequency f ×N . By increas-
ing the size of the parallel-prefix tree, we can make
the design run arbitrarily fast, up to the maximum at-
tainable speed of the device. In Table 2 we show the
value of N (i.e. the size of the prefix tree) required
to achieve a 3ns cycle target. We target this tighter
cycle time (compared to the 3.57ns DCM limit) to re-
serve some headroom going into place and route for
the larger designs.

Results Table 3 shows the clock period achieved by
all the designs for N = 4 after place and route. We
beat the required 3.57ns performance limit for all the
cases we considered. In Table 3 we show the actual
area in SLICEs required to perform the mapping for
different bitwidths W . A 16-bit saturating accumu-
lator requires 1065 SLICEs which constitutes around
2% of the XC3S-5000. We also show that an area
overhead of less than 25× is required to achieve this

7

Datapath
Width (W) 2 4 8 16 32
Simple Saturated Accumulator
Delay (ns) 6.2 8.1 9.1 11.3 13.4

SLICEs 10 14 24 44 84
Parallel-Prefix Saturated Accumulator (N = 4)
Delay (ns) 2.8 2.7 3.1 2.9 3.3

SLICEs 215 333 571 1065 2085
Ratios: Parallel-Prefix/Simple

Freq. 2.2 3.0 2.9 3.6 4.1
Area 22 24 24 24 25

Table 3. Accumulator Comparison

speedup over an unpipelined simple saturating accu-
mulator; for N = 4, 5 2

3N ≈ 23, so this is consistent
with our intuitive prediction aboves.

6. Summary

Saturated accumulation has a loop dependency
that, naively, limits single-stream throughput and our
ability to fully exploit the computational capacity of
modern FPGAs. We show that this loop dependence
is actually avoidable by reformulating the saturated
addition as the composition of a series of functions.
We further show that this particular function compo-
sition is, asymptotically, no more complex than the
original saturated addition operation. Function com-
position is associative, so this reformulation allows us
to build a parallel-prefix tree in order to compute the
saturated accumulation over several loop iterations in
parallel. Consequently, we can unroll the saturated
accumulation loop to cover the delay through the sat-
urated adder. As a result, we show how to compute
saturated accumulation at any data rate supported by
an FPGA.

Acknowledgments

This research was funded in part by the NSF under
grant CCR-0205471. Stephanie Chan was supported
by the Marcella Bonsall SURF Fellowship. Karl Pa-
padantonakis was supported by a Moore Fellowship.
Scott Weber and Eylon Caspi developed early FPGA
implementations of ADPCM which helped identify
this challenge. Michael Wrighton provided VHDL
coding and CAD tool usage tips.

7. References

[1] A. DeHon, “The Density Advantage of Config-
urable Computing,” IEEE Computer, vol. 33,
no. 4, pp. 41–49, April 2000.

[2] B. V. Herzen, “Signal Processing at 250 MHz
using High-Performance FPGA’s,” in FPGA,
February 1997, pp. 62–68.

[3] W. Tsu, K. Macy, A. Joshi, R. Huang,
N. Walker, T. Tung, O. Rowhani, V. George,
J. Wawrzynek, and A. DeHon, “HSRA: High-
Speed, Hierarchical Synchronous Reconfig-
urable Array,” in FPGA, February 1999, pp.
125–134.

[4] D. P. Singh and S. D. Brown, “The Case
for Registered Routing Switches in Field Pro-
grammable Gate Arrays,” in FPGA, February
2001, pp. 161–169.

[5] C. Leiserson, F. Rose, and J. Saxe, “Optimizing
Synchronous Circuitry by Retiming,” in Third
Caltech Conference On VLSI, March 1983.

[6] N. Weaver, Y. Markovskiy, Y. Patel, and
J. Wawrzynek, “Post-Placement C-slow Retim-
ing for the Xilinx Virtex FPGA,” in FPGA,
2003, pp. 185–194.

[7] Z. Luo and M. Martonosi, “Accelerating
Pipelined Integer and Floating-Point Accumu-
lations in Configurable Hardware with Delayed
Addition Techniques,” IEEE Tr. on Computers,
vol. 49, no. 3, pp. 208–218, March 2000.

[8] Xilinx Spartan-3 FPGA Family Data Sheet ,
Xilinx, Inc., 2100 Logic Drive, San Jose, CA
95124, December 2004, dS099 <http://direct.
xilinx.com/bvdocs/publications/ds099.pdf>.

[9] C. Lee, M. Potkonjak, and W. H. Mangione-
Smith, “MediaBench: A Tool for Evaluating
and Synthesizing Multimedia and Communica-
tons Systems,” in International Symposium on
Microarchitecture, 1997, pp. 330–335.

[10] R. Barua, W. Lee, S. Amarasinghe, and
A. Agarwal, “Maps: A Compiler-Managed
Memory System for Raw Machines,” in ISCA,
1999.

[11] W. D. Hillis and G. L. Steele, “Data Paral-
lel Algorithms,” Communications of the ACM,
vol. 29, no. 12, pp. 1170–1183, December 1986.

[12] F. T. Leighton, Introduction to Parallel Algo-
rithms and Architectures: Arrays, Trees, Hy-
percubes. Morgan Kaufmann Publishers, Inc.,
1992.

[13] P. I. Balzola, M. J. Schulte, J. Ruan, J. Gloss-
ner, and E. Hokenek, “Design Alternatives for
Parallel Saturating Multioperand Adders,” in
Proceedings of the International Conference on
Computer Design, September 2001, pp. 172–
177.

[14] J. H. Hubbard and B. B. H. Hubbard, Vec-
tor Calculus, Linear Algebra, and Differential
Forms: A Unified Approach. Prentice Hall,
1999.

8

http://csdl.computer.org/comp/mags/co/2000/04/r4041abs.htm
http://csdl.computer.org/comp/mags/co/2000/04/r4041abs.htm
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html
http://doi.acm.org/10.1145/360276.360331
http://doi.acm.org/10.1145/360276.360331
http://doi.acm.org/10.1145/360276.360331
http://direct.xilinx.com/bvdocs/publications/ds099.pdf
http://direct.xilinx.com/bvdocs/publications/ds099.pdf
http://direct.xilinx.com/bvdocs/publications/ds099.pdf
http://www.icsl.ucla.edu/~billms/Publications/mediabench.pdf
http://www.icsl.ucla.edu/~billms/Publications/mediabench.pdf
http://www.icsl.ucla.edu/~billms/Publications/mediabench.pdf
http://mesa.ece.wisc.edu/~mesa/publications/cp_2001-06.pdf
http://mesa.ece.wisc.edu/~mesa/publications/cp_2001-06.pdf

A Transforming Composed Functions

Here we show the detailed steps involved in trans-
forming from Equation 13 to Equation 14.

SA[i−1, i](y) = SA[i](SA[i−1](y))
= min(max((min(max((y + x[i−1]),

minval[i−1]),
maxval[i−1])

+ x[i]),
minval[i]),

maxval[i])

I. Commutation of translation and clipping
We can push +x[i] into the min, using:

min(a, b) + c = min((a + c), (b + c)) (21)

SA[i−1, i](y) =
= min(max(min(max((y + x[i−1]),

minval[i−1]) + x[i],
maxval[i−1] + x[i]),

minval[i]),
maxval[i])

We can push +x[i] into max, using:

max(a, b) + c = max((a + c), (b + c)) (22)

SA[i−1, i](y) =
= min(max(min(max((y + x[i−1] + x[i]),

(minval[i−1] + x[i])),
maxval[i−1] + x[i]),

minval[i]),
maxval[i])

II. Commutation of upper and lower clipping
Let:

a = max ((y + x[i−1] + x[i]), (23)
minval[i−1] + x[i])

b = maxval[i−1] + x[i] (24)
c = minval[i] (25)

So, we have:

SA[i−1, i](y) (26)
= min(max(min(a, b), c),maxval[i])

Using the identity (See Max-inside-Min Lemma in
Appendix A.1):

max(min(a, b), c) = min(max(a, c),max(b, c))
(27)

This can become:

SA[i−1, i](y) (28)
= min(min(max(a, c),max(b, c),maxval[i])

Substituting back in the expressions a, b, c, we get:

SA[i−1, i](y) =
= min(min(max(max((y + x[i−1] + x[i]),

(minval[i−1] + x[i])),
minval[i])

max((maxval[i−1] + x[i]),
minval[i])),

maxval[i])

Using the associativity of max:

max(max(a, b), c) = max(a,max(b, c)) (29)

SA[i−1, i](y) =
= min(min(max((y + x[i−1] + x[i]),

max((minval[i−1] + x[i]),
minval[i])),

max((maxval[i−1] + x[i]),
minval[i])),

maxval[i])

III. Merging of successive upper clipping
Using the associativity of min:

min(min(a, b), c) = min(a,min(b, c)) (30)

This finally gives us:

SA[i−1, i](y) =
= min(max((y + x[i−1] + x[i]),

max((minval[i−1] + x[i]),
minval[i])),

min(max((maxval[i−1] + x[i]),
minval[i]),

maxval[i]))

A.1 Max-inside-Min Lemma

Lemma: Identity 27 is true for all a, b, c.
That is, the following is an identity relation:

max(min(a, b), c) = min(max(a, c),max(b, c))

Proof:
Assume a > b:
We can immediately reduce the left-hand-side of

the identity to:

max(min(a, b), c) = max(b, c) (31)

9

We now turn to the right-hand-side of the identity:
If c < a:

max(a, c) < max(b, c) (32)

If c ≥ a:

max(a, c) = max(b, c) (33)

So, for all c:

max(a, c) ≥ max(b, c) (34)

From this we simplify:

min(max(a, c),max(b, c)) = max(b, c) (35)

We see from Eq. 31 and 35 that both sides of the
claimed Identify 27 are equivalent under the assump-
tion a > b. Note that the roles of a and b are symmet-
ric. So if b < a, we have an analogous case, so the
identify will also hold.

If a = b, Eq. 31 is unchanged, and Eq. 34 still
holds, so Eq. 35 must still hold. So, the Identify also
holds when a = b.

Therefore, we see the Identity must hold for all a,
b, c. �

B Wordsize of Intermediate x′

In this appendix we show that we need only use
a (W+2)-bit datapath to compute x′ (Equation 15).
As suggested in Section 3.4, whenever x′ overflows
a (W+2)-bit datapath, its value is ignored, because
a constant function is represented (i.e. minval′ =
maxval′).

To bound all x′ that occur for non-constant func-
tions, we make one observation and one assumption:

1. (observation) There is one (minval,maxval)
for all i such that

minval[i] ≥ minval and
maxval[i] ≤ maxval. (36)

This was demonstrated at the end of Section 3.4.

2. (assumption) For all original x[i] (i.e., the in-
puts), we have

|x[i]| ≤ ∆ def= maxval− minval

This is always true for the inputs when:

minval ≤ x[i] ≤ maxval

We use the broader interval 2∆ to deal with in-
termediate values of x′.

We now show, for any x[i−k, i] in the mul-
tilevel computation, if |x[i−k, i]| > 2∆, then
minval[i−k, i] = maxval[i−k, i].

For a contradiction, assume that some
S

def= SA[i−k, i] is not a constant function when
|xS | > 2∆. Consider points y and y′ such that
S(y) 6= S(y′).

From the form of S, we know that it only takes on
values in the interval [minvalS ,maxvalS]. If S(y)
or S(y′) are endpoints of this non-empty interval, we
can interpolate (extending to real numbers) and find
new y, y′, so that, without loss of generallity, y and y′

are both in the region of the domain of S where S has
slope 1. Interpolation is a technicallity only needed
to handle the case where minvalS + 1 = maxval,
such that there are not two, distinct integer values for
y and y′ which are in the slope 1 region.

Since S locally has slope 1 around y (and y′),
the clipping feature in S must not be active around
y. This means that y (and y′) are in the interval
[minvalS−xS ,maxvalS−xS], which is contained
in the interval [minval−xS ,maxval−xS] (obser-
vation 1).

Since |xS | > 2∆, we deduce that y and y′ are
outside of the interval [minval−∆,maxval+ ∆]
since:

maxvalS − 2∆ ≤ maxval− 2∆ = minval−∆

or

minvalS − (−2∆) ≥ minval− (−2∆)
= maxval+ ∆

By interpolation, we can always choose distinct y and
y′ so that they do not straddle this interval. Now
consider what happens when the first input in the se-
quence xi−k . . . xi is applied to such a value. Using
assumption 2, we see that y+x[i−k] are to one side of
the interval [minval,maxval]. Therefore SA[i−k]
must take y and y′ to the same value, and therefore
SA[i−k, i] also has this property, i.e. S(y) = S(y′),
a contradiction.

How many bits do we need to represent interme-
diate x′? If we assume the accumulator is a W -bit
signed 2’s complement value, then:

maxval ≤ 2(W−1) − 1
minval ≥ −2(W−1)

∆ ≤
(
2(W−1) − 1

)
−

(
−2(W−1)

)
= 2W − 1

We care about an x′ only if |x′| ≤ 2∆ < 2W+1 − 1.
Hence we can simply add the ‘x’s in (W+2)-bit 2’s
complement arithmetic (at all levels of the computa-
tion), and if there is an overflow then we don’t care
about the result.

10

The 2∆ and (W+2)-bit bounds are tight: the
computation can really have representations of non-
constant functions that use all W + 2 bits. For ex-
ample, suppose W = 8, with minval = −128 and
maxval = 127. Suppose x0 = x1 = −254. The
function SA[0, 1] is not constant, as SA[0, 1](380) =
−128 while SA[0, 1](381) = −127, yet x[0, 1] =
−508 requires 10 bits to represent. One might ob-
serve that in this case the function is in fact con-
stant because the accumulator never starts at those
values. However, this does not imply that minval =
maxval, and while we could add extra hardware to
make this the case, it would not be worth adding this
hardware just in order to save one bit. Finally, re-
stricting the inputs to a smaller bound than ∆ is help-
ful only in small trees, as increments up to ∆ can be
achieved through a number of small increments.

Web link for this document: <http://www.cs.caltech.edu/research/ic/abstracts/sataccum_fpt2005.html>

http://www.cs.caltech.edu/research/ic/abstracts/sataccum_fpt2005.html

	. Introduction
	. Background
	. Saturated Accumulation
	. Example: ADPCM
	. Associativity
	. Associative Reduce
	. Parallel-Prefix Tree
	. Prior Work

	. Associative Reformulation of Saturated Accumulation
	. Composing the SA functions
	. Composition Formula
	. Applying the Composition Formula
	. Wordsize of Intermediate Values

	. Putting it Together
	. Implementation
	. Summary
	References
	. References
	Transforming Composed Functions
	Max-inside-Min Lemma

	Wordsize of Intermediate x'

