
PIPELINING SATURATED ACCUMULATION, VOL. X, NO. YY, MONTH 2008 1

Pipelining Saturated Accumulation
Karl Papadantonakis, Nachiket Kapre, Student Member, IEEE, Stephanie Chan, and André DeHon, Member, IEEE

Abstract— Aggressive pipelining and spatial parallelism allow
integrated circuits (e.g., custom VLSI, ASICs, FPGAs) to achieve
high throughput on many Digital Signal Processing applications.
However, cyclic data dependencies in the computation can limit
parallelism and reduce the efficiency and speed of an imple-
mentation. Saturated accumulation is an important example
where such a cycle limits the throughput of signal processing
applications. We show how to reformulate saturated addition
as an associative operation so that we can use a parallel-prefix
calculation to perform saturated accumulation at any data rate
supported by the device. This allows us, for example, to design a
16-bit saturated accumulator which can operate at 280MHz on a
Xilinx Spartan-3 (XC3S-5000-4) FPGA, the maximum frequency
supported by the component’s DCM.

Index Terms— Computer Arithmetic, Saturated Arithmetic,
Accumulation, Parallel Prefix

I. INTRODUCTION

Over the last few decades, a large fraction of the clock rate
increases in microprocessors has come from increased pipelining
(e.g., [1]) to the point where modern processors run with about
10 gate delays (e.g., fanout-four inverter (FO4) delays) per clock
cycle. ASICs, ASIC-based DSPs, and FPGAs have traditionally
not been pipelined as heavily, but their clock rates could also be
increased by heavy pipelining (e.g., [2], [3]). For acyclic designs
(feed forward dataflow), it is always possible to pipeline designs
down to just a few gate delays (or Lookup-Table evaluations for
FPGAs). It may be necessary to pipeline the interconnect (e.g.,
[3], [4]), but the transformation can be performed and automated.

However, when a design has a cycle with a large latency but
only a few registers in the path, we cannot immediately pipeline
to this limit. No legal retiming [5] will allow us to reduce the ratio
between the total cycle logic delay (e.g., number of gates in the
path) and the total registers in the cycle. This often prevents us
from pipelining the design all the way down to the gate plus local
interconnect level and consequently prevents us from operating at
peak throughput to use the device efficiently. This phenomena
also impacts processors; even though the processor is heavily
pipelined, loop-carried data dependencies implied by the cycle
prevents the processor from issuing instructions for the single
instruction stream at the full clock rate. We can use these devices
efficiently by interleaving parallel problems in C-slow (e.g., [5],
[6]) or multithreaded (e.g., [7], [8]) fashion, but the throughput
delivered to a single data stream is limited. In a spatial pipeline of
streaming operators, the throughput of the slowest operator will
serve as a bottleneck, forcing all operators to run at the slower
throughput, preventing us from achieving high efficiency.

Saturated accumulation (Section II-A) is a common signal
processing operation with a cyclic dependence which prevents

Manuscript received July 22, 2007. Revised December 31, 2007.
K. Papadantonakis is with Myricom, Inc.
N. Kapre is with the California Institute of Technology.
S. Chan is with Numerica Corp.
A. DeHon is with the University of Pennsylvania.
Contact author: A. DeHon <andre@ieee.org>

aggressive pipelining. As such, it can serve as the rate limiter in
streaming applications (e.g., Sections II-B and II-C). While non-
saturated accumulation is amenable to associative transformations
(e.g., delayed addition [9] or block associative reduce trees (Sec-
tion II-E)), the non-associativity of the basic saturated addition
operation prevents these direct transformations.

In this paper we show how to transform saturated accumulation
into an associative operation (Section III). Once transformed, we
use a parallel-prefix computation to avoid the apparent cyclic de-
pendencies in the original operation (Section II-G). As a concrete
demonstration of this technique, we show how to accelerate a
16-bit accumulation on a Xilinx Spartan-3 (X3CS-5000-4) FPGA
[10] from a cycle time of 11.3ns to a cycle time below 3.57ns
(Section V). The techniques introduced here are general and allow
us to pipeline saturated accumulations to any throughput which
the device can support. The parallel-prefix techniques further
allow our designs to take in multiple inputs per cycle and produce
multiple outputs per cycle (Section VI-A). As a result, we can
design our saturated accumulation to match any throughput which
the device’s I/O can support.

Th techniques presented here wer motivated by the high latency
of programmable interconnect in FPGAs, and the results were first
reported at an FPGA conference [11]. Nonetheless, the techniques
are general and apply to any technology, including ASICs which
can benefit from microarchitectural transforms which enabled
greater pipelining [2] and superscalar and VLIW processors
which benefit from transformations which increase instruction-
level parallelism. For this journal version, we have included
detailed proofs and more tutorial descriptions which could not
be included in the shorter conference version, expanded the prior
work comparisons, illustrated how to exceed the one result per
cycle bound, and included discussion on generalization of these
techniques beyond saturated accumulation.

II. BACKGROUND

A. Saturated Accumulation

Efficient implementations of arithmetic on real computing
devices with finite hardware must deal with the fact that integer
addition is not closed over any non-trivial finite subset of the
integers. Some computer arithmetic systems deal with this by
using addition modulo a power of two (e.g., addition modulo
232 is provided by most microprocessors). However, for many
applications, modulo addition has bad effects, creating aliasing
between large numbers which overflow to small numbers and
small numbers. Consequently, one is driven to use a large modulus
(a large number of bits) in an attempt to avoid this aliasing
problem.

An alternative to using wide datapaths to avoid aliasing is to
define saturating arithmetic. Instead of wrapping the arithmetic
result in modulo fashion, the arithmetic sets bounds and clips
sums which go out of bounds to the bounding values. That is, we
define a saturated addition as:

PIPELINING SATURATED ACCUMULATION, VOL. X, NO. YY, MONTH 2008 2

TABLE I
ACCUMULATION EXAMPLE

input (xi) 0 50 100 100 11 -2
modulo sum 0 50 150 250 5 3

(mod 256)
satsum (yi) 0 50 150 250 255 253

(maxval=256)

SA(a,b,minval,maxval) {
tmp=a+b; // tmp can hold sum

// without wrapping
if (tmp>maxval)

return(maxval);
elseif (tmp<minval)

return(minval);
else

return(tmp)
}

Since large sums cannot wrap to small values when the precision
limit is reached, this admits economical implementations which
use modest precision for many signal processing applications.

A saturated accumulator takes a stream of input values xi and
produces a stream of output values yi:

yi = SA(yi−1, xi,minval,maxval) (1)

Table I gives an example showing the difference between modulo
and saturated accumulation.

B. Example: ADPCM

The decoder in the Adaptive Differential Pulse-Compression
Modulation (ADPCM) application in the mediabench bench-
mark suite [12] provides a concrete example where saturated
accumulation is the bottleneck limiting application throughput.
Figure 1 shows the dataflow path for the ADPCM decoder. The
only cycles which exist in the dataflow path are the two saturated
accumulators. Note that we can accommodate pipeline delays at
the beginning of the datapath, at the end of the datapath, and even
in the middle between the two saturated accumulators (annotated
in Figure 1) without changing the semantics of the decoder
operation. As with any pipelining operation, such pipelining
will change the number of cycles of latency between the input
(delta) and the output (valpred).

Previous attempts to accelerate the mediabench applications for
spatial (hardware or FPGA) implementation have achieved only
modest acceleration on ADPCM (e.g., [13]). This has led people
to characterize ADPCM as a serial application. With the new
transformations introduced here, we show how we can parallelize
this application.

If we had multiple, independent ADPCM streams to decode,
we could C-slow (e.g., [5], [6]) the design and run C interleaved
streams through a highly pipelined datapath. The techniques intro-
duced here address the cases where we either want to accelerate a
single stream or where it is advantageous to avoid the additional
latency, complexity, or state storage required in order to interleave
streams.

+

+

x i−1 x i−2x i y
i−3

+

y
i

+

++

y
i

x i−1 x i−2x i y
i−3

Fig. 2. Using Associativity to Reduce Serial Adder Delay

C. Example: Telecommunication Standards

Many telecommunication standards (e.g., ETSI/3GPP enhanced
full rate and adaptive multi rate speech processing, ITU G.723.1,
ITU G.729) provide specifications or reference implementations
based on limited-precision saturated arithmetic. For new imple-
mentations of the standard to be credible, it is advantageous,
and often necessary, for the implementations to provide bit-exact
results which match the standard. The technique we demonstrate
here allows parallelism and pipelining in the saturated accu-
mulations while remaining bit-exact with the serial reference
specification.

D. Associativity

Both infinite precision integer addition and modulo addition
are associative. That is: (A + B) + C = A + (B + C). However,
saturated addition is not associative. For example, consider:
250+100-11

infinite precision arithmetic:
(250+100)-11 = 350-11 = 339
250+(100-11) = 250+89 = 339

modulo 256 arithmetic:
(250+100)-11 = 94-11 = 83
250+(100-11) = 250+89 = 83

saturated addition (max=255):
(250+100)-11 = 255-11 = 244
250+(100-11) = 250+89 = 255

Consequently, we have more freedom in implementing infinite
precision or modulo addition than we do when implementing
saturating addition.

E. Associative Reduce

When associativity holds, we can exploit the associative prop-
erty to reshape the computation to allow pipelining. Consider a
modulo-addition accumulator:

yi = yi−1 + xi (2)

Unrolling the accumulation sum, we can write:

yi = ((yi−3 + xi−2) + xi−1) + xi (3)

Exploiting associativity we can rewrite this as:

yi = ((yi−3 + xi−2) + (xi−1 + xi)) (4)

Whereas the original sum had a series delay of 3 adders, the re-
associated sum has a series delay of 2 adders (See Figure 2). In
general, we can unroll this accumulation N − 1 times and reduce
the computation depth from N − 1 to log2(N) adders.

PIPELINING SATURATED ACCUMULATION, VOL. X, NO. YY, MONTH 2008 3

index
Table

min=0 max=88

sa
ta

dd

 saturated
accumulator

stepsize
 Table psuedo

multiply

sa
ta

dd

 saturated
accumulator

min=−32768 max=32767

(add pipelining here
 without changing semantics)

delta

index step

valpred

(4b sample)

(16b output)

(registers) (registers)

Fig. 1. Dataflow for ADPCM Decode

++

x i−1 x i−2x i i−3x

+

+

y
i

i−4
y

++

x i−1 x i−2x i i−3x

+

y

+

y

i−2

i−6

(a) Fast Path for (b) Pipelining Inputs to Match
Feedback Feedback Cycle

Fig. 3. Asymmetric Associativity to Reduce Delay around Feedback Cycle

F. Asymmetric Associative Reduction and Partial Unrolling

Associativity actually allows us to take things a step further.
Instead of building balanced reduce trees, we can build unbal-
anced trees that allow us to reduce the delay on some inputs
more than others (See Figure 3(a)). In particular, this allows us
to minimize the delay on the feedback cycle. Consequently, the
delay in the cyclic path can be a single operation delay rather
than the O(log(N)) delay for a balanced tree. In many cases,
it will suffice to unroll the loop only N additions in order to
cover the delay of the single operator in the feedback. As shown
in Figure 3(b), the associative reduction preceding the feedback
path can now be pipelined to match the achievable clock rate of
the final feedback cycle.

G. Parallel-Prefix Tree

In Section II-E, we noted we could compute the final sum of
N values in O(log(N)) time using O(N) adders. With only a
constant factor more hardware, we can actually compute all N

intermediate outputs: yi, yi−1, . . . y(i−(N−1)) (e.g., [14], [15]).
We do this by computing and combining partial sums of the

form S[s, t] which represents the sum: xs+xs+1+. . . xt. When we
build the associative reduce tree, at each level k, we are combining
S[(2j) 2k, (2j + 1) 2k−1] and S[(2j + 1) 2k, 2 (j + 1) 2k−1] to
compute S[(2j) 2k, 2 (j + 1) 2k−1] (See Figure 4). Consequently,
we eventually compute prefix spans from 0 to 2k-1 (the j = 0

case), but do not eventually compute the other prefixes. The
observation to make is that we can combine the S[0, 2k−1]

prefixes with the S[2k0 , 2k0+2k1−1] spans (k1 < k0) to compute

the intermediate results. To compute the full prefix sequence
(S[0, 1],S[0, 2], . . .S[0, N−1]), we add a second (reverse) tree to
compute these intermediate prefixes. At each tree level where
we have a compose unit in the forward, associative reduce tree,
we add (at most) one more, matching, compose unit in this
reverse tree. The reverse, or prefix, tree is no larger than the
reduce tree; consequently, the entire parallel-prefix tree is at most
twice the size of the associative reduce tree. Figure 4 shows a
width 16 parallel-prefix tree for associative accumulation. For
a more tutorial development of parallel-prefix computations see
[14], [16].

We can also build asymmetric parallel-prefix trees to minimize
the delay on the critical feedback cycle as described in Section II-
F. In Figure 4, the y[−1] input allows the y[15] term to feedback
to the final adder stage with a single adder delay of latency in
the case where we have partially unrolled a longer accumulation
stream so we can process sixteen inputs in a single adder-delay
cycle time.

H. Delayed Addition

For associative operations, we can use a redundant representa-
tion for the accumulation sum and exploit delayed addition [9] to
achieve full-adder-bit-level pipelining. This will likely result in a
more compact implementation than the example in the previous
section. However, the associative reduce tree will be more directly
applicable to our solution with the transformations introduced in
the next section (Section III).

I. Prior Work

de Dinechin et al. attacked the problem of saturating accu-
mulation at the DSP instruction level [17]. They show how to
get a factor of two speedup by cutting the sequence of saturated
additions in half and processing the two halves in parallel. Similar
to the technique presented here, their algorithm computes revised
maximum and minimum values on the second half of the sequence
so they can correctly compose and saturate the second half sum
with the saturated sum of the first half. They do not show how to
recurse their decomposition or generally describe how to achieve
greater parallelism. Further, their algorithm only produces the
final result yN−1, where N is their saturated accumulation block
size, and not the intermediate results y0, y1, . . . , yN−2.

Balzola et al. show how to achieve bit-exact saturated accu-
mulation by implementing an N -input saturated adder [18], [19].
Their N -input adder structure is similar in spirit to the unrolled
associative additions in Sections II-E and II-F in that they unroll
by a factor of N to accumulate N values in a delay slightly

PIPELINING SATURATED ACCUMULATION, VOL. X, NO. YY, MONTH 2008 4

 S[0,1] S[2,3] S[4,5] S[6,7] S[8,9] S[10,11] S[12,13] S[14,15]

 S[0,3] S[4,7]

 S[0,7]

 S[0,5]

 S[0,2] S[0,4] S[0,6] S[0,8]

 S[8,11] S[12,15]

 S[8,15]

 S[0,15]

 S[0,11]

 S[0,13] S[0,9]

 S[0,10] S[0,12] S[0,14]

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10] x[11] x[12] x[13] x[14] x[15]

y[0]

 + + + + + + + + + + + + + + + +

y[1] y[2] y[3] y[4] y[5] y[6] y[7] y[8] y[9] y[10] y[11] y[12] y[13] y[14] y[15]

k=2

k=3

k=4

k=1 associative reduce tree
prefix tree

y[−1]

fast feedback
 cycle

Fig. 4. 16-input Parallel-Prefix Tree

greater than one carry-propagate adder delay. Since the saturated
addition is not associative, they independently compute additions
for all possible saturations in the prefix; on the critical feedback
path, they only need to select the appropriate inputs rather than
perform a complete addition for all but the final addition. As a
result, their area grows as O(N2), and the delay of their unrolled
is one adder delay plus O(N) mux delays. Asymptotically, the
design provides only a constant speedup (i.e., from one adder
delay per input to one mux delay per input). Their design also
only produces the final result of the N -input accumulation, yN−1,
and not the intermediate results y0, y1, . . . , yN−2.

In contrast, we show how to make saturated accumulation
associative (Section III), enabling the use of efficient parallel-
prefix techniques (Section II-G). Parallel prefix allows us to
achieve arbitrary speedups and to produce all the intermedi-
ate results (y0, y1, . . . , yN−2) in the accumulation. Further, the
parallel-prefix technique allows to keep the area linear (O(N))
in the unrolling factor, N . Latency from input (xi) to output
(yi) is O(log(N)). After presenting our sample implementation
results in Section V-D, we provide a quantitative comparison
to the speedups and area overheads reported for the Balzola
implementation.

III. ASSOCIATIVE REFORMULATION OF SATURATED

ACCUMULATION

A. Saturated Addition as a Transformation Function

Unrolling the computation we need to perform for saturated
additions, we get a chain of saturated additions (SA) as shown
in Figure 5(a). We can express SA (Section II-A) as a function
using max and min:

SA(y, x,minval,maxval) (5)

= min(max((y + x),minval),maxval)

x[
i]

SA SA SA SA
y[i]y[i−1]y[i−2]y[i−3]y[i−4]

x[
i−

1]

x[
i−

2]

x[
i−

3]
m

ax
va

l
m

in
va

l

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

(a) Unrolled Chain of Four Saturated Additions

x[
i]

SA SA SA SA
y[i]y[i−1]y[i−2]y[i−3]y[i−4]

x[
i−

1]

x[
i−

2]

x[
i−

3]
m

ax
va

l
m

in
va

l

SA[i−3] SA[i−2] SA[i−1] SA[i]

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

(b) Viewing Each Saturated Addition as a Transformation Func-
tion from One Input to One Output

SA SA
y[i−3]y[i−4]

x[
i−

2]

x[
i−

3]
m

ax
va

l
m

in
va

l

SA[i−3] SA[i−2]

m
ax

va
l

m
in

va
l

SA[i−1,i]

y[i−2]

x[
i]

SA
y[i]y[i−1]

x[
i−

1]

SA[i−1] SA[i]

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

SA

(c) Composing the Single-Input, Single-Output Functions for a
Pair of Connected, Saturated Additions To Define a New Single-
Input, Single-Output Transformation Function

Fig. 5. Saturated Addition Sequence Viewed as Function Composition

PIPELINING SATURATED ACCUMULATION, VOL. X, NO. YY, MONTH 2008 5

The saturated accumulation is repeated application of this func-
tion. We seek to express this function in such a way that repeated
application is function composition. This allows us to exploit the
associativity of function composition [20] so we can compute
saturated accumulation using a parallel-prefix tree (Section II-G).

Technically, function composition does not apply directly to
the formula for SA shown in Equation 5 because that formula is
a function of four inputs (having just one output, y). Fortunately,
only the dependence on y is critical at each SA-application step;
the other inputs are not critical, because it is easy to guarantee
that they are available in time, regardless of our algorithm. To
understand repeated application of the SA function, therefore, we
express SA in an alternate form in which y is a function of a
single input and the other “inputs” (x, minval, and maxval)
are function parameters:

SA[x,m,M](y)
def
= SA(y, x, m, M) (6)

We define SA[i] as the ith application of this function, which
has x = x[i], m = minval, and M = maxval:

SA[i]
def
= SA[x[i],minval,maxval] (7)

This definition allows us to view the computation as function
composition. For example:

y[i] = SA[i] ◦ SA[i−1] ◦ SA[i−2] ◦ SA[i−3](y[i−4]) (8)

See Figure 5(b).

B. Composing the SA functions

To reduce the critical latency implied by Equation 8, we first
combine successive nonoverlapping adjacent pairs of operations
(just as we did with ordinary addition in Equation 4). For example:

y[i] = ((SA[i] ◦ SA[i−1])

◦ (SA[i−2] ◦ SA[i−3])) (y[i−4])

To make this practical, we need an efficient way to compute
each adjacent pair of operations in one step:

SA[i−1, i]
def
= SA[i] ◦ SA[i−1] (9)

This composition is shown in Figure 5(c).
Viewed (temporarily) as a function of real numbers, SA[i] is a

continuous, piecewise linear function, because it is a composition
of “min”, “max”, and “+”, each of which are continuous and
piecewise linear (with respect to each of their inputs). It is a
well known fact that any composition of continuous, piecewise
linear functions is itself continuous and piecewise linear (we
demonstrate this for our particular case below). We can easily
visualize the continuity and piecewise linearity of SA[i] (See
Figure 6).

Let us now try to understand the mathematical form of the func-
tion SA[i−1, i]. As the base functions SA[i−1] and SA[i] are con-
tinuous and piecewise linear, their composition (i.e. SA[i−1, i])
must also be continuous and piecewise linear. The key thing we
need to understand is: how many segments does SA[i−1, i] have?
Since SA[i−1] and SA[i] each have just one bounded segment of
slope one, we argue that their composition must also have just
one bounded segment of slope 1 and have the form of Equation 6.

We can visualize this fact graphically as shown in Figure 7. Any
input below minval or above maxval (Figure 7(b)) into the

minval

maxval

x[i]

minval−x[i]

maxval−x[i]

y

SA[i](y)

Fig. 6. Transformation Performed by One Saturated Addition

second SA will be clipped to the constant minval or maxval.
Input clipping on the first SA coupled with the add offset on the
second can prevent the composition from producing outputs all
the way to minval or maxval (Figure 7(a)). So, the extremes
will certainly remain flat just like the original SA. Between these
extremes, both SAs produce linear shifts of the input. Their
cascade is, therefore, also a linear shift of the input and results
in a slope one region (Figure 7(c)). Consequently, SA[i−1, i]

has the same form as SA[i] (Equation 6). As we observed, the
composition, SA[i−1, i], does not necessarily have m = minval
and M = maxval. However, if we allow arbitrary values for the
parameters m and M , then the form shown in Equation 6 is closed
under composition. This allows us to regroup the computation to
reduce the number of levels in the computation.

C. Composition Formula

We have just proved that the form SA[x,m,M] is closed under
composition. However, to build hardware that composes these
functions, we need an actual formula for the [x, m, M] tuple
describing the composition of any two SA functions SA[x1,m1,M1]

and SA[x2,m2,M2].
Each SA is a sequence of three steps: TRanslation by x,

followed by Clipping at the Bottom m, followed by Clipping
at the Top M . We write these three primitive steps as trx, cbm,
and ctM , respectively:

trx(y)
def
= y + x

cbm(y)
def
= max(y, m)

ctM (y)
def
= min(y, M)

SA[x,m,M] = ctM ◦ cbm ◦ trx (10)

As shown in Figure 8, a composition of two SAs written in
the form of Equation 10 leads to a new SA written in the same
form. The calculation is the following sequence of commutation
and merging of the “tr”s, “cb”s, and “ct”s:

I. Commutation of translation and clipping. Clipping at
M1 (or m1) and then translating by x2 is the same as first
translating by x2 and then clipping at M1+x2 (or m1+x2).

II. Commutation of upper and lower clipping.

cbm2 ◦ ctM1+x2 = ctmax(M1+x2,m2) ◦ cbm2

This is seen by case analysis: first suppose m2 ≤ M1 +

x2. Then both sides of the equation are the piecewise linear
function {

M1 + x2 , y ≥ M1 + x2

m2 , y ≤ m2

y , otherwise.
(11)

PIPELINING SATURATED ACCUMULATION, VOL. X, NO. YY, MONTH 2008 6

y[i−2]

y[i−1]

y[i]

y[i−1]

minval

maxval

m
i
n
v
a
l

m
a
x
v
a
l

SA[i−1] S
A

[i]

x[i−1] x[
i]

y[i]

y[i−2]

minval

SA[i−1,i]

maxval

y[i−2]

y[i−1]

y[i]

y[i−1]

minval

maxval

m
i
n
v
a
l

m
a
x
v
a
l

SA[i−1] S
A

[i]

x[i−1] x[
i]

y[i]

y[i−2]

maxval

SA[i−1,i]
minval

(a) clip low (b) clip high

y[i−2]

y[i−1]

y[i]

y[i−1]

minval

maxval

m
i
n
v
a
l

m
a
x
v
a
l

SA[i−1] S
A

[i]

x[i−1] x[
i]

y[i]

y[i−2]

maxval

minval

SA[i−1,i]

y[i−2]

y[i−1]

y[i]

y[i−1]

minval

maxval

m
i
n
v
a
l

m
a
x
v
a
l

SA[i−1] S
A

[i]

x[i−1] x[
i]

y[i]

y[i−2]

maxval

minval

SA[i−1,i]

(c) linear region (d) composite function

N.b. axes are rotated for the SA[i] transform so that we can align the y[i− 1] output from the
SA[i− 1] transform with the y[i− 1] input to the SA[i] transform.

Fig. 7. Saturated Add Composition

SA[x2,m2,M2] ◦ SA[x1,m1,M1]

= ctM2 ◦ cbm2 ◦ trx2 ◦ ctM1 ◦ cbm1 ◦ trx1
I
= ctM2 ◦ cbm2 ◦ ctM1+x2 ◦ cbm1+x2 ◦ trx1+x2
II
= ctM2 ◦ ctmax(M1+x2,m2) ◦ cbmax(m1+x2,m2) ◦ trx1+x2
III
= ctmin(max(M1+x2,m2),M2) ◦ cbmax(m1+x2,m2) ◦ trx1+x2

= SA[x1+x2,max(m1+x2,m2),min(max(M1+x2,m2),M2)]

Fig. 8. Operator Composition for Chained Saturated Additions

On the other hand, if m2 > M1 + x2, then both sides are
the constant function m2.

III. Merging of successive upper clipping. This is associa-
tivity of min.

D. Applying the Composition Formula

At the first level of the computation, m = minval and
M = maxval. However, after each adjacent pair of saturating
additions (SA[i−1], SA[i]) has been replaced by a single saturating
addition (SA[i−1, i]), the remaining computation no longer has
constant m and M . In general, therefore, a saturating accumula-
tion specification includes a different minval and maxval for
each input. We denote these values by minval[i] and maxval[i].

The SA to be performed on input number i is then:

SA[i](y) (12)

= min(max((y + x[i]),minval[i]),maxval[i])

Composing two such functions and inlining, we get:

SA[i−1, i](y) = SA[i](SA[i−1](y)) (13)

= min(max((min(max((y + x[i−1]),

minval[i−1]),

maxval[i−1])

+ x[i]),

minval[i]),

maxval[i])

We can transform this into:

SA[i−1, i](y) = (14)

= min(max((y + x[i−1] + x[i]),

max((minval[i−1] + x[i]),

minval[i])),

min(max((maxval[i−1] + x[i]),

minval[i]),

maxval[i]))

PIPELINING SATURATED ACCUMULATION, VOL. X, NO. YY, MONTH 2008 7

SA

x[
i−

1]

x[
i]

x[
i−

2]

x[
i−

3]

x[
i]

SA SA SA SA
y[i]y[i−1]y[i−2]y[i−3]y[i−4]

x[
i−

1]

x[
i−

2]

x[
i−

3]
m

ax
va

l
m

in
va

l

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

m
ax

va
l

m
in

va
l

SA[i−3] SA[i−2] SA[i−1] SA[i]

m
ax

va
l[i

−
3]

m
in

va
l[i

−
3]

m
ax

va
l[i

−
2]

m
in

va
l[i

−
2]

m
ax

va
l[i

−
1]

m
in

va
l[i

−
1]

m
ax

va
l[i

]
m

in
va

l[i
]

x[i−3,i] maxval[i−3,i] minval[i−3,i]

y[i−4] y[i]

SA

SA[i−3,i]

Compose Compose

x[i−3,i−2] x[i−1,i]minval[i−3,i−2]maxval[i−3,i−2] maxval[i−1,i] minval[i−1,i]

Compose

Fig. 9. Composition of SA[(i− 3), i]

This is the same computation as Figure 8, as long as we let
M2 = maxval[i], m2 = minval[i], M1 = maxval[i − 1],
and m2 = minval[i− 1].

Now we define Compose as the six-input, three-output function
which computes a description of SA[i−1, i] given descriptions of
SA[i−1] and SA[i]:

x′ = x[i−1] + x[i] (15)

minval′ = max((minval[i−1] + x[i]), (16)

minval[i])

maxval′ = min(max((maxval[i−1] + x[i]),

minval[i]), (17)

maxval[i])

This gives us:

SA[i−1, i](y) (18)

= min
(
max

((
y + x′

)
,minval′

)
,maxval′

)
Note that this is exactly the same form as Equation 5, with
the primed variables replacing the original input variables. This
allows us to compute SA[i, j](y) as shown in Figure 9. One
can note this is a very similar strategy to the combination of
“propagates” and “generates” in carry-lookahead addition (e.g.,
[15], [16], [21]).

E. Wordsize of Intermediate Values

The preceding correctness arguments rely on the assumption
that intermediate values (i.e., all values ever computed by the
Compose function) are mathematical integers; i.e., they never
overflow. For a computation of depth k, at most 2k numbers are
ever added, so intermediate values can be represented in W+k

bits if the inputs are represented in W bits. While this gives us
an asymptotically tight result, we can do better from a practical

point of view; we can actually do all computation with W+2 bits
(2’s complement representation) regardless of k.

First, notice that maxval′ is always between minval[i] and
maxval[i]. The same is not true about minval′, until we make
a slight modification to Equation 16; we redefine minval′ as
follows:

minval′ = min(max((minval[i−1] + x[i]),

minval[i]), (19)

maxval[i])

This change does not affect the result because it only causes a
decrease in minval′ when it is greater than maxval′. While
it is more work to do the extra operation, it is only a constant
increase, and this extra work is done anyway if the hardware
for maxval′ is reused for minval′ (See Section IV). With
this change, the interval [minval′,maxval′] is contained in the
interval [minval[i],maxval[i]], so none of these maximum or
minimum values ever requires more than W bits to represent.

F. Wordsize of Intermediate x′

In this section we show that we need only use a (W+2)-bit
datapath to compute x′ (Equation 15). Whenever x′ overflows
a (W+2)-bit datapath, its value is ignored, because a constant
function is represented (i.e., minval′ = maxval′).

To bound all x′ that occur for non-constant functions, we make
one observation and one assumption:

1. (observation) There is one (minval,maxval) for all i

such that:

minval[i] ≥ minval and
maxval[i] ≤ maxval. (20)

This was demonstrated at the end of the previous section
(Section III-E).

2. (assumption) For all original x[i] (i.e., the inputs), we have

|x[i]| ≤ ∆
def
= maxval− minval

This is always true for the inputs when:

minval ≤ x[i] ≤ maxval

We use the broader interval 2∆ to deal with intermediate
values of x′.

We now show, for any x[i−k, i] in the multilevel computation,
if |x[i−k, i]| > 2∆, then minval[i−k, i] = maxval[i−k, i].

For a contradiction, assume that some S
def
= SA[i−k, i] is not

a constant function when |xS | > 2∆. Consider points y and y′

such that S(y) 6= S(y′).
From the form of S, we know that it only takes on values in

the interval [minvalS ,maxvalS]. If S(y) or S(y′) are endpoints
of this non-empty interval, we can interpolate (extending to real
numbers) and find new y, y′, so that, without loss of generality,
y and y′ are both in the region of the domain of S where S has
slope 1. Interpolation is a technicality only needed to handle the
case where minvalS + 1 = maxval, such that there are not
two, distinct integer values for y and y′ which are in the slope 1
region.

Since S locally has slope 1 around y (and y′), the clipping
feature in S must not be active around y. This means that y

(and y′) are in the interval [minvalS − xS ,maxvalS − xS],

PIPELINING SATURATED ACCUMULATION, VOL. X, NO. YY, MONTH 2008 8

which is contained in the interval [minval−xS ,maxval−xS]

(observation 1).
Since |xS | > 2∆, we deduce that y and y′ are outside of the

interval [minval−∆,maxval+ ∆] since:

maxvalS − 2∆ ≤ maxval− 2∆ = minval−∆

or

minvalS − (−2∆) ≥ minval− (−2∆)

= maxval+ ∆

By interpolation, we can always choose distinct y and y′ so that
they do not straddle this interval. Now consider what happens
when the first input in the sequence xi−k . . . xi is applied to such
a value. Using assumption 2, we see that y + x[i−k] are to one
side of the interval [minval,maxval]. Therefore SA[i−k] must
take y and y′ to the same value, and therefore SA[i−k, i] also has
this property: i.e., S(y) = S(y′), a contradiction.

How many bits do we need to represent intermediate x′? If we
assume the accumulator is a W -bit signed 2’s complement value,
then:

maxval ≤ 2(W−1) − 1

minval ≥ −2(W−1)

∆ ≤
(
2(W−1) − 1

)
−

(
−2(W−1)

)
= 2W − 1

We care about an x′ only if |x′| ≤ 2∆ < 2W+1 − 1. Hence we
can simply add the ‘x’s in (W+2)-bit 2’s complement arithmetic
(at all levels of the computation), and if there is an overflow then
we do not care about the result.

The 2∆ and (W+2)-bit bounds are tight: the computation can
really have representations of non-constant functions that use all
W + 2 bits. For example, suppose W = 8, with minval =

−128 and maxval = 127. Suppose x0 = x1 = −254. The
function SA[0, 1] is not constant, as SA[0, 1](380) = −128 while
SA[0, 1](381) = −127, yet x[0, 1] = −508 requires 10 bits to
represent. One might observe that in this case the function is in
fact constant because the accumulator never starts at those values.
However, this does not imply that minval = maxval, and while
we could add extra hardware to make this the case, it would not be
worth adding this hardware just in order to save one bit. Finally,
restricting the inputs to a smaller bound than ∆ is helpful only
in small trees, as increments up to ∆ can be achieved through a
number of small increments.

IV. PUTTING IT TOGETHER

Knowing how to compute SA[i−1, i] from the parameters for
SA[i−1] and SA[i], we can unroll the computation to match
the delay through the saturated addition and create a suitable,
asymmetric parallel-prefix computation (similar to Sections II-
E through II-G). From the previous section, we know the core
computation for the composer is, itself, an unsaturated addition
(Equation 15) and two saturated additions (Equations 17 and 19).
Using the base saturated adder shown in Figure 10, we build the
composer as shown in Figure 11.

B m
ax

va
l

m
in

va
l

A
SA

m
ax

m
in

+

Fig. 10. Saturated Adder

SA

m
ax

m
in

SA

m
ax

m
in

w−bit w−bit

x[i]x[i−1] maxval[i−1] minval[i−1] maxval[i] minval[i]

x[i−1,i] maxval[i−1,i] minval[i−1,i]

+

(w+2)−bit

+ +

Fig. 11. Composition Unit for Two Saturated Additions

V. IMPLEMENTATION

A. Experiment

We implemented the parallel-prefix saturated accumulator in
VHDL and targeted a Xilinx Spartan-3 XC3S-5000-4 FPGA
to demonstrate functionality and obtain performance and area
estimates. We used Modelsim 5.8 to verify the functionality
of the design and Synplify Pro 7.7 and Xilinx ISE 6.1.02i to
map our design onto the target device. We did not provide any
area constraints and let the tools automatically place and route
the design using just the timing constraints. The DCMs on the
Spartan-3 (speed grade -4 part) support a maximum frequency of
280 MHz (3.57ns cycle), so we picked this maximum supported
frequency as our performance target. We report area in Spartan-3
slices; each Spartan-3 slice contains two 4-input Lookup Tables
with fast carry logic such that each slice can serve as two full
adder bits.

B. Design Details

The parallel-prefix saturating accumulator consists of a parallel-
prefix computation tree with an asymmetric feedback input (cf.
Section II-F) sandwiched between a serializer and deserializer as
shown in Figure 12. Consequently, we decompose the design into
two clock domains. The higher frequency clock domain pushes
data into the lower frequency domain of the parallel-prefix tree.
The parallel-prefix tree runs at a proportionally slower rate to
accommodate the saturating adders shown in Figures 10 and 11.
Minimizing the delays in the tree requires us to compute each
compose in two pipeline stages. Finally, we clock the result of
the prefix computation into the higher frequency clock domain
in parallel then serially shift out the data at the higher clock
frequency.

As introduced in Section II-F, the delay through the composers
is actually irrelevant to the correct operation of the saturated

PIPELINING SATURATED ACCUMULATION, VOL. X, NO. YY, MONTH 2008 9

fslow

f fast

f fast

Two
pipeline
stages

register
y[i-36] y[i-35] y[i-34] y[i-33]

x[i-3] x[i-2] x[i-1] x[i]

Compose

SA SA SA SA

0

Compose

Compose

Compose

Fig. 12. N = 4 Parallel-Prefix Saturating Accumulator

TABLE II
MINIMUM SIZE OF PREFIX TREE REQUIRED TO ACHIEVE 280MHZ

Datapath Width (W) 2 4 8 16 32
Prefix-tree Width (N) 3 3 4 4 4

accumulation. The composition tree adds a uniform number
of clock cycle delays between the x[i] shift register and the
final saturated accumulator. It does not add to the saturated
accumulation feedback latency which the unrolling must cover.
This is why we can safely pipeline compose stages in the parallel-
prefix tree.

Data is transferred into the slower domain by serializing it
in the faster domain and allowing the slower frequency domain
to “capture” the signal synchronously on its clock edge. This,
encapsulated dual frequency clocking scheme allows the rest of
the system to have a consistent interface with this design.

C. Area

We express the area required by this design as a function of N

(loop unroll factor) and W (bitwidth). The area required for the
prefix tree is roughly 5 2

3N times the area of a single saturated
adder. The initial reduce tree has roughly N compose units, as
does the final prefix tree. Each compose unit has two W -bit
saturated adders and one (W+2)-bit regular adder. As noted, a
Spartan-3 slice can support two full-adder bits, so each adder
requires roughly W/2 slices. Similarly, the W -bit maximum and
minimum multiplexers also each require W/2 slices. Together,
this gives us ≈ 2 × (2× 3 + 1) NW/2 slices. Finally, we add
a row of saturated adders to compute the final output to get a
total of 17

2 NW slices. Compared to the base saturated adder (i.e.
Figure 10) which takes 3

2W slices, this is a factor of 17N
3 = 5 2

3N .
Pipelining levels in the parallel-prefix tree roughly costs us

2×3×N registers per level times the 2 log2(N) levels for a total
of 12N log2(N)W registers. The pair of registers for a pipe stage

TABLE III
ACCUMULATOR COMPARISON

Datapath
Width (W) 2 4 8 16 32

Simple Saturated Accumulator
Delay (ns) 6.2 8.1 9.1 11.3 13.4

Area (slices) 10 14 24 44 84
Parallel-Prefix Saturated Accumulator (N = 4)

Delay (ns) 2.8 2.7 3.1 2.9 3.3
Area (slices) 215 333 571 1065 2085
Ratios: Parallel-Prefix/Simple

Freq. 2.2 3.0 2.9 3.6 4.1
Area 22 24 24 24 25

can fit in half a slice (i.e., SRL16 configuration), so this should
add no more than 6N log2(N)W slices.

A(N, W) ≈ 6N log2(N)W +
17

2
NW (21)

This approximation does not count the overhead of the control
logic in the serializer and deserializer since it is small compared
to the registers.

To pipeline down to the gate or Lookup Table level, we
must unroll to cover the delay through the base saturated adder
(Figure 10). This delay is one W -bit adder delay plus a small
constant number of gate delays output multiplexing. If we use
ripple carry adders, then we need an unroll factor, N , which is
O(W). Substituting N = O(W) into Equation 21 and we get
O

(
W 2 log (W)

)
. If, instead, we use an efficient, log-depth adder,

we substitute N = log(W) into Equation 21, and we see that area
scales as:

Afullpipe−satadd(W) = O (W log (W) log (log (W))) (22)

If the size of the tree is N and the frequency of the basic
unpipelined saturating accumulator is f , then the system can run
at a frequency f × N . By increasing the size of the parallel-
prefix tree, we can make the design run arbitrarily fast, up to the
maximum attainable clock rate of the device. As Section VI-A
notes, we can continue to exploit parallelism to run even faster
if the application context provides and consumes more than one
input and output per cycle. In Table II we show the value of N

(i.e., the size of the prefix tree) required to achieve a 3ns cycle
target. We target this tighter cycle time (compared to the 3.57ns
DCM limit) to reserve some headroom going into place and route
for the larger designs. We observe that a value of N = 4 is
adequate to make the design run as fast as the device can support.

D. Results

Table III shows the clock period achieved by all the designs
for N = 4 after place and route. We beat the required 3.57ns
performance limit for all the cases we considered. Since we only
constrained the synthesis tools to optimize for a 3ns cycle, vari-
ations in cycle time around 3ns arise from imperfectly estimated
physical routing delays. For N = 4, the latency from x[i] to y[i]

is 38 fast clock cycles (See Figure 12) or, roughly 136ns at the
3.57ns clock period.

In Table III we show the actual area in terms of the Spartan-
3 slices required to perform the mapping for different bitwidths

PIPELINING SATURATED ACCUMULATION, VOL. X, NO. YY, MONTH 2008 10

W . A 16-bit saturating accumulator requires 1065 slices which
constitutes around 2% of the XC3S-5000. We also show that an
area overhead of less than 25× is required to achieve this speedup
over the unpipelined base saturating accumulator (Figure 10);
for N = 4, 5 2

3N ≈ 23, so this is consistent with our intuitive
prediction above.

Balzola’s 5-input saturated adder [19] is equivalent to our N =

4 unrolling in that both can take in 5 inputs in a cycle. They
compare their accelerated designs to a “serial” case that actually
contains a simple combinational cascade of 4 saturated adders.
Their fastest design uses 5.7 times the area of the 4 saturated adder
cascade or 4×5.7≈23 times the area of the base saturated adder.
With this design, they achieve a speedup of 3.5 times the “serial”
case. As a result their area overhead and throughput enhancement
are quite similar to ours at W = 16 and W = 32 (See Table III).
The Balzola design has a smaller increase in the latency from x[i]

to y[i] than our design. Note that:
1) Our design spends roughly half of its area producing

intermediate y[i] outputs that the Balzola design does not
produce; if we were to omit these intermediate outputs to
functionally match the Balzola design, our area overhead
would be half the reported size.

2) Our design has better asymptotic scaling, both in area
(O(N log(N)) vs. O(N2)) and achievable delay (arbitrary
versus constant factor speedup). Since these designs are
already reaching parity in area overhead at this small N ,
this suggests our design will be smaller for N > 4.

A factor of 25 in area is a large cost to pay. However, the base
saturated adder is tiny and usually only a small fraction of the area
in a spatial design (e.g. Figure 1) or in a DSP (i.e., memories often
take up much more space than all the arithmetic processing logic
combined, and the dedicated multipliers are much larger than the
adders). Since the saturated addition is only a small fraction of
the design area, the 25× area expansion of this one unit may
only increase the area of the overall design by a modest amount.
When the saturated addition is the single bottleneck that prevents
the entire system from running at high throughput, it will often
makes sense to pay this cost.

VI. GENERALITY AND OPEN QUESTIONS

A. Beyond One Result per Clock

The clock period on the device is limited by the minimum
overhead time on registers (setup, hold, clock jitter) and a mini-
mum amount of logic between registers. For example, the design
in Figure 12 has one mux between registers on the fast clock
domain. In CMOS, 6–8 Fanout-4 inverter delays is considered a
common lower bound on the clock period (e.g., [22]).

Nonetheless, since the core saturated addition operations can
now be performed in parallel, we can achieve throughputs that ex-
ceed the clock-cycle bound if it is possible to bring in and produce
multiple values in parallel. Figure 13 shows the generalization on
Figure 12 where N = 8 and the design consumes/produces two
values per cycle on the fast clock. As with the Figure 12 design,
the slow clock has a period 4 times the fast clock.

B. Beyond Accumulation

The techniques used here are actually quite general. Functional
composition is associative, so we can always unroll the loop,

0

0

slowf

fastf

fastf

C=Compose

x[i]

x[i+1]

y[i−54]

y[i−53]

SA SA SA SA SA SA SA SA

C C C C

C C

C

C

CCC

Fig. 13. N = 8 Parallel Prefix Saturating Accumulation with Two Inputs
and Two Outputs per Cycle (ffast=4×fslow)

associate each loop stage with its inputs, and perform a parallel-
prefix reduction on the loop instances. This composition is
applicable even if there are a series of different operations in each
loop body or even different operations between loop instances. For
this to be useful, however, the composed function of multiple loop
instances must have shallower depth than the original, serial path
through the set of loop instances. Also, it must be inexpensive
to compute the composed function; in this case, computing the
arguments to the composed function was, asymptotically, the
same complexity as computing the function (cf. Equations 15,
17, and 19 to Equations 5 and 6).

In formulating the associativity of saturated accumulation, we
worked with the composition of the functions max, min, and
addition where one input to each function was early bound—i.e.,
bound outside of the loop. As a result of the early-bound inputs,
the computation was a single chain of dependent computations,
and we showed how to use parallel prefix to compute the outputs
of the chain with low latency. Multiplication with one early-
bound input can be added to this group. More generally, we can
compute efficient functional compositions on any, potentially het-
erogeneous, chain composed from this extended function group.

We can also perform this prefix optimization on this function
group even if intermediate results are forwarded to multiple
functions. With multiple use of intermediates, we do not strictly
have a single chain but rather a tree. In these cases, we can still
extract the chain producing each output and perform a parallel
prefix on each chain. This may require that we duplicate the chain
prefixes which feed into multiple tree branches.

An important open question for future research is to generally
characterize the class of functions that have this kind of light-

PIPELINING SATURATED ACCUMULATION, VOL. X, NO. YY, MONTH 2008 11

weight composition. That is, more generally, for a given compo-
sition of functions:

• How expensive is it to compute the composed function?
• How much shorter is the path through the composed function

than the sum of the paths through the original functions?
These associative transformation can be powerful options for

exploiting area-time tradeoffs. High-level design automation tools
can exploit them for optimizing performance. With a sufficiently
broad set, it may be possible to integrate these into a superscalar
processor design, allowing the processor to issue a set of depen-
dent instructions and reduce them associatively.

VII. SUMMARY

Saturated accumulation has a loop dependency that, naively,
limits single-stream throughput and our ability to fully exploit the
computational capacity of modern integrated circuits, particularly
as clock rate scaling slows and future performance improvements
depend more on exploiting the increased area capacity to improve
throughput. We show that this loop dependence is actually avoid-
able by reformulating the saturated addition as the composition of
a series of functions. We further show that this particular function
composition is, asymptotically, no more complex than the original
saturated addition operation. Function composition is associative,
so this reformulation allows us to build a parallel-prefix tree in
order to compute the saturated accumulation over several loop
iterations in parallel. Consequently, we can unroll the saturated
accumulation loop to cover the delay through the saturated adder.
As a result, we show how to compute saturated accumulation at
any data rate supported by the device’s clocking and I/O.

ACKNOWLEDGMENT

This research was funded in part by the NSF under grant
CCR-0205471. Stephanie Chan was supported by the Marcella
Bonsall SURF Fellowship. Karl Papadantonakis was supported
by a Moore Fellowship. Scott Weber and Eylon Caspi developed
early FPGA implementations of ADPCM which helped identify
this challenge. Michael Wrighton provided VHDL coding and
CAD tool usage tips.

REFERENCES

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock
Rate versus IPC: The End of the Road for Conventional Microarchi-
tectures,” in Proceedings of the International Symposium on Computer
Architecture, 2000, pp. 248–259.

[2] D. Chinnery and K. Keutzer, Closing the Gap between ASIC & Custom:
Tools and Techniques for High-Performance ASIC Design. Kluwer
Academic Publishers, 2002.

[3] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani,
V. George, J. Wawrzynek, and A. DeHon, “HSRA: High-Speed, Hi-
erarchical Synchronous Reconfigurable Array,” in Proceedings of the
International Symposium on Field-Programmable Gate Arrays, February
1999, pp. 125–134.

[4] D. P. Singh and S. D. Brown, “The Case for Registered Routing Switches
in Field Programmable Gate Arrays,” in Proceedings of the International
Symposium on Field-Programmable Gate Arrays, February 2001, pp.
161–169.

[5] C. Leiserson, F. Rose, and J. Saxe, “Optimizing Synchronous Circuitry
by Retiming,” in Third Caltech Conference On VLSI, March 1983.

[6] N. Weaver, Y. Markovskiy, Y. Patel, and J. Wawrzynek, “Post-Placement
C-slow Retiming for the Xilinx Virtex FPGA,” in Proceedings of the
International Symposium on Field-Programmable Gate Arrays, 2003,
pp. 185–194.

[7] B. Smith, “Architecture and Applications of the HEP Multiprocessor
Computer System,” in Proceedings fo the Symposium on Real-Time
Signal Processing, 1981, pp. 241–248.

[8] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm, “Exploiting choice: Instruction fetch and issue on an
implementable simultatneous multithreading processor,” in Proceedings
of the International Symposium on Computer Architecture, 1996, pp.
191–202.

[9] Z. Luo and M. Martonosi, “Accelerating Pipelined Integer and Floating-
Point Accumulations in Configurable Hardware with Delayed Addition
Techniques,” IEEE Transactions on Computers, vol. 49, no. 3, pp. 208–
218, March 2000.

[10] Xilinx Spartan-3 FPGA Family Data Sheet, Xilinx, Inc., 2100 Logic
Drive, San Jose, CA 95124, December 2004, dS099 <http://direct.xilinx.
com/bvdocs/publications/ds099.pdf>.

[11] K. Papadantonakis, N. Kapre, S. Chan, and A. DeHon, “Pipelining Satu-
rated Accumulation,” in Proceedings of the International Conference on
Field-Programmable Technology. IEEE, December 2005, pp. 19–26.

[12] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Communicatons
Systems,” in International Symposium on Microarchitecture, 1997, pp.
330–335.

[13] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal, “Maps: A Compiler-
Managed Memory System for Raw Machines,” in Proceedings of the
International Symposium on Computer Architecture, 1999.

[14] W. D. Hillis and G. L. Steele, “Data Parallel Algorithms,” Communica-
tions of the ACM, vol. 29, no. 12, pp. 1170–1183, December 1986.

[15] R. P. Brent and H. T. Kung, “A Regular Layout for Parallel Adders,”
IEEE Transactions on Computers, vol. 31, no. 3, pp. 260–264, March
1982.

[16] F. T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, Inc., 1992.

[17] B. D. de Dinechin, C. Monat, and F. Rastello, “Parallel Execution of the
Saturated Reductions,” in Proceedings of the IEEE Workshop on Signal
Processing Systems, 2001, pp. 373–384.

[18] M. Schulte, P. Balzola, J. Ruan, and J. Glossner, “Parallel Saturating
Multioperand Adders,” in Proceedings of the International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, 2000,
pp. 172–179.

[19] P. I. Balzola, M. J. Schulte, J. Ruan, J. Glossner, and E. Hokenek,
“Design Alternatives for Parallel Saturating Multioperand Adders,” in
Proceedings of the International Conference on Computer Design,
September 2001, pp. 172–177.

[20] J. H. Hubbard and B. B. H. Hubbard, Vector Calculus, Linear Algebra,
and Differential Forms: A Unified Approach. Prentice Hall, 1999.

[21] S. Winograd, “On the Time Required to Perform Addition,” Journal of
the ACM, vol. 12, no. 2, pp. 277–285, April 1965.

[22] M. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S. W. Keckler, and
P. Shivakumar, “The Optimal Logic Depth Per Pipeline Stage is 6 to 8
FO4 Inverter Delays,” in Proceedings of the International Symposium
on Computer Architecture, 2002, pp. 14–24.

