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Abstract—
Frequency scaling and precision reduction optimization of

an FPGA accelerated SPICE circuit simulator can enhance
performance by 1.5⇥ while lowering implementation cost by 15–
20%. This is possible due the inherent fault tolerant capabilities
of SPICE that can naturally drive simulator convergence even
in presence of arithmetic errors due to frequency scaling and
precision reduction. We quantify the impact of these transforma-
tions on SPICE by analyzing the resulting convergence residue
and runtime. To explain the impact of our optimizations, we
develop an empirical error model derived from in-situ frequency
scaling experiments and build analytical models of rounding
and truncation errors using Gappa-based numerical analysis.
Across a range of benchmark SPICE circuits, we are able to
tolerate to bit-level fault rates of 10�4 (frequency scaling) and
manage up to 8-bit loss in least-significant digits (precision
reduction) without compromising SPICE convergence quality
while delivering speedups.

I. INTRODUCTION

The SPICE circuit simulator [1] is a well-known industrial
tool for analysis and design of circuits. It is also notoriously
hard to parallelize and is a challenge problem for computer
architects and parallel programmers. A SPICE simulation is
an iterative numerical computation that consists of a device
model evaluation phase, a tricky matrix factorization phase
and a sequential control phase that drives the numerical
integration and linearization phases. We shown a high-level
visualization of the SPICE simulator in Figure 1 and describe it
in more detail later in Section II. Hardware-accelerated SPICE
solvers using FPGAs [2], [3] and GPUs have been show to
deliver 3–10⇥ speedup over conventional CPU-based solvers
by exploiting spatial parallelism of the FPGA fabric. While
these speedups are promising, they are not easily scalable
due to limited parallelism and cost of FPGA hardware. In
this paper, we investigate alternative approaches for improving
performance of the SPICE accelerator by frequency scaling
(runtime) or precision adaptation (compile time).

Despite these limits of parallelism, we observe that iterative
numerical computations such as SPICE are designed to tolerate
the impact of finite precision arithmetic hardware on the accu-
racy of the solution of the computation [4]. These algorithms
use non bit-exact formulations of convergence and correctness,
and are guided towards the final solution through periodic
measurements of error (degree of incorrectness of the solution)
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Fig. 1: SPICE Simulator Flow

and proportional corrective actions. For example, the Newton
Raphson algorithm for finding the root of a polynomial,
f(x)=0, will incrementally revise x in each iteration based
on the error residue at any given iteration f(x

iter

) until the
convergence condition f(x

converge

) < ✏ is met at a particular
iteration. In the same spirit, the SPICE [1] circuit simulator
contains two iterative loops (1) linearization of non-linear
elements to construct Jacobian matrix, and (2) Backward-Euler
numerical integration of time-varying elements. We exploit
this observation to consider the effect of the following two
optimizations to enhance speedups and lower the cost of FPGA
accelerated SPICE solvers.
• Precision Reduction: SPICE (spice3f5) uses double-

precision floating-point arithmetic but the voltage, current
and conductance physical quantities involved cover a small
dynamic range of possible values. For FPGA accelerators,
we can implement numerical computations using fewer
bits with custom precision implementations. This change in
precision introduces a truncation error in each step of the
computation. We hypothesize that truncation errors may not
matter if they accumulate to sufficiently small levels (< ✏)
and the linearization and integration loops can self-correct
to converge to the right value.



• Frequency Scaling: Physical FPGA hardware is typi-
cally designed to operate with aggressive safety margins
to guarantee correct behavior. However, it is possible to do
better-than-worst-case by frequency scaling the circuit for
performance (or undervolting the power supply for energy
savings). However, if operated beyond a threshold, we start
to introduce timing faults in the results due to critical path
timing violations. Again, we expect the SPICE iterative
loops to naturally measure the degree of incorrectness
(e.g. residue calculations in SPICE) and compensate for
them to an extent.
We believe the techniques presented in this paper are

increasingly important as we scale to smaller transistor geome-
tries that may result in chips that are defective at fabrication
time, and faulty at runtime due to a combination of factors
such as process variation, aging and other statistical physical
effects. If we can show how to continue to use faulty silicon for
meaningful computation, we can deliver both performance and
cost reductions; both in terms of yield and operating energy.

We summarize the key contributions of this paper in the
following list:
• Development of a framework for SPICE (and KLU sparse
LU solver [5]) to model the impact of errors due to
frequency scaling and precision reduction on SPICE con-
vergence and iteration count.
• Characterization of the properties of double-precision
floating-point operators in the presence of truncation errors
(Gappa-based analysis) and timing violations (in-situ FPGA
experiments).
• Quantification of speedups and resource savings of a
hardware-accelerated SPICE simulator across a variety of
circuit benchmarks obtained from academic projects and
industrial packages.

II. BACKGROUND

The SPICE [1] circuit simulator (spice3f5) belongs to a
broad class of iterative numerical algorithms with a quantifi-
able (non bit-exact) measure of correctness. SPICE simulates
the transient analog behavior of a circuit represented using
non-linear differential equations. SPICE solves these circuit
equations by computing small-signal linear operating-point
approximations for the non-linear (e.g. diodes, transistors) and
time-varying elements (e.g. capacitors, inductors) until conver-
gence and termination (see Figure 1. The specific numerical
algorithms used are Newton-Raphson (linearization inner loop)
and Backward-Euler (numerical integration outer loop). The
linearized system of equations is represented as a solution
of A~x = ~

b handled in the Matrix-Solve phase, where A is
the matrix of circuit conductances, ~b is the vector of known
currents and voltage quantities and ~x is the vector of unknown
voltages and branch currents. The simulator repeatedly updates
entries in A and ~

b from the device equations that describe
device transconductance (e.g., Ohm’s law for resistors, tran-
sistor I-V characteristics) in the Model-Evaluation phase. In
each iteration, SPICE tracks the linear solver residue (~b�A~x)
and � changes in ~x w.r.t previous iteration (spice3f5). For
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Fig. 2: Impact of changing abstol and reltol tolerances
on iteration count and residue of a SPICE circuit simulation

for a bsim3 inverter

SPICE netlists with a large number of non-linear devices, as
much as 90% (avg. 55%) of runtime is devoted to the Model-
Evaluation phase. This is because runtime we must evaluated
each non-linear device individually and total time is linearly
proportional to the number of non-linear devices in the design.
For circuits with a large number of resistors and capacitors
that are often encountered in parasitic simulations results in
very large and very sparse matrices. In these circumstances,
the Matrix-Solve phase accounts for as much as 70% (avg
38%) of SPICE simulation time. The Iteration controller is
the smallest portion of total time (less than 10%).

A. Preliminary Error Analysis

We conducted preliminary experiments to understand the
impact of varying abstol (absolute tolerance) and reltol

(relative tolerance) parameters of SPICE which control conver-
gence and termination of the simulator as shown in Figure 2.
You would expect tighter tolerances to deliver more accurate
results with a increased runtime trade-off but that does not
always hold. Furthermore, the shape of the iteration surface
peaks gradually providing us sufficient freedom to consider
alternative implementations as long as the designer minimum
expectation of accuracy is satisfied. It is clear that this affects
two key metrics of the simulator: number of iterations (run-
time) and residue (measure of accuracy). Instead of chasing
bit-exact evaluations, we can control the tolerances to reflect
frequency scaling and precision reduction in the design to
deliver satisfactory simulation results with low convergence
residue.
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B. Accelerator

In Figure 3, we sketch a high-level diagram of the FPGA
SPICE accelerator based on an earlier design [2]. We use a
design with 8 floating-point operators for the bsim4 Model
Evaluation, 4 floating-point operators for the Sparse Matrix-
Solve and a generic state-machine for the Iteration Controller
phases of SPICE. This design can accelerate SPICE by 3–10⇥
(depending on benchmark) when compared to a sequential
Intel CPU. As bulk of compute time is spent on Model
Evaluation, we devote a larger fraction of the chip for a
custom VLIW accelerator [6] for this phase. Matrix Solve
step is the second most dominant phase and is also allocated a
significant portion of the chip to implement a Token dataflow
design [7]. The sequential controller runs on a VLIW soft
processor [8] with low area footprint to conserve resources.
The FPGA is managed from a host CPU that programs
the FPGA with the accelerator bitstream and loads the per-
circuit SPICE parameters to the onchip memory at runtime
for different simulations. For our experiments, we can control
frequency with the on-board PLL at runtime and modify the
operator precision using a VHDL code generator that requires
resynthesizing the FPGA bitstream at compile time.

III. FREQUENCY SCALING AND PRECISION REDUCTION
FRAMEWORK

As discussed in the previous section, the SPICE simulation
is an iterative algorithm. We can analyze the impact of
frequency scaling and precision reduction by studying a single
iteration in greater detail and understanding how it composes
with other iterations. We observe that Model-Evaluation and
Sparse Matrix-Solve phases are responsible for contributing
to both runtime (⇡90% as indicated earlier in Section II)
and numerical stability (e.g. convergence). Furthermore, the
aggregate memory usage and bandwidth of the program is
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Fig. 4: Voltage-Frequency scaling of a Double-Precision
Floating-Point Multiplier on a DE0 Nano FPGA board rated

at 1.1V and 100MHz

dominated by the core data-structures required to hold matrix
A and the factorized matrices L and U . We would expect,
timing errors in the Model Evaluation phase will propagate
and corrupt values in matrix A while the those in the Sparse
Matrix Solve phase will corrupt data stored in matrices L and
U .

A. Frequency Scaling

It has been shown that we can operate digital circuits at
beyond worst-case specifications of clock frequency and volt-
age up to a limited extent without any loss in correctness [9].
We conduct an experiment on the Terasic DE0 Nano FPGA
board operating at a nominal voltage of 1.2V and 100MHz
for a double-precision floating-point multiplier with gaussian-
distributed input vectors. The VHDL for this multiplier is
generated using Flopoco library and wrapped in a suitable test
harness to facilitate this experiment. In Figure 4, we show the
impact of observing one-or-more bit errors in the output of
this multiplier. The multiplier works correctly across a range
of voltage-frequency combinations going as low as 800mV and
as high as 180MHz without error. Strategic use of frequency
scaling (or voltage scaling) can allow the circuit to operate
faster (or lower energy) with a low-enough error rate.

In Figure 5, we show the impact of frequency scaling on bit-
wise absolute error at the output of a double-precision floating-
point multiplier. The safe operating frequency is 100MHz but
we can see that different bits (ordered by significance) start
failing gracefully at different frequencies. As expected, the
MSB-side bits (most significant bits) fail first (e.g. bit 60 fails
at 160MHz) while the LSB-side bits (least significant bits) fail
later (bit 24 fails only at 250MHz). We expect the multiplier
bits to exhibit varying bit-specific failure profiles depending
on the path lengths of the logic circuit terminating at those
respective bits. The exact nature of failure will depend on
a combination of overclock frequency as well as the actual
values of data being processed and activating specific paths
within the circuit.

B. Precision Reduction

Cheap (low area, low energy) implementations of hardware
are possible through the use of lower-precision arithmetic
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Fig. 5: Bit-wise absolute error due to frequency scaling of a
Double-Precision Floating-Point Multiplier on a DE0 Nano

FPGA board rated at 100MHz

(e.g. single-precision multiplier is smaller than a double-
precision multiplier). If the dynamic range of the inputs to the
arithmetic operators is far smaller than the full range made
possible by double-precision encoding, we may be able to
tune the number of bits to be just right for the numerical
computation. For example, the voltage quantities being han-
dled is likely to be in the µV–mV range and currents may
be in the pA–µA range (as appropriate for the kind of circuit
being simulated). We use Gappa [10] to analyze the relative
error properties of the multiplier under different dynamic input
range and precision combinations. Gappa is a formal analysis
tool that evaluates error properties of numerical computations
backed by proofs. Increasing precision reduces the error in
the computation while this error will increase if the dynamic
range of the input is larger. Limited operating dynamic range
of numerical variables in SPICE simulations can allow safe
reduction of operating precision without compromising nu-
merical stability and quality of the solution. This reduces fault
susceptibility by increasing the maximum operating frequency
and providing a smaller circuit (fewer transistors) that can fail.

In Figure 6, we use Gappa to analyze the relative error prop-
erties of the multiplier under different dynamic input range
and precision combinations. Increasing precision reduces the
error in the computation while this error will increase if the
dynamic range of the input is larger.

C. Understanding Fault Injection

To understand the impact of frequency-scaling and precision
reduction on the SPICE error properties, we develop a simple
software-based modeling framework that modifies the key
data structures in SPICE e.g. A, L, U based on our analysis
parameters.
• We model timing failures due to frequency scaling using
probabilistic error injection based on parameters such as
error injection probability (10�15  p

f

 100) and the
number of bits suffering from timing fault (1  b

oc

 3).
These are derived from real-world measurements as indi-
cated in Section III-A. We use an error model based on bit-
flipping which is implemented as 64-bit wide XOR masks
in the top b

msb
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Fig. 6: Absolute error of a Custom-precision Multiplier vs.
arbitrary precision baseline using Gappa

bit (see Figure 5 and accompanying explanation). A similar
idea has been previously explored in [11]. Timing fault
detection and correction techniques have been discussed
in [12] and we use these techniques to quantify our fault
rates.

• For precision reduction, we simply truncate the b

tr

 10
bits from the least significant. To implement precision
reduction, we use a stuck-at-zero error model to blank out
relevant bits in every item of data.
In Figure 7, we show the impact of frequency scaling and

precision reduction on the error residue (~b�A~x) for different
timesteps (iterations). Typically we want to see error residue to
be as low as possible for stable convergent operation. For the
case without any error injection, the residue of each timestep
(iteration) is low enough for correct convergence. The value of
residue changes per timestep as the input matrix A will vary
due to changes in SPICE simulation conditions. This explains
the increase in residue between 40–120 iterations while still
delivering the expected final result. As we can see, truncating
the least significant bits extends simulation time by requiring
the simulator to work harder (longer) to achieve the same
result. This results in a “dilation” effect on the convergence
which requires additional timesteps (iterations) to converge to
the final correct result. On the other hand, frequency scaling
affects the most significant bits and introduces sudden and
abrupt changes in the error residue. However, the inherent
recovery mechanisms in the iterative SPICE simulator are
capable of tolerating a limited number of such events and still
provide the same solution while requiring additional iterations.
As mentioned earlier, this recovery is possible due to the
fact that the residue values are measured in each timestep
(iteration) and used to guide the next simulation step towards
convergence. A large value of residue will result in a suitably
proportional compensation operation in the algorithm. In both
cases, the resulting implementation cost (hardware required
to run SPICE) and runtime trade-off (more iterations at over-
clocked frequency) will determine efficacy of this approach.
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Circuit Matrix Size Sparsity (%) Ops.

Simucad [15]
mux8 42 15 626
ringosc 104 6.5 1.6K
dac 654 1.6 23.6K
ram2k 4875 0.3 1.0M

Clocktrees [13]
r4k 39948 0.01 515.5K

Wave-pipelined Interconnect [14]
20stages 11225 0.06 219.2K
40stages 22405 0.03 395.7K

TABLE I: Circuit Simulation Benchmark Matrices

IV. METHODOLOGY

As shown earlier in Figure 3, we use an FPGA im-
plementation that spatially implements all three phases of
SPICE in hardware. For our experimental purposes we use
the spice3f5 open-source package but replace the Sparse
1.3 package with the improved KLU matrix solver that is
optimized for circuit simulation. We use a diverse set of
benchmark circuit-simulation matrices, listed in Table I, in-
cluding RAM netlists (Simucad), clocktrees [13] (University
of Michigan), and wave-pipelined circuits [14] (UBC). Our
framework sweep of the design space across all benchmark
circuits and model parameters to measure the number of
SPICE iterations, error residue as well as extraction of the
raw voltage or current waveforms for inspection and analysis.
In our experiments, we analyze two key metrics of the SPICE
circuit simulator in presence of faults: iteration count growth
and error residue variation. All experiments are conducted at
the default/nominal abstol=10�12 and a reltol=10�3 so
solution quality is same across all cases.

Fault-injection experiments used to generate results in Fig-
ure 4 are based on double-precision multiplier and adder
circuits generated using Flopoco [16] v2.5.0. We use Altera
Quartus 12.0 toolflow running Ubuntu 12.04.3 64-bit Linux to
generate bitstreams. We generate random input distributions
for the hardware using the GNU Scientific Library (libgsl
v1.16). All measurements are run on the Terasic DE0 Nano
FPGA board supported by a TTi PL303QMD-P PSU unit

Fig. 8: Experimental Platform with the Terasic DE0 Nano
FPGA Board and TTi PL303QMD-P PSU controlled using a

an Ubuntu 12.04 64-bit VM
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Matrix A, Vector ~b[i-1]

Factorize
A = L · U       
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L · ~y = ~

b[i]
U · ~x[i] = ~y

Vector ~x[i]

Fig. 9: Error Injection Flow

that supports programmable voltage control. We show our
experimental setup in Figure 8. The input data supplied to
the hardware are extracted from the SPICE simulation runs.

The fault injection framework conducts a sweep of the
design space across all benchmark circuits, under the two
error models for overclocking and truncation. For each error
model we further do a sweep of the model parameter space
and measure the number of SPICE iterations, error residue as
well as extraction of the raw voltage or current waveforms
for inspection and analysis. As shown in Figure 9, both these
models focus on (1) the Model Evaluation phase through faults
introduced in matrix A and vector b as well as (2) the Sparse
Matrix Solve phase through faults injected in factored matrices
L and U .

V. EVALUATION

We now discuss the results of our fault analysis and quantify
overall speedups and improvements possible with our frame-
work.
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A. Understanding Impact of Frequency Scaling and Precision
Reduction on Convergence

In Figure 10(a), we show the impact of overclocking
(random bit-flipping in b

oc

positions with probability p

f

)
the SPICE simulation of a simple inverter circuit. As
expected, we observe large transient increases in residue in
certain iterations. However, the iterative numerical algorithms
used in SPICE allow a graceful recovery driving down the
residue to nominal levels at the expense of increased iterations.
Furthermore, for the benchmark set we considered, we could
only tolerate timing faults as high as 3 bit errors as MSB-
side errors can be critical. We observe a correlated increase
in recovery period as we inject more bit errors into the
simulation.
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Fig. 10: Overclocking and truncation of inverter

In Figure 10(b), we show the effect of varying truncation
width (b

tr

) on residue and iteration count of an inverter

simulation. Unlike the overclocking scenario, truncation sim-
ply trades off runtime (iterations) to achieve same result. Dif-
ferent benchmarks allow truncation to different extent before
suffering from simulation failure. As we drop more bits, the
simulation grows increasingly slower in a mostly monotonic
fashion (exception inverter behavior in Figure 11(b)).

In Figure 11(a), we show the effect of increasing timing
failure probability of single-bit errors on increase in SPICE
iteration count. As we increase fault probability, we observe
no change in the resulting iteration count up to an error rate
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Fig. 11: Impact of Optimizations on SPICE iterations

of p

f

⇡ 10�4. Above this error rate (10�4  p

f

 10�2)
we start noticing a initial increase in iteration count as SPICE
strives to converge until it eventual abandons attempts and
quits at larger error rates.

In Figure 11(b), we plot the effect of varying the number
of truncated bits on the number of iterations required for
convergence across a range of SPICE circuit simulations. As
we see, there is no perceptible change in iteration if we drop
 4 bits. Above 4 bits, the inverter iteration cost grows
⇡2⇥ the nominal but in most other larger benchmarks, the
growth in iteration count is merely 10–20%. All simulations
completed with correct results below 10 bits truncation.

B. Adaptive Overclocking

In Figure 12(a) and Figure 12(b), we consider the possibil-
ity of isolating the impact of fault injection on the Model
Evaluation and Sparse Matrix Solve phases independently.
We observe faster error recovery in the Model Evaluation
phase than the Sparse Matrix Solve phase e.g. for inverter,
with a p

f

=10�2, we observe a larger increase in overall
iteration count for injecting errors in the Sparse Matrix Solve
phase (⇡260 iterations) compared to Model Evaluation (⇡230
iterations).

C. Overall Acceleration

From the timing failure models shown in Figure 4 and
borrowing the area models developed in [2], we can esti-
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mate overall speedup of SPICE simulations. The overclocking
margins possible on an FPGA are quite large 2⇥ (⇡80MHz
for multiply) when compared against CAD timing analysis.
However, if we compare with the board-specific real-world
measurements the overhead gets reduced to ⇡50MHz. As a
result, the increase in runtime due to more iterations breaks
even with overclocking at around p

f

=10�2 (vs. CAD mar-
gins) and at around p

f

=10�4 (vs. board-specific margins).
e.g. p

f

=10�6 enables speedup of 1.9⇥ (vs. CAD margins)
or 1.1⇥ (vs. board-specific margins).

When considering precision reduction, we observe near-
linear decrease in hardware area and a proportional increase
in compute density of the FPGA SPICE accelerator. For our
benchmarks, we achieve a 1.2⇥ improvement for a 8-bit
reduction in precision (some cases tolerate as many as 10 bits).
This can be translated into either (1) use of cheaper FPGAs,
or (2) re-allocate unused logic to the Model Evaluation and
Matrix Solve phases on the same FPGA.

VI. CONCLUSIONS

Iterative numerical computation such as those used in the
SPICE circuit simulator are naturally resilient to faults. In this
paper, we show how to accelerate SPICE by an additional 1.5⇥
on top of the 3–10⇥ speedup already possible over modern
CPUs. We develop a fault injection framework that allows us
to model the effect of timing faults due to overclocking and
truncation errors due to precision reduction of the numerical

types used in SPICE. We observe that SPICE is resistant to
single-bit overclocking errors up to p

f

 10�4 with a graceful
degradation in runtime at higher error rates. Across all our
chosen benchmarks, we notice that SPICE can only safely
and reliably recover from three bit timing errors. The effect
of truncation on SPICE suggested a near-lossless behavior
under identical tolerance condition even when throwing away
as many as eight least significant bits.

In the future, we intend to include modeling for different
bit-specific timing failure probabilities as well as input data-
driven correlations to timing faults in our fault injection frame-
work. Additionally we will consider opportunity for dynamic
adaptive precision selection that could help reduce operating
energy margins through clock gating bit-sliced portions of the
datapath. We also seek to expand the scope of applications
that can benefit from such improvements.
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