
Timing Fault Detection in FPGA-based Circuits

Edward Stott, Joshua M. Levine and Peter Y.K. Cheung
Imperial College London

London, UK
{ed.stott;josh.levine05;p.cheung}@imperial.ac.uk

Nachiket Kapre
Nanyang Technical University

Singapore
nachiket@ntu.edu.sg

Abstract—
The operation of FPGA systems, like most VLSI technology,

is traditionally governed by static timing analysis, whereby
safety margins for operating and manufacturing uncertainty
are factored in at design-time. If we operate FPGA designs
beyond these conservative margins we can obtain substantial
energy and performance improvements. However, doing this
carelessly would cause unacceptable impacts to reliability,
lifespan and yield — issues which are growing more severe
with continuing process scaling.

Fortunately, the flexibility of FPGA architecture allows us to
monitor and control reliability problems with a variety of run-
time instrumentation and adaptation techniques. In this paper
we develop a system for detecting timing faults in arbitrary
FPGA circuits based on Razor-like shadow register insertion.
Through a combination of calibration, timing constraint and
adaptation of the CAD flow, we deliver low-overhead, trust-
worthy fault detection for FPGA-based circuits.

I. INTRODUCTION

Traditionally, FPGA designers assume that their circuit
behaviour is fully deterministic and highly reliable. To
respect this usage model, FPGA CAD tools are based on
conservative timing models which guarantee safe operation
across all manufacturing, configuration and operating cir-
cumstances. This prevents us from using individual chips
at their optimum performance and batches of chips at their
mean performance.

Unlocking this potential in practice is not straightforward.
Some existing techniques attempt to measure performance
per-device or even continuously in the field. This can elim-
inate some margins, especially those that compensate for
static or slowly-varying phenomena. However, determining
what margins should remain in place is complex as fault-
free operation is still required and allowances must be
made for any inaccuracy and reliability of the measurement
system. Another approach is to permit faults but control
their impact. A number of high-level fault detection and
correction systems exist but it is challenging to automate
their application to arbitrary circuits, especially without
incurring large overheads.

Our work follows the approach of Razor [1], where
fault detection takes place at the register level and faults
are corrected through pipeline stalls or bubble insertion.
Razor was designed for use in microprocessors but it has

Din

{C1 . . . Cn}
K

logic

S X F

CLK
delay tφ

SCLK
Fout

Dout

Timing fault detector (TFD)

Figure 1: Timing fault detection using a shadow register

never achieved commercial success due to the difficulty
and overhead of integrating fault correction into complex,
high frequency instruction pipeline logic. Our approach is
to integrate Razor-like fault detection into an FPGA design
flow so that in can be applied automatically to arbitrary
designs. Since FPGAs operate at moderate clock frequencies
and use function-specific pipelines with simple control logic,
we hope to achieve performance benefits without the design
challenges experienced in CPUs.

Error detection is only worthwhile if its area, timing and
power overhead is outweighed by the benefits of operating
beyond normal operating limits. Fortunately, virtually all
real-world FPGA designs contain significant amounts of
unallocated logic, routing and clock resources. Thanks to the
flexibility of the FPGA architecture we can modify a circuit
post-placement to insert shadow registers for monitoring
critical paths post-compilation. Such opportunities are not
available in ASICs without significant incremental cost.

The key contributions of this paper include:
• Design of a timing fault detection scheme for FPGA

architectures using shadow register insertion.
• Development of a CAD flow and calibration system for

automated addition of timing fault detectors to arbritary
FPGA applications.

• Development of an in-situ demonstration platform that
allows us to explore the fault behaviour of real circuits.

II. FPGA TIMING FAULT DETECTION

A. Fault detection cells

Timing fault detection is based on the addition of fault
detector cells (TFDs) as illustrated in Fig. 1. A TFD detects



CLK

KD

SCLK

SD

X

Fout

tSU

tφ tH

tCLK

1 2 3 4

Tn Tn+1 Tn+2

Figure 2: Timing diagram for fault detection

timing faults at a circuit register K that lies at the end
of one or more timing paths originating at source registers
{C1 . . . Cn}. The TFD consists of a shadow register S, a
comparator X and a fault latch F . S samples the same data
as K but on a clock SCLK that lags the main system clock
CLK by tφ. Any data that arrives after K samples but before
S samples will cause a discrepancy between the two registers
that is detected by comparator X . F latches the discrepancy
signal and resynchronises it with the main clock domain,
indicating whether a timing fault has occurred.

Fig. 2 gives an example timing diagram for the system.
A transition event, initiated at 1�, takes tSU to propagate to
the data input of K. In this case, tSU is longer than tCLK,
the clock period. Hence the input to K has not stabilised by
2�, the following clock edge. 3� is the rising edge of the

delayed SCLK. By this time, the data input to register S
has stabilised and so this register samples correctly. At this
point comparator X detects the discrepancy between the two
registers and the fault condition is registered by F at 4�.

B. Timing Constraints

For the system to operate correctly a number of timing
constraints must be enforced:

Hold timing: The system is dependent on shadow register
S sampling correct data on every clock cycle. The shadow
clock phase shift tφ ensures that it is unaffected by a long
tSU, but this shift also makes S susceptible to hold time
violation. The shadow register hold delay th is illustrated
on Fig. 2 — it is the time for which SD is stable following
a clock edge. tφ must be less than this amount or S will
sample activity from clock cycle Tn+1 while K samples
cycle Tn. We must set a minimum th constraint for all
registers K with attached TFDs. Fortunately, FPGA CAD
tools can meet such constraints by inserting delays into
routing segments as necessary.

TFD delay offset: As indicated in Fig. 2, data does not
arrive simultaneously at K and S. Since TFDs are added
after main circuit placement and routing are fixed, data
will normally arrive later at S than K. This difference is

readily compensated for by adjusting the shadow clock lag
tφ. However, if there is too much variation in the TFD delay
offsets in a single clock domain then it will not be possible
to select a single tφ that simultaneously meets setup and
hold constraints at all TFDs. To avoid this problem, timing
constraints must be placed on SD to bound the offset to a
fixed range. The upper bound must be large enough for the
tool to find a compliant placement for all the TFDs, while
the lower bound is met by tuning routing delay.

Fault register timing: The components of the TFD may
not be located near to each other due to resource availability
or downstream timing constraints. Since tφ is not set at
compile time, the CAD tool must be given constraints for
the maximum delay between S and F , setting an upper limit
for tφ.

C. TFD insertion

TFD insertion is based on an important parameter: the
critical delay margin (CDM). The CDM selects which circuit
registers have TFDs attached. A register has a TFD attached
if, according to timing analysis, tSU > tcrit(1−CDM), where
tSU is the setup delay for the register under consideration
and tcrit is the setup delay of the critical path for that clock
domain. For timing fault detection, CDM is used to ensure
that all the registers which could suffer a timing fault are
monitored. This relates directly to the desired operating limit
— for example if the circuit is to be clocked at up to 120%
of fmax, then a CDM of 0.2 is necessary.

There is an interesting discussion about what is meant by
fmax in this analysis. In the absence of any other information,
the figure given by the timing model must be used. If we
want to operate the circuit far above this point the CDM, and
hence the area overhead of the TFDs, will be large. But if
we know that the circuit can operate at a certain empirical
fmax, which is greater than the timing model predicts, we
can operate at the same frequency with a lower CDM. This
means that timing fault detection is effectively replacing
operating margin with an area overhead margin in the form
of a conservative CDM figure.

III. EXPERIMENTAL METHOD

A. Compile Flow

Error detection is added to FPGA designs with an au-
tomated compile flow. The flow has two goals: first, it
should add error detection circuitry to arbitrary application
circuits without manual intervention, and second, it should
not perturb the application circuitry such that its timing is
adversely affected.

A block diagram of the process is given in Fig. 3. It
is based on a flow developed for adding shadow registers
for measuring timing slack[2]. First, the application HDL
is compiled as-is to produce a technology-mapped netlist,
a timing report and a placement and routing. The netlist is
modified to add TFDs, using the information in the timing

2



Application HDL

Compile bare
application

Identify critical
registers

Calculate
timing

constraints

Add TFDs
to netlist

Final compile

Bitstream

Calibration

Operating parameters

P & R constraints netlist

netlist

timing report

timing constraints

Figure 3: Compile flow for adding timing error detection

report to identify where they should be attached. Then it is
recompiled with placement, routing and timing constraints
derived from the original compilation and timing constraints
as described in the previous section. Once a bitstream is
produced, it is loaded onto the target FPGA and calibrated.

B. Calibration

To use error detection safely it is important to know
certain timing parameters about the design:

1) Shadow register hold slack tH. This determines the
maximum shadow clock lag tφ since tφ < tH

2) Shadow register setup delay tSU at fmax. This governs
the maximum overclocking factor by placing a lower
limit on tclk, since tclk + tφ > tSU.

Unfortunately, upper-bound and lower-bound timing models
differ by a factor of around 2× and they are not accurate
enough to produce a tightly bounded delay report. However,
the shadow register hardware is capable of measuring the
necessary timing parameters in an offline calibration process
based on frequency and phase sweeps.

To measure tH, the phase lag of the shadow clock is
increased until discrepancies are detected between main and
shadow registers and at this point tH = tφ. tSU can be
measured in a similar way, this time the shadow clock is
advanced with respect to the main clock until discrepancies
are detected and tSU = tCLK − tφ.

C. Test Platform

Experiments are performed on an FPGA test platform
based on a 65nm Altera Cyclone IV FPGA, shown in
Fig. 4. In the FPGA, the circuit-under-test is connected to
block RAMs to provide arbitrary test stimulus and record
the primary and error outputs. Clock frequency is precisely
adjustable thanks to the flexible clock generator built into

FPGA Board Power Supply

Heat Exchanger

Thermoelectric
Heat Pump

Figure 4: Test Rig with the Terasic DE0 Nano FPGA
Board

Table I: Benchmark characteristics after TFD insertion
with CDM= 0.1

Name TFDs Logic Elements fsta

Δ % MHz %

fpexp32 19 38 +5.0% 76.1 -6.0%
fpexp64 39 78 +2.6% 84.0 -0.1%
fplog32 44 88 +5.1% 95.6 -2.7%
fpmult32 24 48 +14% 135 -4.9%
dct1d 20 40 +7.7% 169 +1.8%
filter 13 26 +4.3% 104 +0.0%

TFD: Timing fault detector

the FPGA. Voltage is set with an external power supply and
temperature is controlled with a thermoelectric heat pump.

D. Benchmarks

We envisage the most powerful implementations of error-
managed computing to be based on systems of asyn-
chronous, independently-controlled components. Hence, we
have tested our technique on a range of building-block
operators varying in size from 300-3000 LEs. Some of
the benchmarks use embedded block RAM and multiplier
blocks.

IV. RESULTS

A. Benchmark compilation

Each of the benchmarks were compiled with shadow
register insertion. The results are given in Table I with the
area and timing model performance overheads. Overheads
are quoted for a CDM of 0.1. All benchmarks were tested
with appropriate random input vectors, though changing the
input distribution was found to make little difference to the
fault behaviour in practice.

B. Fault detection capability

To test the effectiveness and utility of timing fault de-
tection we compared faults detected by TFDs with traces
recorded from the circuit outputs by a block RAM. Analysis
of the circuit netlist provides the pipeline latency between
each RUM and the output, and this allows us to align
detected faults with output errors. A frequency sweep is

3



200 210 220 230 240 250 260
10

−4

10
−3

10
−2

10
−1

10
0

Clock frequency (MHz)

Fa
ul

t r
at

e

 

 

Detected faults

False faults

Missed faults

Figure 5: Faults detected, falsely detected and missed,
versus clock frequency in fpmult32

200 210 220 230 240 250 260 270
10

−4

10
−3

10
−2

10
−1

10
0

Frequency(MHz)

M
is

se
d 

fa
ul

t r
at

e

CDM = 0.01, 3 TFDs
CDM = 0.02, 5 TFDs

CDM = 0.05, 10 TFDs

CDM = 0.1−0.5, 19−108 TFDs

Figure 6: Effect of varying the critical delay margin
(CDM) on the rate of missed faults in dct1d

conducted to overclock the circuit to beyond the point of
timing failure.

The results of this analysis in fpmult32 (single-
precision multiplier) is shown in Fig. 5. With an 8kWord
input vector set taken randomly from a Gaussian distribution,
no faults at all occur up to around 200MHz — the fmax
given by the timing tool is 142MHz. From there, the detected
fault rate increases with frequency. These are faults detected
by the shadow registers which correspond with errors in
the output trace. At higher frequencies, missed faults are
recorded — these are errors in the output trace that were
not picked up by the TFDs. These can occur if timing faults
are introduced at registers which are not monitored, or if the
clock period becomes so short that timing faults occur at the
shadow registers.

Another possibility for the missed faults is metastability.
When timing faults occur there is the potential for registers
to enter a metastable state. If the metastable state persists
long enough then downstream registers can sample non-
deterministic data values and errors can be introduced.

Work is ongoing to establish the severity of metastability
in our system. A number of mitigation measures could be
investigated if too many missed faults are occurring.

The final class of faults recorded are false faults. These
are detected timing faults with no corresponding output
error. They can occur simply because the fault is masked
by downstream logic and does not propagate to the outputs.
Other causes include insufficient shadow register hold delay
and metastability. False faults do not affect the correctness
of the circuit output, but where fault correction is employed
they will incur an unnecessary overhead.

Fig. 6 shows the result of an experiment to see how the
rate of missed faults varies with the CDM. Curves are plotted
for four different CDM parameters, which result in TFD
counts of between 3 and 108 in the dct1d benchmark.
Below 0.1, the CDM value has a strong impact on the missed
fault rate. However, above 0.1 no significant difference is
observed. This pattern is also observed in other benchmarks
and for this reason CDM is set to 0.1 elsewhere in this work.
Note that the first detected faults in this benchmark occur at
205MHz, meaning that with a CDM below 0.05 faults are
missed straight away but when CDM≥ 0.1 peak throughput
can be reached with no missed errors.

V. CONCLUSIONS

In this paper, we describe a technique for shadow register-
based timing fault detection in arbitrary FPGA circuits. We
have developed an automated flow for adding the necessary
circuitry with low overhead and without disturbing the
original design. Our flow is capable of managing the tricky
timing constraints and includes a self-calibration process
for optimising operating parameters. We tested the system
on a range of benchmarks to check its reliability and
quantify overheads. Coupled with a suitable fault correction
system, we envisage that timing fault detection will be just
one component of a cross-layer performance and reliability
management stack.

REFERENCES

[1] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge.
Razor: A low-power pipeline based on circuit-level timing
speculation. In Proc. of the IEEE/ACM Int. Symp. on Mi-
croarchitecture (MICRO), 2003.

[2] J. M. Levine, E. Stott, G. A. Constantinides, and P. Y. K.
Cheung. SMI: Slack measurement insertion for Online Timing
Monitoring in FPGAs. In Proc. of the Int. Conf. on Field
Programmable Logic and Applications (FPL), 2013.

This work was supported by the Engi-
neering and Physical Sciences Research
Council [grant numbers EP/K034448/1,
EP/I012036/1, EP/H013784/1]. See
www.prime-project.org for more
information about the PRiME programme.

4


