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ABSTRACT

Communication-avoiding linear algebra algorithms with low
communication latency and high memory bandwidth require-
ments like Tall-Skinny QR factorization (TSQR) are highly
appropriate for acceleration using FPGAs. TSQR paral-
lelizes QR factorization of tall-skinny matrices in a divide-
and-conquer fashion by decomposing them into sub-matrices,
performing local QR factorizations and then merging the
intermediate results. As TSQR is a dense linear algebra
problem, one would therefore imagine GPU to show better
performance. However, the performance of GPU is lim-
ited by the memory bandwidth in local QR factorizations
and global communication latency in the merge stage. We
exploit the shape of the matrix and propose an FPGA-based
custom architecture which avoids these bottlenecks by using
high-bandwidth on-chip memories for local QR factoriza-
tions and by performing the merge stage entirely on-chip to
reduce communication latency. We achieve a peak double-
precision floating-point performance of 129 GFLOPs on Virtex-
6 SX475T. A quantitative comparison of our proposed de-
sign with recent QR factorization on FPGAs and GPU shows
up to 7.7× and 12.7× speed up respectively. Additionally,
we show even higher performance over optimized linear al-
gebra libraries like Intel MKL for multi-cores, CULA for
GPUs and MAGMA for hybrid systems.

1. INTRODUCTION

QR factorization is a fundamental problem in linear alge-
bra where an m×n matrix A is factorized into an m×m or-
thogonal matrix Q and an m×n upper triangular matrix R.
Of particular interest is the QR factorization of tall-skinny
matrices where m�n and the aspect ratio can be 5 to 1,
100 to 1 or in some cases even 100,000 to 1. Matrices
with such extreme aspect ratios exist naturally in many prac-
tical applications of QR factorization. These include least
squares data fitting [1], stationary video background sub-
traction [2] and importantly s-step Krylov methods [3] and
block iterative methods [4] used for solving linear systems
and eigenvalue problems. These applications demand high-
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Fig. 1. Performance Scaling Trends for double-
precision QR Factorization (No. of rows m = 6400).
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Fig. 2. Performance Scaling Trends for double-
precision QR Factorization (No. of columns n = 51).

performance tall-skinny QR factorization. Subtracting the
stationary video background from a 10-second surveillance
video, for example, requires over a teraflop of computa-
tion [2].

Traditionally, in high performance linear algebra libraries
like LAPACK and Intel MKL, QR factorization is performed
using Block Householder QR [5]. Block Householder QR
comprises two kernels, a communication-bound panel fac-
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torization with dominant matrix-vector multiplications fol-
lowed by a compute-bound trailing matrix update with dom-
inant matrix-matrix multiplications. While most of the time
is spent in trailing matrix update for square matrices, it is
the sequential panel factorization which dominates in case of
extremely tall-skinny matrices. Recently, Demmel et.al. [6]
proposed Tall-Skinny QR (TSQR), a communication-avoiding
algorithm for tall-skinny matrices which parallelizes the panel
factorization by decomposing it into tiles, performing local
QR factorization on tiles using Householder QR and then
merging the results (see Section 2.1). The key idea is to
do less communication at the cost of more computations be-
cause of the ever increasing gap between advancements in
compute (GFLOPs) and communication (bandwidth and la-
tency) capabilities of modern architectures.

This paper presents a custom architecture for TSQR which
bridges the performance gap that still exists between the par-
allel potential available in TSQR and that which has been ex-
ploited by mapping on variety of parallel architectures like
multi-cores [7], Graphical Processing Units (GPUs) [8] and
Field Programmable Gate Arrays (FPGAs) [9]. In order to
motivate, we show the performance scaling trends for QR
factorization as a function of matrix width in Fig. 1. We ob-
serve that as the matrix gets skinny, the proposed architec-
ture clearly outperforms the existing implementations and
the performance improvement is even more pronounced for
extremely tall-skinny matrices as shown in Fig. 2. Although
TSQR is a dense problem suited to GPUs, the performance
is limited due to memory-bound Basic Linear Algebra Sub-
routines (BLAS) Level 2 operations in local QR factoriza-
tions (see Section 2.2) and the communication latency of
the global memory used in the merge stage. We show
how we can exploit fine-grain parallelism in BLAS Level 2
operations by using high-bandwidth on-chip memories and
deeply-pipelined floating-point cores (see Section 4.3). We
additionally perform the merge stage entirely on-chip to avoid
communication latency (see Section 4.4).
The key contribution of this paper are thus:

• A high-throughput deeply-pipelined architecture for
Householder QR to perform local QR factorizations.

• Mapping of TSQR on the same architecture using pipeline
parallelism and avoiding communication latency by
merging the intermediate results entirely on-chip.

• Quantitative comparison with optimized linear alge-
bra libraries showing a 21.7× - 50.2× (31.5× geo.mean)
over Intel MKL, 7.28× - 36.7× (16× geo.mean) over
MAGMA [10] and 52× - 258× (117× geo.mean) over
CULA [11].

• Quantitative comparison with a custom architecture
for FPGA proposed in [9] and a highly optimized GPU-
based implementation in [8] showing a speedup of
0.57× - 7.7× (2.2 × geo.mean) and 3.38× - 12.70×
(6.47× geo.mean) respectively.

2. BACKGROUND

2.1. Tall-Skinny QR

The Tall-Skinny QR (TSQR) factorizes the matrix in a divide-
and-conquer fashion with optimal communication between
processing elements [6]. It comprises a local QR stage fol-
lowed by a merge stage as shown in Fig. 3 (a) and 3 (b,
c & d) respectively. In the local QR stage, the input ma-
trix A∈ Rm×n is divided into small tiles Ai ∈ RbR×n where
bR is the number of rows in the tile (bR = 2n for binary
tree) and there are L = d mbR e tiles in total. These tiles may
then be factorized in parallel using various techniques such
as Householder QR [4]. In the merge stage, the R ∈ Rn×n

factors of local QR factorizations are stacked and factorized
in a tree fashion. We get a final R factor in Fig. 3 (d) and a
series of small Vs which, if needed, can be used to explicitly
compute the orthogonal matrix Q.
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Fig. 3. Tall-Skinny QR Facotorization [6], (a) local QR
stage. (b, c & d) merge stage.

The QR factorizations in local QR and merge stages can
be performed by various methods including Modified Gram-
Schmidt (MGS), Givens rotations, Cholesky QR and House-
holder QR [4]. We pick Householder QR due to its high
numerical stability [6].

2.2. Householder QR

In Householder QR, a matrix A ∈ Rm×n is factorized as
R = Qn···Q2Q1A where Q = Q−11 ···Q−1n−1Q−1n and Qk =(
Ik−1 0
0 Hk

)
. The matrix Hk is the Householder transfor-

mation matrix and is computed as Hk = Ik − τkvkvTk where
vk is called the Householder reflector for column k having
length m−k−1. The computational complexity of House-
holder QR is O(mn2) and is primarily dominated by BLAS
Level 1 and 2 operations as shown in Algorithm 1.
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Algorithm 1 Householder QR [4]
– Notations –
– A(k:m, j) represents a column vector starting from row k to rowm –
– xk represents kth column vector –
– xk(i) represents element i in vector xk –
– ddot(x, y, n) represents xT y for vectors having length n –
– axpy(α, x, y, n) represents y← αx + y with x, y of length n –

Require: A matrix A ∈ Rm×n

for k = 1 to n− 1 do
– Generate Householder reflector –
xk := A(k : m, k) (hqr1)
d1 := ddot(xk , xk ,m− k − 1) (hqr2)
d2 :=

√
d1 = ‖xk‖2 (hqr3)

vk := xk (hqr4)
vk(1) := xk(1) + sign(xk(1))d2 (hqr5)
d3 := ddot(vk , vk ,m− k − 1) (hqr6)
τk := −2

d3
(hqr7)

– Update trailing columns of A –
for j = k to n do

yj := A(k : m, j) (hqr8)
d4 := ddot(yj , vk ,m− k − 1) (hqr9)
d5 := τkd4 (hqr10)
y
′
j := axpy(d5, vk , yj ,m− k − 1) (hqr11)

A(j : m, j) : = y
′
j (hqr12)

end for
end for
return The upper triangular part of A containing the matrix R∈Rn×n and matrix
V ∈ Rm×n where individual columns are indexed vk and a vector tk ∈ Rn×1

containing τk values.

3. RELATED WORK

We survey recent work on tall-skinny QR factorization on
parallel architectures like multi-cores [7], GPUs [8] and FP-
GAs [9]. While the performance of multi-cores is good for
square matrices (90 GFLOPs with 58.8% efficiency), it de-
creases signficantly for tall-skinny matrices (2 GFLOPs with
1.2% efficiency) . This is because of the dominant matrix-
vector multiplications in Householder QR (inner loop of Al-
gorithm 1) which are less efficient on multi-cores due to low
memory bandwidth. We observe 7× performance improve-
ment with GPU for tall-skinny matrices because they fine-
tuned the matrix-vector multiplication by keeping the ma-
trix inside the register file. However, with a limited number
of registers per multiprocessor inside GPU, there are fewer
threads to saturate the floating-point units. Additionally, the
intermediate results are merged using global memory lead-
ing to high communication latency. We therefore see an
extremely low efficiency for tall-skinny matrices, e.g. 2.8%
efficiency on Nvidia C2050 for 6400×51 matrix. We dis-
cuss this in more detail in Section 6.2. We observe low
performance with previous FPGA-based QR factorization
as the architecture is optimized for large square matrices.
Table 1 summarizes the performance of different implemen-
tations with the year, method, GFLOPs and the efficiency
for square and tall-skinny matrices. We use 6400×6400 as
the square matrix in order to compare against the results re-
ported in [7] and 6400×51 as the tall-skinny matrix since
51 is the maximum number of columns in our design as dis-
cussed in Section 5.

Table 1. Comparison of QR Factorization (Square:
6400×6400, Tall-Skinny (TS): 6400×51)

Ref. Year Method Device Matrix GFLOPs Efficiency
Structure (% Peak)

[8] 2010 CAQR Nvidia Square 104.7 20.3%
C2050 TS 14.8 2.8%

[7] 2010 Tile Intel Square 90 58.8%
CAQR E7340 TS 2.0 1.2%

[9] 2011 Tile Virtex-6 Square 24 11%
CAQR LX760 TS 12 7%

This 2012 TSQR Virtex-6 TS 62 36%
Paper SX475T

4. PROPOSED ARCHITECTURE

4.1. Parallelism

4.1.1. Coarse-Grain Parallelism in TSQR

In TSQR, tiles in the local QR stage and within each merge
stage can be factorized in parallel as shown in Fig. 3.

4.1.2. Fine-Grain Parallelism in Householder QR

We show the data-flow graph (DFG) of Algorithm 1 in Fig. 4.
From the DFG, we observe that the main computationally
extensive parts are the BLAS Level 1 ddot operations, i.e.
dot products xTk xk (hqr2), vTk vk (hqr6) and yTj vk (hqr9)
where k≤j≤ n. ddot operation has a sequential latency of
O(n) but it can be implemented as a tree-reduction circuit
with a O(log n) latency. Additionally, the inner loop of Al-
gorithm 1 can be fully unrolled to compute yTj vk (hqr9) in
parallel for different values of j.
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There is another BLAS Level 1 operation axpy, i.e.
multiplication of vector by a scalar followed by a vector by
vector addition operation (hqr11). axpy has a sequential
latency of O(n) but since it is a data-parallel operation it
can be fully unrolled to complete with O(1) latency.
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4.2. Work vs. Critical Latency

We now explore the gap between the parallelism that is avail-
able and the parallelism that can be exploited with limited
resources. The latency of the critical path of fully-parallel
TSQR is given by Eq. (1) and (2). TTSQR contains a single
Thqr term for local QR factorization plus dlog2Le×Thqr for
all the merge stages (assuming all QR factorizations in local
QR stage and within each merge stage are performed in par-
allel). Thqr represents the latency of Householder QR from
Algorithm 1. Referring to Eq. (2), c1dlog2ne + c2 is the
latency of the critical path shown in Fig. 4, dlog2 ne is the
latency of ddot and c1, c2 are constants representing laten-
cies of the double-precision floating-point operators (c1 = 24
and c2 = 237 based on latency values from Xilinx Coregen
Library). n − 1 corresponds to the iterations of the outer
loop of Algorithm 1.

TTSQR = (dlog2Le+ 1)Thqr = (dlog2
m

2n
e+ 1)Thqr (1)

Thqr = (n− 1)(c1dlog2ne+ c2). (2)

0.005

0.015

0.045

0.125

0.280

1.330

6.550

33.37

200 400 800 1600 3200 6400
0.005

0.015

0.045

0.125

0.280

1.330

6.550

33.37

F
lo

at
in

g
-P

o
in

t 
O

p
er

at
io

n
s 

(m
il

li
o
n
)

L
at

en
cy

 (
m

il
li

o
n
 c

y
cl

es
) 

Number of Rows (m) 

Ο(m)

Ο(logm)

Work
Critical Path Latency
Proposed Latency

Fig. 5. Work vs. Critical Latency (n = 51).

We show the work (2mn2 − 2
3n3 FLOPs) vs. critical la-

tency of fully-parallel TSQR in Fig. 5. From the figure we
observe that there is a considerable gap between latency of
sequential and fully-parallel implementation of TSQR e.g.
a 278× speed up can be achieved for a 6400×51 matrix
and this gap increases with the increase in the height of
the matrix. We also plot the proposed latency and show
that it approaches critical latency of the fully-parallel imple-
mentation. We now discuss the parallel architecture which
achieves the proposed latency.

4.3. Parallel Architecture for Householder QR

Before introducing our proposed design, we briefly survey
a few architectures already presented for Householder QR.
Systolic architecture is introduced in [12] for QR factoriza-
tion in real-time signal processing applications having very

small matrices (n ∼ a few 10s). Recently, Tai et.al. [9]
presented an architecture comprising linear array of process-
ing elements (PEs) for the Householder QR targeting large
square matrices. Each PE is responsible for computing an
iteration of the outer loop in Algorithm 1. Starting from the
first column, first PE of the linear array computes the House-
holder reflector and then performs the trailing update on the
second column. Meanwhile, first PE is performing trailing
update on rest of the columns, this second column is then
transferred to the second PE for repeating the same calcula-
tions. Hence, this architecture only exploits fine-grain par-
allelism within a single tile without paying attention to the
coarse-grain parallelism as discussed in Section 4.1.1. Our
architecture is novel in a sense that it exploits both coarse-
grain as well as fine-grain parallelism. We now discuss how
we exploit the fine-grain parallelism in Householder QR and
leave the coarse-grain parallelism until Section 4.4.

The computational complexity of Householder QR is
O(mn2) with an O(mn) memory operations for an m×n
input matrix. We design our architecture to exploit this
arithmetic intensity. As identified in Section 4.1.2, there
are two main computational blocks in Householder QR, i.e.
ddot and axpy. We take advantage of high on-chip mem-
ory bandwidth of the FPGA (∼20 TB/s) and use a deeply-
pipelined tree-reduction circuit for ddot which is capable of
computing a new dot product at every clock cycle. We share
the circuit for computing dot products like (hqr2), (hqr6)
and (hqr9). We store the matrix Ai in a banked row fash-
ion and feed the vectors xk or yj to the dot product circuit
during different phases of Algorithm 1. We use a parallel-in
parallel-out shift register to store vk. We completely unroll
axpy operation and use an array of multipliers and adders to
perform this operation in parallel. The parallel architecture
is shown in Fig. 6 where the number of floating-point units
grow linearly as given by Eq. (3).

Total FP Units = 8n+ 3. (3)

We exploit all the fine-grain parallel potential available
within Householder QR except that we do not unroll the
inner loop of Algorithm 1 due to high memory bandwidth
requirements and instead, use pipelining to feed a new dot
product operation in each clock cycle to perform yTj vk (hqr9)
for different values of j. The latency of QR factorization
of Ai∈R2n×n using the proposed architecture is given by
Eq. (4).

T
′
hqr =

n(n + 1)

2
+ (n− 1)(c1dlog2ne+ c2). (4)

Comparing Eq. (2) and (4), we can see that the term n(n+1)
2

is introduced due to pipelined implementation of inner loop
of Algorithm 1.

446



Householder
QR

Pn

Dense
Matrices

b
R

sel0

sel2b
R

b
R

x
k
 /y

j

P Sub-matrices  of A
from
External Memory

y'
j

b
R 

x 1

b
R 

x 1

sel1

Pn

Pn

Dense
Matrices

Triangle
Matrices

FIFOs

Parallel
In

Parallel
Out

Register

sel3 DDOT CIRCUIT

X
X +

X
X +

+

+ +
/

-2

τ
k

+/-

sign(x
k
(1))

x
k
(1)

sel7

sel6

sel5

x
k
 or y

j

sel4

xT
k
 x

k

vT
k
 v

k

yT
j
 v

k

b
R 

x 1

d
2

√

Pn

b
R 

x 1

v
k 
/ x

k

FIFO

X X
X

X

X
+
+

+

+

AXPY CIRCUIT

d
4

d
5

v
k

τ
k v

k

y'
j

Fig. 6. Parallel Architecture for TSQR, Dense Matrices memory stores Ais whereas Triangle Matrices memory stores inter-
mediate R factors.

4.4. Pipeline Parallelism for Mapping TSQR

For QR factorization of a single tile, the deeply-pipelined
nature of the dot product circuit in Fig. 6 leads to high through-
put but also considerable latency. As a result, the pipeline
will be underutilized if only single tile is factorized, there-
fore, we exploit this mismatch between throughput and la-
tency to factorize multiple independent tiles within TSQR.
The initiation interval of this circuit is 2(n−1) + n(n+1)

2 clock
cycles (for hqr2, hqr6 and inner loop of Algorithm 1 con-
taining hqr9) after which a new QR factorization can be
streamed into this circuit. The pipeline depth (P) of the
circuit is given by Eq. (5) which indicates how many QR
factorizations can be active in the pipeline at one time.

P(n) =

⌈
n(n+1)

2 + (n− 1)(c1dlog2ne+ c2)

2(n− 1) + n(n+1)
2

⌉
. (5)

We map the QR factorizations in local QR and merge
stages of the TSQR on the same architecture as a set of P
Householder QR factorizations as shown in Fig. 7. The
intermediate R factors are stored on-chip, therefore, there is
no global communication involved in the merge stage. The
total latency of TSQR is then calculated as

T
′
TSQR = T

′
hqr

dlog2 Le∑

i=0

⌈
L

2iP

⌉
. (6)

Referring to Eq. (6), each term corresponds to latency of a
single TSQR stage shown in Fig. 3.
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4.5. I/O Considerations

We assume that the matrix is stored in an off-chip memory
under supervision of a host CPU just like in the GPU case.
We factorize P dense sub-matrices from the double-buffer
and P sub-matrices from Triangle Matrices memory before
we require a new set of P sub-matrices from the off-chip
memory. Therefore, our I/O time to fetch P sub-matrices is
double the computation time for QR factorization of P such
sub-matrices.

I/O bandwidth =
64P(3bRn− n2 + n)

2P(2n− 2 + n(n+1)
2 )

bits/cycle. (7)

Referring to Eq. (7), we require 64P(3bRn− n2 + n) bits to
be exchanged between the FPGA and the off-chip memory
where the bRn term comes from the size of input sub-matrix,
2bRn − n2 + n from the vk vectors and τk values for ex-
plicit formation of Q matrix. The latency of factorizing P
sub-matrices after matching the pipeline depth is P(2n − 2
+ n(n+1)

2 ) cycles and it is twice of this time that is available
to load new set of P sub-matrices. Given the maximum value
of bR (2n for binary tree) to be 102 resulting into maximum
value of n = 51 (see Section 5), we find the I/O require-
ment to be 11.53 GB/sec (∼30% of Virtex-6 SX475T based
MAX3 card from Maxeler Technologies [13]).

5. EVALUATION METHODOLOGY

The experimental setup for performance evaluation is sum-
marized in Table 2. We use GFLOPs as the metric for
comparing performance on different architectures. We use
highly optimized linear algebra libraries for GPU (CULA),
multi-cores (Intel MKL) and hybrid systems (MAGMA).
We implement the proposed architecture in VHDL using
double-precision floating-point cores and synthesize the cir-
cuit for Xilinx Virtex-6 SX475T FPGA, a device with the
largest number of DSP48Es and a large on-chip capacity.
The placed and routed design has an operating frequency of
315 MHz. We find out the maximum value of bR to be 102
before 90% of the Slice LUTs, 96% of DSP48Es and 77%
of BRAMs are utilized. Although, m can take on any value
only limited by off-chip memory, bR limits the maximum
value of n because bR should be greater than or equal to n
(in our design bR = 2n for binary tree). The value of n
is appropriate for tall-skinny QR applications where it is on
the order of a few 10s. The proposed design needs to be
re-synthesized only if the input matrix size changes in the
column dimension (n).

6. RESULTS

We now present the performance achieved by our FPGA de-
sign, compare it with optimized QR routines from linear al-
gebra libraries and the state of the art in FPGAs, multi-cores

Table 2. Experimental Setup.
Platform Peak GFLOPs Compiler Libraries Timing

Double-Precision
Intel Xeon 63.9 [14] gcc Intel MKL PAPI
X5650 (4.4.3(-O3)) (10.2.4.032) (4.1.1.0)
(32 nm)
Nvidia GPU 515 nvcc CULA-R11 cudaEvent-
C2050 MAGMA-rc5 Record()
(40 nm)
Virtex-6 171 [15] Xilinx ISE Xilinx ModelSim
SX475T (10.1) Coregen
(40 nm)

and GPU and then discuss the underlying factors that ex-
plain our results.

6.1. FPGA Performance Evaluation

The peak and sustained double-precision floating-point per-
formance of the FPGA is given by Eq. (8) and Eq. (9) re-
spectively.

Peak Throughput = 8n+ 3 FLOPs/cycle. (8)

Sustained Throughput =
2mn2 − 2

3 n3

T
′
TSQR

FLOPs/cycle (9)

where 8n + 3 is the total number of floating-point units in
the proposed design and 2mn2 − 2

3n3 represents FLOPs in
TSQR. For an operating frequency of 315 MHz, the peak
performance of our design for maximum value of n = 51
is 129 GFLOPs and it is observed that the efficiency of the
proposed architecture is greater than 80% for tall-skinny ma-
trices.

6.2. Comparison with GPU

We compare our work against a custom implementation of
QR factorization using communication-avoiding QR (CAQR)
algorithm on Nvidia C2050 Fermi [8]. In this implemen-
tation, the matrix is divided into panels which are factor-
ized using TSQR (hh factor dense and hh factor triangle)
and then the trailing matrix update (hh update dense and
hh update triangle) is performed. We use Compute Visual
Profiler [16] to profile GPU code for a range of extremely
tall-skinny to square matrices as shown in Fig. 9. We ob-
serve that TSQR dominates in case of extremely tall-skinny
matrices (∼70% of runtime contribution).

Firstly, we compare the arithmetic intensity in TSQR in
GPU with our design. In GPU, the Householder QR factor-
izations are performed by keeping the tiles inside the regis-
ter file due to its high access bandwidth (∼ 8 TB/s). The
panel width is tuned to a value of 8 and a tile size of 64×8
is chosen such that it can fit into the register file of each
stream multiprocessor (SM) for best performance. This re-
stricts the arithmetic intensity in Householder QR as there
are O(mn2) FLOPs for O(mn) memory operations. The
width of the panel (n) can be increased at the expense of

448



0.25

0.5

1

2

5

10

20

40
60

8 16 24 32 40 51

G
F

L
O

P
s

Number of Columns (n) 

FPGA (Proposed)
FPGA (Tai et.al.) 
CAQR

CULA
MKL

(a) GFLOPs vs. n (m = 6400)

0.25

0.5

1

2

5

10

20

40

85

200 400 800 1600 3200 6400 12000

G
F

L
O

P
s

Number of Rows (m) 

FPGA (Proposed)
FPGA (Tai et.al.) 
CAQR

CULA
MKL

(b) GFLOPs vs. m (n = 51)

Fig. 8. Performance Comparison with Multi-Cores (Intel MKL), GPUs (CULA, CAQR), and best FPGA work.

height (m) but it then increases the number of stages in the
merge stage of TSQR. In our design, the panel width can be
at most 51, a 49× increase in arithmetic intensity compared
to GPU. It not only reduces the number of merge stages in
TSQR but also the number of panels to be factorized, e.g. for
a matrix of size 6400×51, there will be seven panels which
need to be factorized using TSQR in GPU whereas in our
design only single TSQR factorization is required.
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Fig. 9. GPU Performance Analysis (Number of Rows =
6400).

Secondly, we compare the type of memory and its
bandwidth used in local QR and merge stages of TSQR for
both cases. In GPU, during local QR stage, tiles are loaded
into register file (each per SM) from global memory. The
tiles are then factorized using register file as well as shared
memory and the local R factors are then stored back in global
memory. In the merge stage, the R factors are loaded back
into register file from distributed locations of global memory
and are then factorized. In our design, however, we perform
both local QR and merge stages using on-chip memory to
minimize memory latency. Table 3 lists the type of memo-
ries used in each stage for GPU as well as FPGA.

Table 3. Type of Memory and its peak bandwidth for GPU
and proposed FPGA design in different stages of TSQR.

Kernel GPU Memory FPGA Memory
Register Shared Global Register BRAMs
(∼8 TB/s) (∼1.3 TB/s) (144 GB/s) (∼37 TB/s) (∼20 TB/s)

local
√ √ √ √

QR
merge

√ √ √ √ √
stage

Lastly, we compare the utilization of floating-point
units in GPU and our custom architecture. We identify the
limiting factors in the kernels used for TSQR in GPU as
shown in Table 4. Both the kernels perform QR factor-
ization by a thread block having 64 threads and there are
8 thread blocks used per SM. Each thread has 63 registers
and therefore maximum number of threads is limited and
as a result occupancy is low. It is due to this low occu-
pancy ratio particularly in hh factor triangle kernel that
we get very low performance for tall-skinny matrices. On
the other hand, we get an almost 80% of peak performance
(129 GFLOPs) for extremely tall-skinny matrices (see Sec-
tion 6.1). As a result, we get a speed up of 3.38× - 12.70×
(6.47× geo.mean) shown in Fig. 8(a) and 8(b).

Table 4. Limiting Factors for Tall-Skinny Matrices
(6400×51) on GPU. A warp comprises 32 threads and
there are 48 active warps per cycle for an occupancy of 1.

Kernel Active Warps / Occupancy Limiting
Active Cycles Ratio Factor

hh factor dense 9.05 0.18 Registers
hh factor triangle 2.98 0.06 Registers

We also compare QR routines from CULA as well which
uses Block Householder QR with dominant sequential panel
factorization for tall skinny matrices. We show a speed up
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of 52× - 258× (117× geo.mean) due to parallel TSQR al-
gorithm and its efficient FPGA implementation.

6.3. Comparison with Multi-Cores and Related FPGA
Work

We now compare our design with QR routines from MKL
and MAGMA which perform panel factorization in a se-
quential fashion on multi-cores. We observe a speed up of
21.7× - 50.2× (31.5× geo.mean) and 7.28× - 36.7× (16×
geo.mean) over MKL and MAGMA respectively. We fi-
nally compare our design with the most recent work on QR
factorization on FPGAs by Tai et.al. [9]. In [9], the archi-
tecture is tuned for large square tiles and therefore we see
increase in performance with increase in the width of the
matrix as shown in Fig. 8(a). However, since no parallelism
is exploited along the row dimension, therefore, we see con-
stant performance as we increase the height of the matrix
shown in Fig. 8(b). We, therefore, observe a speed up of
0.57× - 7.7× (2.2 × geo.mean) across a range of matrix
sizes.

7. CONCLUSION

We show that customizing an architecture to the shape of the
matrix for TSQR can give us up to 7.7× and 12.7× speed
up over state of the start in FPGAs and GPUs respectively.
We highlight the low efficiency of GPUs and multi-cores
as percentage of their peak theoretical performance for QR
factorization of tall-skinny matrices. We identify that on
GPUs it is due to low arithmetic intensity caused by lim-
ited registers, low occupancy during the merge stage, and
global communication during the merge stage where as in
case of multi-cores it is primarily due to low memory band-
width. We show how we can exploit the high on-chip band-
width of the FPGA to design a high-throughput architecture
for QR factorization and large on-chip capacity to perform
the merge stage without any global communication. We
conclude that even though GPU has 3× higher peak double-
precision floating-point performance, by exploiting the ar-
chitectural features of FPGAs we can outperform the GPU
for communication-avoiding linear algebra algorithms like
TSQR.
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