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Abstract—
Double-precision computations operating on inputs with un-

certainty margins can be compiled to lower precision fixed-point
datapaths with no loss in output accuracy. We observe that
ideal SPICE model equations based on device physics include
process parameters which must be matched with real-world mea-
surements on specific silicon manufacturing processes through a
noisy data-fitting process. We expose this uncertainty information
to the open-source FX-SCORE compiler to enable automated
error analysis using the Gappa++ backend and hardware circuit
generation using Vivado HLS. We construct an error model
based on interval analysis to statically identify sufficient fixed-
point precision in the presence of uncertainty as compared to
reference double-precision design. We demonstrate 1–16× LUT
count improvements, 0.5–2.4× DSP count reductions and 0.9–4×
FPGA power reduction for SPICE devices such as Diode, Level-1
MOSFET and an Approximate MOSFET designs. We generate
confidence in our approach using Monte-Carlo simulations with
auto-generated Matlab models of the SPICE device equations.

I. INTRODUCTION

The spatial parallelism and customizability of hardware
circuits allows reconfigurable architectures such as FPGAs
to offer orders of magnitude performance improvements and
power reductions compared to traditional computer organiza-
tions. Datapath bitwidth is a key parameter of a reconfigurable
circuit that can be tuned to achieve these savings. Arithmetic
circuits with smaller bitwidth require fewer resources (LUTs,
Block RAMs, DSP blocks) than ones with wider bitwidths.
For example, a double-precision floating-point multiplier re-
quires ≈3x more LUTs and ≈1.2× more DSP blocks than a
corresponding 54-bit fixed-point circuit (See Table III). This
customization is not easily possible on conventional archi-
tectures such as CPUs (64-bit integer datapaths) and GPUs
(single or double-precision) where it is fixed at fabrication
time. There are exceptions in the form of lower precision
MMX instructions and smaller bitwidth embedded systems but
it does not offer the complete precision flexibility possible on
an FPGA fabric.

So how does one select datapath bitwidth effectively? Pre-
vious research [8], [9] has shown how to customize bitwidth
(also referred to as wordlength) through a combination of
empirical approaches and static interval analysis of arithmetic
error properties of the implementations. The intuition be-
hind these techniques is the observation that most arithmetic

computations operating on real-world models have a limited
dynamic range and only need to evaluate correctly over that
range. Consequently circuit implementations may not need
the full precision made available by the double-precision
architectures to operate correctly. However, it has been argued
that the potential benefits from these precision tweaks is
limited to small, single-digit factors. Are there other sources of
information that we can use to further improve the impact of
precision reduction? Can this allow us to stretch the compute
density advantage of fixed-point compilation beyond what is
currently possible? In this paper, we propose using uncertainty
in input parameters (constants) as additional information in the
interval analysis process for selecting bitwidth. We observe
that physical calculations such as circuit simulation are often
based on process parameters that have inherent measurement
limits and data-fitting noise. Circuit designers that rely on
SPICE still run computations on full double-precision CPU
hardware despite these input uncertainties. We build upon our
existing open-source FX-SCORE [7] framework which is a
high-level streaming abstraction for generating FPGA circuits.
It uses Gappa++ for the error analysis backend and Vivado
HLS for the hardware generation backend to simplify the
bitwidth selection and implementation process. Our framework
is equally applicable to other computations where input uncer-
tainties are known in advance.

In this paper, we make the following contributions-

• Develop language and compiler extension for our open-
source FX-SCORE framework that captures input uncer-
tainty information for constants.
• Formulate an error model for datapaths with input param-

eter uncertainty.
• Develop Monte-Carlo simulation framework for SCORE

compiler that can build confidence in our precision opti-
mizations.
• Demonstrate FPGA resource utilization reduction (up to

16× LUT count reductions and 2.4× DSP count savings)
and power usage improvements (up to 4×) across a range
of benchmark circuits such as SPICE devices.



Device Equation Ranges Parameters Add Mult Div Exp Log
Diode I = isat · (expV/vj −1) V ∈ [1e−6, 0.1] isat = 1e−3 1 1 1 1 0

vj = 2.58e−2

Level-1 if (V gs < vt) ← cutoff Vg ∈ [1e−6, 2.0] vt = 0.4 5 4 0 0 0
MOSFET Id = 0 Vd ∈ [1.9, 2.1] a = 12
(level1) elseif (V ds > V gs − vt) ← saturation Vs ∈ [1e−6, 0.1] b = 1e−3

Id = b · (V gs− vt)2 /2
else ← linear
Id = b · (V gs− vt− V ds/2) · V ds

Approx. t1 = (V gs > vt)?V gs− vt : 0 Vg ∈ [1e−6, 2.0] vt = 0.4 3 3 0 0 0
MOSFET t2 = (V gd > vt)?V gd− vt : 0 Vd ∈ [1.9, 2.1] a = 12
(approx1) Id = b · (t21 − t22)/2 Vs ∈ [1e−6, 0.1] b = 1e−3

Approx. t1 = log(1 + expa(V gs−vt)) /a Vg ∈ [1e−6, 2.0] vt = 0.4 5 5 0 2 2
MOSFET t2 = log(1 + expa(V gd−vt)) /a Vd ∈ [1.9, 2.1] a = 12
(approx2) Id = b · (t21 − t22)/2 Vs ∈ [1e−6, 0.1] b = 1e−3

TABLE I: SPICE Device Current Equations

II. BACKGROUND

A. FX-SCORE

SCORE [3] is a high-level stream programming framework
designed to compose scalable FPGA applications using stream
interconnections between parallel dataflow operators. It is well
suited for development of scalable FPGA implementations that
exploit different forms of parallelism amenable to efficient
circuit implementations. FX-SCORE [7] is an extension to the
SCORE framework to support automated bitwidth selection
of stream data-types using interval analysis. It integrates the
proof assistant Gappa++ [1], [6] as a backend for proving
error properties of the fixed-point implementation. It also gen-
erates intermediate AutoESL code for hardware compilation.
It demonstrated 2-3x area savings for simple SPICE device
models when compiling fixed-point circuits having equivalent
error properties compared to double-precision hardware. We
develop our precision analysis pass as part of the FX-SCORE
compiler.

B. Gappa and Gappa++

Gappa [1] is a proof assistant capable of generating formal
certificates for error bounds of floating-point and fixed- point
arithmetic computations. Gappa++ [6] is an extension to
Gappa that adds interval propagation support for exp and log
functions at the expense of less formalism. It also permits
affine analysis of expressions (which are unused in this work).
A Gappa script contains a simple dataflow description of the
arithmetic expression and user-supplied input bounds based on
domain knowledge. A user requests Gappa to provide output
bounds and also compute bounds on absolute and relative
errors. An FPGA system designer can then use these bounds
to figure out the required fixed-point precision to stay within
error bounds.

C. Device Models

In this paper, we use a set of SPICE device models to
demonstrate the impact of our compiler enhancements. We
tabulate the equation complexity for these different devices in
Table I. We also provide the expected input operating ranges
for these different devices based on simulation scenarios for
CMOS digital circuits. Our benchmarks contain a mixture of
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Fig. 1: I-V Characteristics of a Diode with Input Parameter
Uncertainty

floating-point add, multiply, divide operators as well as the
exp and log elementary functions. While our examples appear
modest in size (handful of floating-point operations as seen in
Table I), they are relatively large for the FPGA compile sweeps
conducted in this work.

Let us consider the impact of uncertainty on the operation of
a diode through an example. In Figure 1, we show the impact
of input parameter uncertainty in vg and isat on diode current.
As we can see, uncertainty percentages below 1% make no
appreciable impact (intuitively) on the result. As we will see
later in Section V, that level of uncertainty corresponds to a
non-trivial 3× reduction in bitwidth.

D. Previous Work

Previous academic and commercial tools and accelerators
for SPICE have used approximations and precision reductions
in ad-hoc manner without any a priori static analysis of
potential error or quality of the resulting simulation. We do
not discuss these further as an excellent review is avail-
able in our previous paper [7]. In [10], the authors develop
an interval SPICE simulator that propagates input intervals
through the numerical operations of the entire simulation to
generate outputs with corresponding intervals. This results
in a 3-4× increase in compute work and offers a substitute
to the traditional exhaustive process corner simulation that
may be otherwise needed. While one of these techniques is
inevitable for large input uncertainty ranges, a fixed-point
substitute to the traditional double-precision simulation offers
a cheaper alternative in cases where the uncertainties may be
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small. It should be noted that the fixed-point substitute in
its present form will not offer the same quality of result as
an expensive interval simulation but can replace the oblivi-
ous double-precision simulations already used in industry. In
[4], the authors quantify the extent of uncertainty in model
parameters due to measurement noise and data-fitting errors
and observe uncertainties as large as a 1–10% percent for
certain parameters. Another source of uncertainty in circuits
is parameter variation which can be as high as 4% for 60-
65nm Xilinx FPGA devices [5]. Previously, in FX-SCORE [7],
we have demonstrated an approach using static analysis for
bounding relative errors in their fixed-point implementations
based purely on the intervals of the perfect inputs.

III. UNCERTAINTY-DRIVEN PRECISION-ANALYSIS IN THE
FX-SCORE COMPILER

In this section, we explain our error formulation and explain
how we adapt the FX-SCORE framework to capture and use
input parameter uncertainty information.

A. Error Formulation

The FX-SCORE framework exploited the observation that
double-precision implementations of computation (fdouble)
have some inherent error in their outputs when compared
to infinite precision implementations (fideal) due to round-
ing errors in the arithmetic operations. We represent this in
Equation 1, 2. This shows that if we carefully pick a fixed-
point implementation (ffixed) that has lower relative error
than the inherent error in double-precision implementation
(fdouble), our fixed-point FPGA circuit implemented at that
precision will be more accurate than the double-precision
implementation. Equation 3 describes the simple optimization
expression used to determine this ideal bitwidth. FX-SCORE
currently implements this optimization via a brute force search
across all bits within the range. As we see later in Figure 3(b),
the error behavior can be erratically non-monotonic with
precision preventing a trivial binary search implementation of
bitwidth search.

errdouble(f) = (fdouble − fideal)/fideal (1)
errfixed(bits)(f) = (ffixed(bits) − fideal)/fideal (2)

minimize bits

subject to errfixed(bits) ≤ errdouble,

bits ∈ [16, 128].

(3)

erruncertain(f) = (funcertain − fideal)/fideal (4)

errdouble(u)(f) = (fdouble − funcertain)/funcertain (5)
errfixed(u,bits)(f) = (ffixed(u,bits) − funcertain)/funcertain

(6)

minimize bits

subject to errfixed(u,bits) ≤ errdouble(u),

bits ∈ [16, 128],

u ∈ [10−16%, 1%].

(7)

However, FX-SCORE did not consider the impact of un-
certainty. We consider input uncertainty in our analysis. First,
we measure the relative error inherent in the infinite precision
implementation in Equation 4 . This changes our reference de-
sign to be the one implementing infinite precision calculation
in presence of input uncertainty. Next, we show our revised
formulae in Equation 5, 6, and 7. Uncertainty (u) is a user-
specified value as a percentage around the input parameter.
Values of u < 10−16 are too small to be representable as
double-precision numbers and are consequently irrelevant in
our implementation. The optimization described in Equation 7
is also implemented as a sweep across different bitwidths.

B. Adapting the FX-SCORE Compiler
FX-SCORE compiler accepts streaming parallel descrip-

tions of computation and generates code for multiple backends.
In Table II, we show code listings for a diode and the
codes generated for the three backends that are necessary
for this work. We also highlight the language modifications
and adaptation required to make the system operate with
uncertainty information.
• Frontend: The FX-SCORE compiler [7] extends SCORE

input syntax by permitting the programmer to provide
input intervals. We extend the FX-SCORE compiler to
accept parameter inputs (boxed Line 2 in Listing 1) with
suitable initialization constant values along with uncertainty
interval percentage. In this example, we specify the diode
junction voltage (vj = 2.58e−2) and saturation current
(isat = 10−3). Uncertainty information is propagated using
a compiler option.
• Gappa++: The FX-SCORE compiler [7] generates a

Gappa++ script with appropriate input intervals and type
information for static analysis. We modify the Gappa++
backend script generator to convert uncertainty input into
interval for the parameter inputs (boxed Line 9 in Listing 2).
For example, we generate an interval ([2.55e−2, 2.60e−2])
for diode junction voltage around a mean of 2.58e−2 with
an uncertainty of 1%. We also modify the relative error
expressions to match the Equations 5 and 6.
• Matlab: FX-SCORE [7] does not provide empirical evi-

dence to confirm the correctness of bitwidth selection using
their framework. In principle, we should trust Gappa++
transforms, but interval analysis is known to generate highly
pessimistic bounds. We provide a new Matlab Monte-Carlo
backend (example code template in Listing 3) that allows
confirmation that the bound calculations are reasonable
and allows experimental validation of the fixed-point pre-
cision reduction. The Matlab code computes a pseudo-
random distribution of input parameter combinations in the
uncertainty interval and evaluates the dataflow equations
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1 diode(

2 param vj=2.58e-2, param isat=1e-3

3 input double v [1e-7,0.1],
4 output double i) {
5 state dfg(v):
6 i = isat*(exp(v/vj)-1);
7 }

Listing 1: SCORE with Input Parameters (Uncertainty is
compiler option)

1 @fx = fixed<-64,ne>;
2 @dbl = float<ieee_64,ne>;
3 i_m = isat_m*(exp(v_m/vj_m)-1);

4 i_u = isat_u*(exp(v_m/vj_u)-1);

5 i_dbl dbl = isat_dbl*(exp(v_dbl/vj_dbl)-1);
6 i_fx fx = isat_fx*(exp(v_fx/vj_fx)-1);
7 {
8 v in [1e-7,0.1] /\

9 vj in [2.55e-2,2.60e-2]

10 |i_u| >= 0x1p-53 ->
11 (i_dbl-i_u)/i_u in ? /\
12 (i_fx-i_u)/i_u in ?
13 }

Listing 2: Gappa++ Script

1 function i = diode( vj, isat, v)
2 i = isat*(exp(v/vj))-1;
3
4 function i_fx = diode_fx( vj, isat, v)
5 i_fx = fi(isat*exp(v/vj))-1, 1, 64, 56);
6
7 function diode_monte_carlo()
8 vj=unifrnd(2.58e-2 ± 1%);
9 isat=unifrnd(1e-3 ± 1%);

10 v=linspace(1e-6,1,10);
11 inputs = allprod(vj, isat, v);
12 i = arrayfun (@diode, inputs);
13 i_fx = arrayfun (@diode_fx, inputs);

Listing 3: Matlab Sketch of Monte-Carlo

TABLE II: Code Listings for Diode Current
across the product set of input parameter combinations. The
generated output distribution is then compared against the
statically-predicted bounds from Gappa++. This empirical
validation improves programmer confidence in our compiler
transforms.

IV. EXPERIMENTAL SETUP

In this section, we describe our experimental flow in terms
of our software infrastructure and the hardware library frame-
work used. We use and adapt the FX-SCORE streaming com-
piler and its three backends to perform experiments performed
in this paper. In Figure 2, we show the corresponding three
components of the FX-SCORE compiler.

A. Precision Analysis

We now accept uncertainty information on the parametric
inputs in addition to ranges on the variable inputs such as
voltage. The programmer can supply uncertainty value in
these parameters as a single percentage for all input pa-
rameters during the compilation process using a compiler

GAPPA++
Backend

Vivado HLS
Backend

Relative 
Error

Parameter
Uncertainty

SPICE 
Devices

FX-SCORE
Frontend

Matlab
Backend

Physical
Ranges

FPGA Mapping
Costs

Monte Carlo 
Results

Bitwidth
Sweep

1 2 3

Fig. 2: FX-SCORE Compile Flow (with Uncertainty)
IEEE-64 54-bit 24-bit

LUT Reg DSP LUT Reg DSP LUT Reg DSP
Basic Math Operators

Add 1019 1074 3 54 54 15 24 24 6
Mult 305 927 11 120 653 9 9 30 2

Elementary Functions
Exp 1559 2475 12 1960 2910 9 595 664 1
Log 4792 4095 12 3235 4004 9 948 1218 3
Divide 3301 6119 0 481 1828 18 193 811 10

Format Conversion Wrappers
FL2Flco 103 0 0 102 0 0 52 0 0
Flco2FL 111 0 0 104 0 0 49 0 0
FL2Fix - - - 135 374 0 70 174 0
Fix2FL - - - 139 424 0 37 168 0

TABLE III: Hardware Operators Cost Model (V7LX160T)

switch (-egappa_uncertain <value>). As part of a future
release, we will allow per-parameter specification of uncer-
tainty in the FX-SCORE input language. We upgraded the
Gappa++ backend to use newer versions of Gappa v0.16.
These required modification to the disjunction expressions for
handling if/then/else statements in the FX-SCORE input.

B. Monte-Carlo Simulation Backend

We wrote a new Matlab backend to experimentally confirm
our compilation output. Our Matlab backend uses the Statistics
toolbox (unifrnd()) for generating the pseudo-random input
parameter combinations and the Fixed-Point toolbox (fi())
to evaluated fixed-point implementations of our equations. We
use the Matlab (arrayfun()) model for vector evaluation
of our device equations across the input combinations. We
were able to run the double-precision arrayfun() evaluations
in parallel 10× faster using an NVIDIA C2075 platform
when compared to Intel Core i7-3770 3.4GHz CPU using a
minor code-generation modification in the FX-SCORE Matlab
backend. The ease of transferring our Monte-Carlo simulations
to the GPU made us pause and reflect on the vision of using
FPGAs for a similar purpose one day in the not too distant
future.

C. Hardware Operators

We use the latest fixed-point and floating-point hardware
cores based on the new release of Flopoco [2] v2.4.0 as
well as the latest release of Vivado HLS v2012.4 to ensure
up-to-date FPGA mapping cost data. For certain operators
like the exp and log we have no fixed-point equivalents.
For these operators, we use the Flopoco-generated floating-
point cores with an exponent width of 8. We observed that
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the fixed-point division cores inferred by Vivado HLS were
pessimistic with their bitwidth analysis and hence we replaced
them with Coregen-supplied fixed-point dividers. We tabulate
the resource utilization numbers in Table III. We generated the
resource utilization numbers post place-and-route and compute
power using XPower assuming default 12.5% FF activity and
50% BRAM activity. These operators are able to compile
correctly with a 4ns performance target with some double-
precision and small bitwidth fixed-point mappings satisfying
a more aggressive 3ns target. We can observe that the fixed-
point mappings can often be as much as 20× smaller that
the equivalent double-precision implementations. They can
sometimes require more DSP blocks than the double-precision
reference at precisions above 64-bits (not shown in Table). In
addition to LUTs and DSP blocks, the exp and log operators
also require BRAM memory blocks to store lookup tables. The
range bitwidths possible for our FPGA mapping experiments
is some subset from 16-bits to 64-bits due to core generation
constraints in Flopoco as well as Xilinx Coregen. We generate
and use format conversion wrappers to integrate the dividers
and Flopoco cores with the rest of the datapath.

D. Production Use

For our experimental flow, we perform an exhaustive
Gappa++ analysis sweep as well as a Vivado HLS imple-
mentation sweep across different bitwidths. In a production
environment this will be quite expensive in terms of total
CAD time. In fact, we only need the end user to invoke our
compilation flow with an exhaustive sweep across different
bitwidth when calling the Gappa++ backend. That will provide
the minimum precision required to match the reference double-
precision design in a matter of seconds. The slower Vivado
HLS backend can be called exactly once with this bitwidth.

V. EVALUATION

We now describe the results of our experimental evaluation
of our modifications and enhancements to the FX-SCORE
framework. We will first illustrate the application of our flow
on a diode and then discuss broader results on our benchmark
set of SPICE devices.

A. Impact of Parametric Uncertainty

Earlier in Figure 1, we visually built an intuition that input
parameter uncertainty can cause small changes in the outputs.
We saw the extent of output error depending on the amount
of input parameter uncertainty in the computation. Higher the
uncertainty, larger the error. Can we formalize this intuition?
In Figure 3(a), we show the impact of different uncertainty
factors on relative error in diode current (y-axis) for different
values of diode voltage (x-axis). As we can see, the amount
of relative error in the output exceeds the relative error
introduced by the double-precision implementation when con-
sidering uncertainty. This suggests that the double-precision
implementation is generating results that are too accurate with
respect to the relative error that will be introduced purely from
input parameter uncertainty. Caveat: You may notice that the

uncertainty case for u = 10−10 below Vd = 10−3V seems to
introduce less error than the Gappa++ double-precision bound.
Of course, the Gappa++ bound is the worst case error over
the entire interval [10−5 − 0.1] rather than the instantaneous
error values at a given voltage and thus appears to provide the
illusion of having larger error below Vd = 10−3. In practice,
all our calculations are based on worst case error.

B. Relative Error Analysis using Gappa++

In Figure 3(b), we show how we compute the sufficient
fixed-point precision required to implement our circuit. As
we can see, there is an inherent relative error in the baseline
double-precision implementation. As we increase fixed-point
precision, the relative error value reduces until it matches (or
does slightly better than) the reference double-precision error
threshold (horizontal line at ≈ 10−11). The smallest precision
when this happens (64 bit) is our bitwidth for the fixed-point
mapping. Now, in the presence of uncertainty, we observe that
this crossover happens at a lower precision as the reference
double-precision error level rises with uncertainty. Thus, for
the diode, the crossover occurs at 40 bits for a u = 10−10.

C. Understanding Crossover Bitwidth

How does the crossover bitwidth change with parametric
uncertainty? To answer this question, we sweep the uncertainty
percentage from 101 to 10−16 in Figure 3(c). We observe a
wide range of relative errors trends in our fixed-point imple-
mentations that are bounded by the double-precision reference
design. For a large portion of the uncertainty range, we note
that the fixed-point relative error can do as well as the double-
precision threshold provided we use a large enough bitwidth.
Thus, for sensible uncertainty ranges, it is possible to tradeoff
FPGA implementation area to target a certain expectation of
relative output error. Large uncertainties of 10% or more will
introduce a large amount of error that will be unacceptable in
circuit simulations at any precision.

D. Monte-Carlo Validation of our FX-SCORE’s Decisions

Now you might wonder if our statically analyzed bounds are
too pessimistic (or large). In Figure 3(d), we show how the
amount of relative error in the diode current (y-axis) as a func-
tion of uncertainty (x-axis) for different precisions computed
using Monte-Carlo simulations. The reference double- preci-
sion bound is calculated using Gappa++ by considering the
impact on uncertainty (This is fdouble(u) from Equation 5). As
we had hoped, all Monte-Carlo simulations generate an error
spread that is bounded by the static analysis (The fixed-point
ranges are ffixed(u,bits) from Equation 6). The Monte-Carlo
simulations are based on input parameter ranges and assume
uniform random distribution. A 16-bit implementation of the
circuit can handle high uncertainties in the input parameters
above 10−11 in a manner that is competitive with a double-
precision implementation. If we raise the precision to 32 bits,
we can tolerate uncertainties above 10−15. Only at 64 bits
can our fixed-point implementation be completely bounded by
the double-precision relative error across all uncertainties in
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Fig. 3: Applying FX-SCORE Uncertainty Extensions to a Diode

the range [10−16 : 10−1]. This data shows that the crossover
precision for matching double-precision mappings will change
with the amount of uncertainty in the input parameters. The
Gappa++ static analysis bounds are going to be somewhat
pessimistic compared to Monte-Carlo data as they have to be
conservative in their assumptions to guarantee robust results
across a range of calculations.

E. Impact of Device Model on Crossover Bitwidth

Now that we understand the application of our framework
to the diode, how does it handle different devices? In Figure 4,
we show the crossover fixed-point precision across different
uncertainty percentages for different device models. As we
can see, we can reduce datapath precision significantly (2-3
×) as we increase uncertainty (0.1%) in our input parameters.
The crossover precisions stay relatively flat at small values
of uncertainty (roughly below 10−10). This is because these
small uncertainties have limited influence on output intervals.
For devices such as approx2, we note that the crossover
precision threshold stays particularly flat and only drops above
an unusually high uncertainty of 10−4. We attribute this to the
fact that the arithmetic expression in this example includes a
log that compresses the output intervals thereby limiting the
influence of input parameter uncertainty.

F. Resource Utilization of Vivado HLS Implementations

We now discuss the results of compiling fixed-point circuits
using Vivado HLS toolflow. In Figure 5, we plot LUT count,
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DSP count and FF usage statistics for a diode. We sweep
bitwidths from 24 bits to 64 bits and generate FPGA mappings
for every bit in the interval. We observe a large dynamic
range in resource utilization between 1-5× suggesting a broad
opportunity for area savings in presence of uncertainty-driven
precision reduction. In contrast with vanilla FX-SCORE [7],
the design space exploration approach in this paper is not
arbitrarily quantized and provides a better understanding of
cost scaling trends.

G. Impact of Uncertainty on FPGA Mapping Costs

As observed in Figure 4, we are able to reduce the precision
of fixed-point implementation in presence of input parameter
uncertainty. How does that affect FPGA resource utilization?
In Figure 6, we show the FPGA LUT count growth as a
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Fig. 5: Implementation Scaling Costs for Diode

function of precision as well as the equivalent minimum toler-
able uncertainty in our inputs. The minimum tolerance is the
smallest value of uncertainty that can be supported at a given
bitwidth. You may recollect that we need increasingly larger
datapath precision as we reduce uncertainty margins on the
input parameters. When the input parameter uncertainty gets
smaller than 10−16, it is smaller than what can be represented
in double-precision arithmetic and thus corresponds to the the
costliest fixed-point FPGA implementation.

Ultimately, we are interested in understanding the impact
of uncertainty on FPGA resource utilization and power usage
when compared to the reference double-precision implemen-
tation. In Figure 7, we show the savings in LUT and DSP
usage as well as the reduction in power utilization for our
implemented circuits. As expected, in Figure 7(a), we observe
area savings increase dramatically as we increase input pa-
rameter uncertainty. Higher uncertainty values permit lower
precision implementations that are able to deliver as much as
16× reduction in LUT counts. This is the basis of our “order
of magnitude” resource improvement claim in Section I. It
is important to note that any significant savings only become
apparent for uncertainties above 10−10 and escalates quickly
above that. This can be explained from Figure 4 where the
crossover precision tends to stay high for the very small
uncertainties and only starts decreasing when there is sufficient
uncertainty in the inputs. In Figure 7(b), we see a spread
from 0.4–2.5× reduction in DSP counts. Approximately below
u = 10−10, we seem to require more DSPs than the double-
precision mapping. We attribute this partly to larger internal
precision generated by Vivado HLS and the lack of suitable
DSP-LUT-balancing high-level synthesis algorithms in gen-
eration of the fixed-point cores. However, at a large enough
uncertainty, we do achieve non-trivial DSP count reductions.
We also used XPower to generate the dynamic power numbers
in Figure 7(c). We see substantial savings due to reduced LUT
count usage. As discussed earlier, the missing datapoints in
Figure 7 are due to core bitwidth limitations.

H. Cost of Ignoring Uncertainty for Fixed-Point Mappings

In Table IV, we quantify the impact of ignoring uncertainty
information in the FX-SCORE compiler [7] for a represen-
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Fig. 6: Impact of Input Uncertainty on Crossover Precision
and FPGA LUTs

tative uncertainty of 10−6. In contrast with Figure 7, where
we compare against a double-precision reference baseline, we
now compare against the oblivious fixed-point compilation that
assumes u = 0. We see 1–5.5× LUT count savings, 1–4.4×
DSP count reductions and 1–5.5× power usage improvements.

VI. DISCUSSION AND FUTURE WORK

Fixed-point implementations of computation have been
shown to deliver modest, single-digit resource reductions
compared to oblivious double-precision mappings in the past.
While this has been criticized by some as being too little,
we believe precision tuning can continue to deliver increas-
ing density benefits by exploring multiple aspects of system
composition. While this paper focuses on input parameter
uncertainty, we believe custom precision selection can de-
liver even greater improvements through a combination of
additional optimizations such as hybrid fixed/float precision
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Device Crossover Bitwidth FPGA LUTs FPGA DSPs FPGA Power
Obliv. Uncert. Diff. Dbl. Obliv. Uncert. Ratio Dbl. Obliv. Uncert. Ratio Dbl. Obliv. Uncert. Ratio

Diode 63 48 16 5811 4657 2836 1.6× 26 75 37 2× 105 36 17 2.1×
Level1 64 53 9 4898 3249 832 3.9× 14 80 43 1.9× 41 61 44 1.3×
Level1lin. 64 57 13 1246 1324 973 1.3× 14 36 25 1.4× 26 - - -
Level1sat. 64 47 23 4534 1856 535 3.4× 14 40 21 1.9× 97 - - -
Approx1 61 34 25 2490 1647 299 5.5× 28 53 12 4.4× 33 55 10 5.5×
Approx2 90 90 0 21813 21965 21965 1× 76 235 235 1× 338 276 276 1×

TABLE IV: FX-SCORE Before and After Extensions for Uncertainty (u=10−6)
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Fig. 7: Comparing FPGA Implementation Costs

selection, runtime precision adaptation or number system
customization. It is important to build and refine toolflows like
FX-SCORE with newer ideas and compiler transformations
that can automate this bitwidth selection process.

VII. CONCLUSIONS

We show how to get greater than an order of magnitude
reduction in LUTs if we exploit input parameter uncertainty
in the context of SPICE device equations. We modify FX-
SCORE to support input parameter uncertainty and observe

up to 16× reduction in LUT counts, 2.5× reduction in DSP
blocks and 4× reduction in dynamic power utilization of
SPICE devices when compared to oblivious double-precision
mappings. We also observed resource utilization and power
usage improvements up to ≈5x compared to the uncertainty-
oblivious fixed-point mappings. The larger precision reduc-
tions are possible for input uncertainties larger than 10−10 and
they continue to increase with higher uncertainties. In contrast,
uncertainties smaller than 10−10 deliver more modest benefits
as they are too small to have measurable impact on output
error ranges. We further observed that the extent of these
improvements are tied to the type of arithmetic operations and
specifically elementary functions like log limit the opportunity
for aggressive precision reduction. Simpler datapaths using
add and multiply operations on bounded input ranges are
more amenable to substantial resource savings.
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