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ABSTRACT
The recent line of Versal FPGA devices from Xilinx Inc. includes

a hard Network-On-Chip (NoC) embedded in the programmable

logic, designed to be a high-performance system-level interconnect.

While the target markets for Versal devices include applications

with real-time constraints, such as automotive driver assist, the

associated development tools only provide figures for "structural

latencies" of data packets, which assume that the network is oth-

erwise idle. In a realistic setting, this information is not enough

to ensure deadlines are met, as different packets can contend for

NoC switch outputs, which causes packet contents to be buffered

while in transit, increasing their latency. In this work, we present

a formal description of the NPS switches that compose the Versal

NoC from a flit (or packet) scheduling perspective, based on the

available cycle-accurate switch simulation code. We then analyze

a scenario where network clients transfer data periodically over

a single switch, and propose a method for calculating worst-case

communication times in this scenario.
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1 INTRODUCTION
Announced by FPGA vendor Xilinx Inc. in 2019, the Versal ACAP

line of devices includes a hard Network-on-Chip (NoC) [5]. The

NoC is intended as a backbone for system-level communication,

connecting the heterogeneous elements in the device (e.g. the pro-

grammable logic (PL), DDR Memory Controllers (DDRMC), ARM

cores, I/O interfaces, AI cores [14, 15]).

The target markets for Versal devices include applications with

hard real-time constraints, such as automotive driver assist, airspace
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and defense [13]. For these applications, designers should be able

to determine upper bounds on the Worst-Case Execution Times

(WCET) of various tasks performed by the system, in order to en-

sure that mission-critical requirements are respected. Additionally,

such upper bounds should be as "tight"as possible, to avoid over-

provisioning of resources.

As the time spent exchanging data over the Versal NoC can be

part of a task’s execution time, it would be useful to have access

to Worst-Case Communication Time (WCCT) upper-bounds for

such exchanges. However, the development tools associated with

the Versal platform only provide figures for the "structural latency"

of single data flits, which correspond to an otherwise idle network

where the flit in question is the only one travelling. In general, this

information is insufficient, as the interference between different

flows of data can force packet contents to wait in buffers inside

NoC switches, increasing communication latency. In this paper, we

review the architecture of the Versal NoC, and propose a WCCT

method for data transferred periodically over a single switch, as a

first step towards a full WCCT method for packets exchanged over

the Versal NoC.

The Versal platform can be seen as a relevant case study for

real-time communication analysis for NoC, as it combines multiple

features that are not usually considered together in timing analysis

works: wormhole routing, multiple Virtual Channels (VCs - each

shared by multiple flows of data), Least-Recently Used (LRU) arbi-

tration, and additional Quality-of-Service (QoS) mechanisms. This

works’s contributions include:

• A formal description of the arbitration policy implemented

by the NoC.

• A method for calculating WCCTs for the case of network

clients exchanging data over a single NoC switch, and a

corresponding framework for simulating this configuration.

2 BACKGROUND
2.1 NoC for FPGA
Overlay/"soft" NoC, built with resources from the reconfigurable

fabric are a traditional approach for implementing the NoC para-

digm in FPGAs [6, 11]. As these devices have grown to integrate

more specialized components embedded in the PL (e.g. DSP mod-

ules, block RAM and even processor cores), embedded "hard" NoCs

have become a concrete possibility, with the initial motivations

being gains in area and power consumption [1].

Alongside the Versal line from Xilinx Inc., the Speedster7t line

from Achronix Semiconductor is among the first commercial FPGA

products to include an embedded NoC [3]. Compared to the Versal
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NoC, the Speedster7t NoC has a simpler architecture (e.g. it lacks

multiple VCs), but runs at a higher frequency (2 versus 1 GHz)

and has wider data links (256 versus 128 bits). Besides the gains

in performance, other possible advantages of embedded NoCs in

commercial FPGAs include simplifying timing closure and helping

with support for partial reconfiguration and hardware virtualization

of portions of the device [2].

Finally, Intel Spiderweb [8], proposed by another major FPGA

vendor, is described as "firm", pre-floorplanned overlay NoC that

attempts to combine the performance gains of hard embedded NoC

with the flexibility of soft implementations.

2.2 Real-Time Analysis for NoC
The approach for computing WCCT bounds for an NoC depends on

the model of operation followed by the network. A Time-Division

Multiplexed NoC, where communications obey a pre-calculated

schedule, is an example of a network that make it simple to guar-

antee worst-case bounds for data exchanges.

Among networks without a fixed transmission schedule, the

prioritized VCs model has received attention as an alternative for

guaranteeing real-time deadlines. This model assumes that flows

of data travel in VCs associated with priority levels, and the trans-

mission of a lower-priority VC through an output port can be pre-

empted by a higher-priority VC. Such networks can be analyzed

with techniques adapted from scheduling of prioritized tasks in

processors, as done in [12]. The identification of the phenomenon

of multi-point progressive blocking [18] has necessitated modifica-

tions to this approach when backpressure can emerge in the NoC,

increasing the pessimism of results [10].

Many practical NoC architectures do not support multiple pri-

oritized VCs, and instead perform Round-Robin Arbitration (RRA)

between input ports. Techniques for analyzing this type of network

include Recursive Calculus [4] and Compositional Performance

Analysis [16].

As discussed in Section 3, the Versal NoC architecture includes

both multiple VCs and round-robin arbitration, as well as an addi-

tional mechanism of token counters that affects the contention for

output ports, necessitating a custom approach.

3 SYSTEM MODEL
In this section we describe the operation of the Versal NoC, focusing

on the arbitration mechanism implemented by NPS modules. We

base our description on existing documentation for the Versal NoC

[13, 14, 17], complemented with study of the NPS bus functional

model simulation code available with Vivado 2020.3 [7].

3.1 Versal NoC Architecture
Figure 1a shows a high-level block diagram of a Versal NoC in the

context of the ACAP device. NoC clients, such as the programmable

logic (PL), access the network via Network Master Units (NMU)

and Network Slave Units (NSU). To start a data exchange over

the NoC, a client can access the AXI interface of an NMU, which

will convert the transaction to the NoC’s internal Network Packet

Protocol (NPP). The network is organized as two Horizontal NoCs

(HNoCs), connected bymultiple Vertical NoCs (VNoCs). The VNoCs

are embedded in the PL, while the HNoCs provide network access

to the hard components in the system.

The supported traffic classes are ISOC, LL and BE, with the

ISOC class being designed for communication tasks with real-time

deadlines. At run-time, ISOC and LL packets are treated in the

same way by the network, having a bit set in each of their flits

indicating high-priority, while BE flits are low-priority. Thus, we

simply differentiate between high and low-priority packets for the

rest of the text. The user guide [17] mentions a mechanism for

increasing the priority of ISOC packets after a timeout expires, but

this feature is not covered by the current version of the tools and

simulation code.

The NoC uses wormhole routing [9]: each packet can contain up

to 16 data flits, each with a 128-bit payload, as well as a request

flit at the head that contains information on the associated AXI

transaction. We identify the first flit of a packet as the Start-of-

Packet (SOP) flit, and the last flit as the End-of-Packet flit (EOP),

with both being the same for a single-flit packet. Packets have a

size limit of 256 bytes per packet, with larger AXI transactions

are broken into multiple packets. The flits traverse the NoC in a

pipelined manner over multiple NPS units until they reach their

destination NMU or NSU.

Figure 1b shows the internal structure of an NPS, with four

bidirectional ports, numbered 0 to 3, which can send and receive

one flit per cycle. While each flit only holds 128 bits of payload

data, each NPP data connection is actually 182 bits wide, with the

additional 54 bits holding metadata for the communication.

The minimum latency through the NPS is 2 cycles (one to copy

the flit into a buffer, another to copy the flit to the appropriate

output after arbitration). The NoC supports 8 VCs: each NPS input

port has one VC Buffer (VCB) for each VC, where incoming flits

associated with said VC are stored. For a given NPS, we use the

notation 𝑉𝑖𝑝,𝑣𝑐 ) for the VCB of input port 𝑖𝑝 associated with VC

number 𝑣𝑐 . VCBs have a depth of 5 in VNoCs, and of 7 in HNoCs.

3.2 Arbitration Policy
Each output port can be targeted by 24 VCBs (the 8 VCBs of each of

the other 3 ports). We use 𝑜𝑝.V to denote the set of VCBs that can

target output port 𝑜𝑝 . Every cycle, each output port 𝑜𝑝 performs

Least Recently Used (LRU) arbitration among eligible VCBs 𝑉 ∈
𝑜𝑝.V to determine which flit, if any, to send downstream. The user

guide describes five rules (here Rule 1 to Rule 5) that determine

the VCBs that can contend for the output each cycle. We restate

said rules with additional details identified from the NPS simulation

code. Rule 1 to Rule 3 are used to simply disqualify VCBs:

Rule 1: A VCB cannot participate in arbitration for an output

if it is empty, or if the flit at its head should be routed to a

different output.

Rule 2: If a VCB with VC number 𝑣𝑐 has previously won the

arbitration for an output port with a SOP flit, and has not yet

sent the corresponding EOP flit through, other VCBs asso-

ciated with VC number 𝑣𝑐 cannot participate in arbitration

for 𝑜𝑝 . This prevents flits from two different packets from

ending up interleaved in VCBs.

Rule 3: Each output port has 8 credit counters to keep track of

the available places in each of the VCBs downstream from
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Figure 1: Block diagrams of a Versal NoC and of an NPS (with details of an input port and an output port).

it. A VCB cannot participate in arbitration for an output

port if the corresponding downstream VCB is full. There is

one cycle of delay from a space for a flit being freed in the

downstream VCB to the credit being received.

VCBs that pass Rules 1 to 3 are submitted to Rule 4, which can

disqualify VCBs and also sorts them into high and low-priority

requests.

Rule 4: As an additional QoS mechanism, each output port

maintains a token counter for each of the 24 VCs that can

target it (for a total of 4 × 24 = 96 token counters in each

NPS). Each token counter is decremented whenever the cor-

responding buffer wins arbitration, and is associated with a

token register, which contains the counter’s maximum value.

For a given output port, we refer to the token counter of a

VCB 𝑉 as 𝑉 .𝑐 , and to the corresponding register as 𝑉 .𝑟 .

A VCB is considered a high-priority request if it has a high-

priority flit at the head and either has a token counter > 0

or the flit is not a SOP. If the token counter is ≥ 0 or the

flit at the head is not a SOP, but the VCB does not qualify

as a high-priority request, it counts as a low-priority one.

Finally, a VCB that has a SOP flit at the head and a counter

< 0 cannot be included in either group and is excluded from

arbitration this cycle.

Finally, Rule 5 determines how the high and low-priority requests

are considered by the arbitration:

Rule 5 If there are any high-priority requests, the LRU arbitra-

tion is performed only with said high-priority requests.

Algorithm 1 shows the sequence inwhich the rules are applied ev-

ery cycle by each output port, as well as the condition for reloading

the token counters (Line 2). When a token counter 𝑉 .𝑐 is reloaded,

it receives 𝑉 .𝑟 if 𝑉 .𝑐 ≥ 0, and 𝑉 .𝑟 − 1 otherwise.

4 ANALYSIS
As discussed in section 3, the Versal NoC switches contain multiple

mechanisms that can interact to delay packets contending for an

Algorithm 1: Arbitration policy performed every clock

cycle by each NPS output port

1 Find VCBs that pass Rules 1-3;

2 If at least one buffer is selected by Line 1, and no buffer

selected by Line 1 has a token counter > 0, record that all

token counters for this port have to be reloaded;

3 Determine low and high-priority requests according to Rule

4, among buffers selected by Line 1;
4 Perform LRU arbitration among low or high-priority

requests according to Rule 5;

5 If a VCB won the LRU arbitration, decrement its token

counter and move the flit to the output port;

6 Reload all token counters if Line 2 determined they should

be reloaded;

output port. We focus on modeling a scenario that makes no sim-

plifying assumptions on the internal NPS structure, but assumes

that packets travel over a single switch.

4.1 Problem Statement
Consider a situation with an NPS connected to three NMU modules

and one NSU module, which in turn communicate with network

clients through AXI buses. The NMU modules periodically send

packets of write data to the NSU, over different VCs. We model this

situation as a set of Communication Tasks (CTs) Γ = {𝜏0, 𝜏1, ...},
each associated with an input port and VC. We can focus on AXI

writes without loss of generality, as the NPS treats read and write

data in the same manner.

Each CT 𝜏𝑖 ∈ Γ has the following parameters, which we ac-

cess through dot notation (e.g. 𝜏𝑖 .𝑇 ): 𝑇, 𝐽 , 𝐷, 𝐿, 𝑖𝑝, 𝑜𝑝, 𝑣𝑐,𝑉 . Their

meaning is as follows:

𝜏𝑖 .𝑇 : minimum interarrival time (in cycles) between the gener-

ation of subsequent data packets of CT 𝜏 .

𝜏𝑖 .𝐽 : jitter (in cycles) in the release of each packet. Formally,

this means that if a packet is generated at time 𝑡 , it is sent to

the NPS at time 𝑡 ′ ∈ [𝑡, 𝑡 + 𝜏𝑖 .𝐽 ].
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𝜏𝑖 .𝐷: deadline (in cycles) for the reception of each packet, rela-

tive to the packet’s generation. We assume 𝜏𝑖 .𝐷 ≤ 𝜏𝑖 .𝑇 .

𝜏𝑖 .𝐿: length of each packet in flits.

𝜏𝑖 .𝐵𝑃 : the maximum number of cycles of backpressure (block-

ing due to Rule 3) that each packet of 𝜏 can suffer.

𝜏𝑖 .𝑖𝑝, 𝜏𝑖 .𝑜𝑝, 𝜏 .𝑣𝑐, 𝜏𝑖 .𝑉 : input port, output port, VC and VCB the

data travels through. To avoid a low-priority packet blocking

a high-priority packet via Rule 2, we assume that vc numbers

are reserved for either high-priority or low-priority CTs. We

have observed the Versal NoC tools to follow this assignment

policy.

We wish to find a bound for 𝜏𝑖 .𝑅, the worst-case latency for a

packet of a high-priority CT under analysis 𝜏𝑖 to cross the switch,

after reaching the head of 𝜏𝑖 .𝑉 . For simplicity, we do not consider

the head-of-line blocking incurred while a packet of 𝜏𝑖 waits to

arrive at the front of the VCB queue. In the absence of backpressure

or other CTs to contend for the output port to the NSU, the worst-

case latency of the packet will simply be 𝜏𝑖 .𝐿, which is the time to

copy all flits to the output. Otherwise, we define the blocking term

𝜏𝑖 .𝐵 to be the number of cycles, after reaching the head of 𝜏𝑖 .𝑉 , that

the packet fails to send a flit (due to losing the LRU arbitration, or

being blocked by rules 2, 3, 4 or 5). The actual latency to cross the

switch after reaching the head of the buffer will then be:

𝜏𝑖 .𝑅 = 𝜏𝑖 .𝐿 + 𝜏𝑖 .𝐵, (1)

andwe say that the packet is schedulable (that is, meets the deadline)

if:

𝜏𝑖 .𝐽 + 𝜏𝑖 .𝑅 + 1 ≤ 𝜏𝑖 .𝐷. (2)

Note that the +1 term in the equation is needed to count the extra

cycle required to copy each flit into the buffer.

4.2 Contending Buffers
Let 𝜏𝑖 .𝑜𝑝.V be the set of 24 VCBs that can contend for the output

port crossed by CT under analysis 𝜏𝑖 . We can partition 𝜏𝑖 .𝑜𝑝.V\𝜏𝑖 .𝑉
into 3 subsets that interact in different manners with the buffer

𝜏𝑖 .𝑉 :

• The set V𝑆𝑉
containing the two other buffers associated

with 𝜏𝑖 .𝑣𝑐 .

• The set V𝐷𝑉𝐻
of high-priority VCBs associated with a dif-

ferent VC from 𝜏𝑖 .𝑣𝑐 .

• The set V𝐷𝑉𝐿
of low-priority VCBs associated with a dif-

ferent VC from 𝜏𝑖 .𝑣𝑐 .

Figure 2 shows an example of this partition, assuming that 𝜏𝑖 .𝑖𝑝 =

3, 𝜏𝑖 .𝑣𝑐 = 0 and that VCs 0 − 3 are transporting high-priority CTs,

while VCs 4 − 7 are assigned low-priority CTs.

Each VCB 𝑉𝑗 ∈ 𝜏𝑖 .𝑜𝑝.V \ 𝜏𝑖 .𝑉 has a maximum number 𝑉𝑗 .𝑛

of flits it can use to win arbitration for the output port while the

packet crosses the NPS, given by:

𝑉𝑗 .𝑛 =
∑︁

𝜏𝑘 ∈𝑉𝑗 .Γ

⌈
𝜏𝑖 .𝑅 + 𝜏𝑘 .𝐽

𝜏𝑘 .𝑇

⌉
× 𝜏𝑘 .𝐿, (3)

where 𝑉 .Γ is the set of CTs that cross the VCB 𝑉 .

4.3 Stages of Transmission
Let 𝑡 = 0 be the cycle when the SOP flit for the packet under analysis

from 𝜏𝑖 first reaches the head of 𝜏𝑖 .𝑉 . To help us think about how a
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Figure 2: Example of the subsets of VCBs that can interfere
with the VCB containing the packet under analysis.

packet travels through the NPS in the worst case, we also define

the following additional time values:

• Time 𝑡 = 𝑡𝑅 ≥ 0, after which the packet under analysis can

never be blocked again by Rule 4 or Rule 5. This will be
the time 𝑡 ≥ 0 when we first have 𝜏𝑖 .𝑉 .𝑐 > 0, or when the

SOP flit of the packet wins arbitration with 𝜏𝑖 .𝑉 .𝑐 = 0, if that

happens first.

• 𝑡 = 𝑡𝑆 ≥ 𝑡𝑅 when the SOP flit wins arbitration.

• 𝑡 = 𝑡𝐸 ≥ 𝑡𝑆 when the EOP flit wins arbitration.

We note that:

• For 0 ≤ 𝑡 < 𝑡𝑅 the packet is assumed to be blocked by Rule
4 or Rule 5. Any other cause of blocking, such as being

blocked by Rule 2, is redundant.
• For 𝑡𝑅 ≤ 𝑡 < 𝑡𝑆 the packet cannot be blocked by Rule 4 or

Rule 5 anymore. However, it can still be blocked by Rule 2
while a packet from a VCB from 𝑉 𝑆𝑉

is in progress, Rule 3
or by losing the LRU arbitration.

• For 𝑡𝑆 ≤ 𝑡 < 𝑡𝐸 the packet cannot be blocked by any of

Rules 2, 4 or 5. However, it can still be blocked by Rule 3
or by losing the LRU arbitration.

The following lemma limits how many flits each buffer can send

in the interval 0 ≤ 𝑡 < 𝑡𝑅 .

Lemma 4.1. A buffer 𝑉𝑗 ∈ 𝜏𝑖 .𝑜𝑝.V \ 𝜏𝑖 .𝑉 can only send up to
𝑉𝑗 .𝑟 +𝑉𝑗 .𝐿 flits to 𝜏𝑖 .𝑜𝑝 before 𝑡𝑅 , where𝑉𝑗 .𝐿 is the maximum length
of a packet that crosses 𝑉𝑗 and leaves through 𝜏𝑖 .𝑜𝑝 .

Proof. Starting with 𝑉𝑗 .𝑐 = 𝑉𝑗 .𝑟 , the buffer can send 𝑉𝑗 .𝑟 + 1

flits, with the last one being a SOP flit that leaves 𝑉𝑗 .𝑐 = −1. Rule
4 only blocks buffers with a negative token counter from sending

SOP flits, so 𝑉𝑗 can send the remaining 𝑉𝑗 .𝐿 − 1 flits of the packet

it started without necessarily requiring a token reload, for a total

of 𝑉𝑗 .𝑟 +𝑉𝑗 .𝐿 flits.

Sending any additional flits before the token reload, however,

is not possible, as the next flit will necessarily have to be a SOP,

which cannot be sent while 𝑉𝑗 .𝑟 < 0, due to Rule 4. □
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The result below allows us to start describing how a buffer from

V𝑆𝑉
can interfere with the packet under analysis.

Lemma 4.2. A buffer 𝑉𝑗 ∈ V𝑆𝑉 can only send one SOP flit in the
𝑡𝑅 ≤ 𝑇 < 𝑡𝑆 interval, and only if it sent no flits during the 0 ≤ 𝑇 < 𝑡𝑅
interval.

Proof. For 𝑡 ≥ 𝑡𝑅 , 𝜏𝑖 .𝑉 is not blocked by Rule 4, so it can only

lose to a SOP from a buffer inV𝑆𝑉
if it loses the LRU arbitration.

If 𝑉𝑗 sent anything during the 0 ≤ 𝑇 < 𝑡𝑅 interval, it necessarily

has been used more recently than 𝜏𝑖 .𝑉 . Otherwise it can win the

LRU arbitration with a SOP once, but for the next SOP it will again

have been used more recently than 𝜏𝑖 .𝑉 . □

This leaves three options for 𝑉𝑗 ∈ V𝑆𝑉
, with respect to when

it sends its final SOP and EOP flits (if any) during the 0 ≤ 𝑇 < 𝑡𝐸
interval:

• Option 1: Send the final SOP and EOP flits before 𝑡𝑅 .

• Option 2: Send the final SOP flit before 𝑡𝑅 , but not the final

EOP flit. Only one 𝑉𝑗 ∈ V𝑆𝑉
can use this option.

• Option 3: Send the final SOP flit after 𝑡𝑅 .

We can consider the eight possible assignments of the options above

to the two buffers in 𝑉𝑗 , and take as the worst case the assignment

that results in the maximum value of 𝜏𝑖 .𝑅. If Option 1 is assigned

to 𝑉𝑗 , it can send up to 𝑉𝑗 .𝑟 +𝑉𝑗 .𝐿 flits before 𝑡𝑅 . For each packet

sent completely or partially in the interval, the parameter 𝑓 .𝐵𝑃 of

the corresponding CT can also be added to the interference. The

backpressure does not necessarily cause a reset, as while a packet

from 𝑉𝑗 is in progress 𝜏𝑖 .𝑉 is not valid, and thus if no other buffer

requests to transmit without tokens a reset will not happen.

Option 2 is similar to Option 1, but additional interference can

be caused by the (up to 𝑉 .𝐿 − 1) flits of the final packet sent after

𝑡𝑅 losing the LRU arbitration to the buffers in the setV𝐷𝑉𝐻
.

If Option 3 is assigned to 𝑉𝑗 , it can send a single packet after 𝑡𝑅 .

The parameter 𝑓 .𝐵𝑃 of the corresponding CT can also be added to

the interference, and the flits can cause additional interference by

losing the LRU arbitration to the buffers in the setV𝐷𝑉𝐻
.

Regarding the setV𝐷𝑉𝐻
, each𝑉𝑗 ∈ V𝐷𝑉𝐻

can send𝑉𝑗 .𝑟 +𝑉𝑗 .𝐿
flits before 𝑡𝑅 , as given by Lemma 4.1. After 𝑡𝑅 , it can add interfer-

ence by winning arbitration with one flit for every flit transmitted

by a buffer from the set {𝜏𝑖 .𝑉 } ∪ V𝑆𝑉
, due to the LRU arbitration.

Finally, each 𝑉𝑗 ∈ V𝐷𝑉𝐿
can send 𝑉𝑗 .𝑟 + 𝑉𝑗 .𝐿 flits before 𝑡𝑅 .

After 𝑡𝑅 , it cannot win against a high-priority CT.

4.4 Optimization approach
We state the following optimization problem to determine the max-

imum interference a packet of 𝜏𝑖 can suffer. Maximize:

𝜏𝑖 .𝐵 = 1 + 𝜏𝑖 .𝐵𝑃 +
∑︁

𝑉𝑗 ∈V−𝜏𝑖 .𝑉
𝜏𝑖 .𝐵(𝑉𝑗 ), (4)

where 𝜏𝑖 .𝐵(𝑉𝑗 ) is the interference caused by buffer𝑉𝑗 , whose calcu-
lation depends on the subset ofV that𝑉𝑗 belongs to. The additional

one cycle added covers the situation where 𝜏𝑖 .𝑉 .𝑐 < 0 and no other

𝑉 ∈ 𝜏𝑖 .𝑜𝑝.V passes Rules 1-3, in which case we lose a cycle waiting

for the token reload without any interference from backpressure

or other VCBs.

We begin with 𝑉𝑗 ∈ V𝑆𝑉
. For each 𝜏𝑘 ∈ 𝑉𝑗 .Γ, we define three

variables 𝑏 (𝜏𝑘 ), 𝑐 (𝜏𝑘 ), 𝑎(𝜏𝑘 ), which count the number of packets of

𝜏𝑘 that are completely sent before 𝑡𝑅 , that are in progress on 𝑡𝑅 , and

that are completely sent after 𝑡𝑅 . The sum of the three variables

must not be over the max number of packets from 𝜏𝑘 that we can

have:

∀𝑉𝑗 ∈ V𝑆𝑉 ,∀𝜏𝑘 ∈ 𝑉𝑗 .Γ,

𝑏 (𝜏𝑘 ) + 𝑐 (𝜏𝑘 ) + 𝑎(𝜏𝑘 ) ≤
⌈
𝜏𝑖 .𝑅 + 𝜏𝑘 .𝐽

𝜏𝑘 .𝑇

⌉
.

(5)

Depending on the option (1, 2 or 3) we have assigned to𝑉𝑗 , we also

need additional constraints on 𝑏 (𝜏𝑘 ), 𝑐 (𝜏𝑘 ), 𝑎(𝜏𝑘 ) so the definition

of the option is respected. For option 1, we only send before 𝑡𝑅 :∑︁
𝜏𝑘 ∈𝑉𝑗 .Γ

𝑐 (𝜏𝑘 ) = 0;

∑︁
𝜏𝑘 ∈𝑉𝑗 .Γ

𝑎(𝜏𝑘 ) = 0;
(6)

for option 2, a single packet from 𝑉𝑗 can be in progress during 𝑡𝑅 ,

and none are sent after:∑︁
𝜏𝑘 ∈𝑉𝑗 .Γ

𝑐 (𝜏𝑘 ) = 1;

∑︁
𝜏𝑘 ∈𝑉𝑗 .Γ

𝑎(𝜏𝑘 ) = 0;
(7)

and finally for option 3, we start no packets before 𝑡𝑅 and send a

single one after:∑︁
𝜏𝑘 ∈𝑉𝑗 .Γ

𝑏 (𝜏𝑘 ) = 0;

∑︁
𝜏𝑘 ∈𝑉𝑗 .Γ

𝑐 (𝜏𝑘 ) = 0;

∑︁
𝜏𝑘 ∈𝑉𝑗 .Γ

𝑎(𝜏𝑘 ) = 1.
(8)

The interference 𝜏𝑖 .𝐵(𝑉𝑗 ) due to 𝑉𝑗 ∈ V𝑆𝑉
will then be:

∀𝑉𝑗 ∈ V𝑆𝑉 ,

𝜏𝑖 .𝐵(𝑉𝑗 ) =
∑︁

𝜏𝑘 ∈𝑉𝑗 .Γ

(𝜏𝑘 .𝐿 + 𝜏𝑘 .𝐵𝑃) × (𝑏 (𝜏𝑘 ) + 𝑐 (𝜏𝑘 ) + 𝑎(𝜏𝑘 )), (9)

while the number of flits 𝑛𝑇 sent by buffers from the set {𝜏𝑖 .𝑉 } ∪
V𝑆𝑉

after 𝑡𝑅 will be:

𝑛𝑇 = 𝜏𝑖 .𝐿 +
∑︁

𝑉𝑗 ∈V𝑆𝑉

∑︁
𝜏𝑘 ∈𝑉𝑗 .Γ

𝑐 (𝜏𝑘 ) × (𝜏𝑘 .𝐿 − 1) + 𝑎(𝜏𝑘 ) × 𝜏𝑘 .𝐿. (10)

The interference 𝜏𝑖 .𝐵(𝑉𝑗 ) due to 𝑉𝑗 ∈ V𝐷𝑉𝐻
will then be at

most:

∀𝑉𝑗 ∈ V𝐷𝑉𝐻 , 𝜏𝑖 .𝐵(𝑉𝑗 ) = min(𝑉𝑗 .𝑛,𝑉𝑗 .𝐿 +𝑉𝑗 .𝑟 + 𝑛𝑇 ), (11)

where 𝑉𝑗 .𝐿 +𝑉𝑗 .𝑟 corresponds to the flits sent before 𝑡𝑅 , while 𝑛
𝑇

corresponds to the flits sent after 𝑡𝑅 by winning the LRU arbitration

against the buffers from {𝜏𝑖 .𝑉 } ∪ V𝑆𝑉
. Note that the minimum

operation with 𝑉𝑗 .𝑛 corresponds to the fact that each buffer from

V𝐷𝑉𝐻
can only interfere with as many flits as the CTs that could

have been released in the time frame. Also note that we are using

𝑉𝑗 .𝑛, a value defined in function of 𝜏𝑖 .𝑅, as an input for calculating

𝜏𝑖 .𝑅 itself. In order to use the expression for 𝜏𝑖 .𝑅 as a fixed point

equation, we start with an initial guess of 𝜏𝑖 .𝑅 = 𝜏𝑖 .𝐶 and iterate

until a fixed point is reached.

Finally, the interference 𝜏𝑖 .𝐵(𝑉𝑗 ) due to 𝑉𝑗 ∈ V𝐷𝑉𝐿
will be:

∀𝑉𝑗 ∈ V𝐷𝑉𝐿, 𝜏𝑖 .𝐵(𝑉𝑗 ) = min(𝑉𝑗 .𝑛,𝑉𝑗 .𝐿 +𝑉𝑗 .𝑟 ) . (12)
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Figure 3: Results for the eight simulation scenarios.

5 EVALUATION
We develop a simulation framework for the configuration in Fig-

ure 2, that allows for configuring CT parameters and token regis-

ters. We connect a single NPS to custom NMU and NSU modules,

which can inject packets programmatically and print timestamps

for events. We use Modelsim to simulate the system, and a Python

script to post-process simulation logs and calculate statistics.

In order to capture the different types of interaction inside an

NPS, we simulate the 8 following scenarios. In each scenario, we

include the CT under analysis going through 𝑉3,0, and one CT for

each VCB in the setV𝑠𝑐𝑒𝑛
, defined depending on the scenario:

Scenario 0: V𝑠𝑐𝑒𝑛 = ∅.
Scenario 1: V𝑠𝑐𝑒𝑛 = V𝑆𝑉

.

Scenario 2: V𝑠𝑐𝑒𝑛 = V𝐷𝑉𝐻
.

Scenario 3: V𝑠𝑐𝑒𝑛 = V𝐷𝑉𝐿
.

Scenario 4: V𝑠𝑐𝑒𝑛 = V𝑆𝑉 ∪V𝐷𝑉𝐻
.

Scenario 5: V𝑠𝑐𝑒𝑛 = V𝑆𝑉 ∪V𝐷𝑉𝐿
.

Scenario 6: V𝑠𝑐𝑒𝑛 = V𝐷𝑉𝐻 ∪V𝐷𝑉𝐿
.

Scenario 7: V𝑠𝑐𝑒𝑛 = V𝑆𝑉 ∪V𝐷𝑉𝐻 ∪V𝐷𝑉𝐿
.

For simplicity, we assume a value of 16 for each token register,

and the following parameters for all CTs: 𝑇 = 𝐷 = 200, 𝐽 = 20, 𝐿 =

8, 𝐵𝑃 = 0. To model a minimum interarrival time, we sample an

exponential distribution with mean 𝑇 and add to 𝑇 to get the time

between arrivals of packets from the same CT. Each scenario was

simulated for 10
7
cycles.

The plot in Figure 3 shows the range of latencies observed for

packets of the CT under analysis, with a marker on the average

value. The plot also shows the upper bound on packet latency for

each scenario, which ranges from 1× to 7.11× the worst observed

latency, depending on the scenario.

We note that the most significant gaps between the bounds

and observed values correspond to configurations that include the

VCBs from 𝑉𝐷𝑉𝐿
(scenarios 3, 5 and 6). As the VCBs from 𝑉𝐷𝑉𝐿

can only interfere with the CT under analysis before the time 𝑡𝑅 ,

this indicates that, during the limited time-span of experiment, the

unlikely event where other VCBs are all able to send up 𝑉 .𝑟 +𝑉 .𝐿

flits before 𝑡𝑅 did not occur.

6 CONCLUSION
In this work, we present a formal description of the behaviour of

the NPS components of the Versal NoC, and propose a model for

computing upper bounds for communication times of high-priority

packets, for the case of network clients exchanging data over a

single NPS.

The natural next step for this work is to extend both the math-

ematical model and the simulation framework to cover the more

realistic scenarios, with packets traversing multiple switches.
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