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Abstract—
Commodity SoCs with hybrid architectures that combine

CPUs with programmable FPGA fabric such as the Xilinx
Zynq SoC have become a competitive energy-efficient platform
for addressing irregular parallelism in graph problems. In this
paper, we prototype a 32-node cluster composed from these Zynq
SoC chips to accelerate communication-bound sparse graph-
oriented applications such as neural network simulations. We
develop specialized MPI routines specifically developed for irreg-
ular accelerator-to-accelerator communication of small message
traffic. We use the ARM processor for handling the MPI stack
while offloading compute-intensive calculations to the FPGA.
For graphs with 32M nodes and 32M edges, Zedwulf delivers
the highest 94 MTEPS (Million Traversed Edges Per Second)
throughput over other x86 multi-threaded platforms in our
study by 1.2–1.4⇥. For this experiment, Zedwulf operates at an
efficiency of 0.49 MTEPS/W when using ARM+FPGA which is
1.2⇥ better than using ARMv7 CPUs alone, and within 8% of
the Intel Core i7-4770k platform.

I. INTRODUCTION

Commodity FPGA-based platforms offer the promise of
improving application performance along with power con-
sumption for parallel problems when compared to conven-
tional x86 processors. However, these platforms are expen-
sive, tedious to program, and require low-level design of
system connectivity functions to become useful. Barring a few
exceptions, they have largely remained out of the reach of
the majority of parallel programmers. Over the past decade,
there have been many attempts such as the SRC-6 [17], Cray
XD1 [1], BEE2 [2], Microsoft Bing [15] which show tremen-
dous promise and opportunity for FPGA-based accelerators.
However, their impact and proliferation has been restricted
to niche markets and specific domains. While modern FPGA
platforms have fairly impressive hardware capabilities, they
lack broader acceptance due to cost, closed and non-standard
interface drivers, unfamiliar design flows and a high-barrier
to developing and porting high-performance computing (HPC)
problems to the platform. This is unfortunate as the underlying
FPGA technology allows low-power, high-performance imple-
mentation of computations by exploiting circuit-style spatial
parallelism and customization supported with TB/s of on-chip
memory bandwidth and low-latency, high-bandwidth on-chip
data transfers.
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Fig. 1: High-Level Diagram of a 32-node Zynq SoC
Compute Cluster with link throughputs and capacities

With the emergence of small, cheap, hybrid SoC chips that
combine the FPGA fabric with an ARM CPU such as the Zynq
SoC, the barrier to entry for traditional software developers is
potentially lower due to variety of reasons – (1) The hybrid
SoC combines a 32-bit ARMv7 CPU that can run a complete
operating-system which offers tools and environments familiar
to software developers. When directly exposed to bare-metal
FPGA substrates without OS layers or drivers and a different
conceptual model of computation, software developers are of-
ten lost and unprepared. (2) The SoC also provides high levels
of system connectivity and integration of interfaces to the
ARM CPU such as Ethernet, USB, DRAM, and others thereby
simplifying I/O management. This allows system developers to
concentrate on accelerating the core functions of their problem
instead of worrying about low-level bootstrapping details that
typically dominate the FPGA development cycle. (3) The
emergence of high-level synthesis toolflows from C/C++ [14]
offers a familiar path to design and deployment of application



kernels and a simpler model for offloading critical kernels to
the FPGA from applications running on the CPU. (4) The
hybrid CPU-FPGA integration also eases the mechanisms of
configuring and managing the FPGA logic resources from the
CPU. FPGA bitstream compilation and configuration times
for Zynq Z7020 SoC is quite small (<15–20 minutes from
RTL!bitstream).

Pure ARM-based SoCs have been studied and promoted
as alternatives to x86-based server-class systems for quite
some time. These are particularly appealing for applications
that are constrained by communication bottlenecks rather than
compute intensity. However, attempts by HP, Dell, Cavium,
Calxeda (defunct) and other vendors have enjoyed limited
success. The most exciting aspect of these new hybrid SoCs, is
the integration of FPGA logic for low-power acceleration. This
makes it an intriguing choice for development of HPC-like
cluster configurations where the ARM CPUs can handle MPI
APIs while the FPGAs provide compute acceleration while
requiring lower power. Our Zedwulf design, shown in Figure 1,
helps evaluate the energy efficiency potential of Zynq SoCs
are for fast parallel evaluation of sparse graph problems like
a neural network simulation? We prototype and characterize
performance and power of an MPI Beowulf cluster built out of
32 Zedboards each having a Xilinx Zynq Z7020 SoC running
Xillinux 1.3 and communicating over a 1G Ethernet net-
work connection. We implement neural network simulations
of networks in the range 1M–32M nodes, 1M–32M edges
and measure performance under various configurations and
workloads.

II. ZYNQ SOC SPECIFICATIONS AND BENCHMARKING

A. Zynq SoC Architecture
The Xilinx Zynq SoC is a heterogeneous computing ar-

chitecture that combines 2-core 32b ARMv7 CPUs with a
Programmable Logic (PL) fabric coupled using an high-
performance AXI/ACP interface as shown in Figure 2. This
is a radical departure from traditional FPGA computing plat-
forms that are typically integrated over PCIe interfaces with
independent configuration and control from the host CPU. The
integration of Ethernet port directly to the ARM CPU and
MPI library support makes it particularly attractive for cluster
design. In our proposed cluster, we leverage the ARM CPU
for data marshaling the MPI structures and protocols while
relying on the FPGA fabric for compute acceleration.

B. Benchmarking the SoC
Before we delve into the details of our cluster design, it

is worthwhile to compare the architecture capabilities of the
embedded SoC against that of an x86 processor as shown in
Table I just to contrast the raw capacity of these devices. We
use the lmbench-3.0-a9 benchmark suite [10] to mea-
sure the memory bandwidth and latency for various memory
operations on L1 cache, L2 cache, and off-chip DRAM. We
configure serial, strided and random address generation (self-
written µbenchmark) to mimic patterns from communication-
bound sparse graph workloads. netperf-2.6.0 allows us
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to measure TCP and UDP bandwidths from the SoC node
under various CPU loads, connection counts and transfer sizes.
We employ coremark [6] and dhrystone [19] to estimate
instruction throughput of the CPUs.

As expected, Table I show us that the x86 beats the ARM
on almost all metrics except power consumption which is the
basis for this design. For x86-based systems, the Ethernet NIC
and DRAM interfaces are faster and better integrated. We
observed network performance was able to saturate 111 MB/s
throughput quite comfortably while random access perfor-
mance on the DRAM was also faster than the Zynq. On the
bright side, the significantly lower power consumption per chip
provides an opportunity for a cluster-oriented design where
multiple Zynq SoCs can be configured in parallel for energy-
efficient operation.

To address this potential, we focus on the ARM SoC capa-
bilities in Figure 3 and show the various system throughputs
for the on-chip memories, offchip memories, CPU-FPGA links
and the network interfaces. Except the on-chip FPGA BRAM
bandwidth which depends on logic configuration, all other data
are sustained real-world measurements. We note that FPGA
BRAM interfaces support the highest bandwidths across all
interfaces. The DRAM throughput of the ARM CPU is also
quite high for regular access patterns at ⇡600 MB/s but drops
by over an order of magnitude to ⇡30 MB/s for random access
when access distance greater than L2 capacity of 256kB. The
AXI-ACP throughputs for communication between the CPU
and FPGA fabric are high ⇡400 MB/s but not as fast as the
sequential memory performance. The MPI throughput for large
transfers is around 60-70 MB/s but is comparable to random-
access memory performance.

Random access bandwidth to local DRAMs matches the
MPI communication bandwidth to other Zynq nodes. This
means that, from a throughput perspective, MPI access to
data residing on a neighboring node is just as fast as random,
irregular access to local DRAM for sufficiently large transfers.

III. CLUSTER SETUP AND PERFORMANCE ANALYSIS

In this section, we describe the engineering of our ex-
perimental Zynq SoC cluster and characterize key network
behavior patterns that are relevant for our design. The setup
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TABLE I: Comparing architecture specifications and microbenhmark results of the Zynq SoC and x86 systems

ARM-FPGA SoC x86 Ratio x86 Ratio x86 Ratio
Datasheet Specifications
Platform Xilinx Zynq Z7020 Intel E5-1650 Intel E5-2609 Intel i7-4770
Technology 28nm (TSMC HPL) 32nm 32nm 22nm
µarch In-order FPGA OoO OoO OoO

(2-core) - (6-core) (4-core) (4-core)
Clock Freq. 667 MHz 200 MHz 3.2 GHz 5⇥ 2.4 GHz 3⇥ 3.5 GHz 5⇥
Memory 32KB L1 x2 560KB 32KB L1 x6 3⇥ 32KB L1 x4 2⇥ 32KB L1 x4 2⇥

512KB L2 - 256KB L2 x6 3⇥ 256KB L2 x4 2⇥ 256KB L2 x4 2⇥
- - 12MB L3 - 10MB L3 - 8MB L3 -

Microbenchmark Measurements
Coremark 1591 14850 9⇥ 10756 7⇥ 20204 12⇥
DMIPS 1138 17250 15⇥ 13236 12⇥ 22766 20⇥
Power 4–6 Watts 160 Watts 26⇥ 80 Watts 13⇥ 130 Watts 21⇥
TCP B/W 70 MB/s 111 MB/s 1.6⇥ 111 MB/s 1.6⇥ 111 MB/s 1.6⇥
L1 B/W 7.7 GB/s 80 GB/s 10⇥ 59 GB/s 8⇥ 107 GB/s 14⇥
L2 B/W 1.4 GB/s 57 GB/s 40⇥ 42 GB/s 30⇥ 75 GB/s 54⇥
DRAM B/W
(Seq.) 0.6 GB/s 14 GB/s 23⇥ 9 GB/s 15⇥ 20 GB/s 33⇥
(Rand.) 32 MB/s 330 MB/s 10⇥ 221 MB/s 7⇥ 520 MB/s 16⇥

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
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Fig. 3: Zynq SoC bandwidth measurements on the ACP,
DRAM and Ethernet interfaces. MPI remote access

bandwidth is closely tracking local DRAM random access
bandwidth. ACP and sequential DRAM throughputs are
10–20⇥ higher than MPI and random DRAM accesses.

of the cluster required consideration for embedded boards
interfaces and associated software environment configuration.

A. Physical Setup

We use the Xilinx Zedboard Rev. D with the Xilinx Z7020
SoC for our experiments and provide the OS on the Sandisk
Ultra Class 10 sdcards. We interconnect the 32 Zedboards
using the NETGEAR GS748T 48-port Gigabit Smart Switch
with a rated switching capacity of 96 Gb/s with 2 Gb/s through-
put per port. We setup the Power Distribution Unit based
on the COTS Seasonic Platinum 1KW PSU and leached

Fig. 4: Zedwulf 32-node Zynq SoC cluster in operation

power from the single PCIe EPS12 rail to power all 32
boards at 12V, 3A with appropriate fuse protection. We record
power consumption at the input to this PSU as well as the
network switch separately. We provide cooling fans to regulate
temperatures in the cluster.

B. Software Environment

We setup the Zedboard with the customized Xillinux
1.3 [20] operating system which ships with low-level FPGA-
specific Xillybus drivers. These drivers allow us to interface
with the ARM CPU to the FPGA logic fabric using high-
speed AXI and ACP interfaces through canonical /dev node
mapping. We also use the xdevcfg driver to reconfigure the
FPGA logic in-system during debugging and system testing.
We compile FPGA bitstreams using Xilinx Vivado 2013.4
tools to convert high-level C++ descriptions of our parallel
code into FPGA logic. We evaluate both OpenMPI 1.8 and
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MPICH 3.1 libraries, built from source for ARMv7 using
gcc-4.6.3 with -O3 optimization, for message-passing sup-
port across the Zedboard fabric.

C. Network Experiments
The performance and scalability of the MPI networking

stack on the ARM SoC is crucial to building a platform
that is competitive. The goal is to understand system-level
trends and quantify the gap with commodity x86 systems. In
our preliminary experiments, we wrote a few new tests and
mostly used existing micro-benchmarks to characterize the
key system-level performance metrics of the 32-node cluster
such as achievable bandwidths and latencies. Again, we use
netperf-2.6.0 and ping to measure TCP and UDP
bandwidths and end-to-end latencies between various nodes
of our cluster under different communication patterns. We
ran the Intel MPI benchmark suite [8] to measure latencies
and bandwidths of various MPI functions. We measure an
MPI_Barrier latency of roughly a millisecond due to lim-
itations of the ARM MPI implementation. This is in contrast
with the network ping latency of ⇡150µs and an x86 barrier
latency that was 2⇥ better.

In Figure 6, we show the bandwidth scaling trends for
MPI_Put and MPI_SendRecv API calls to identify the
performance gaps between one-sided and two-sided com-
munication primitives as function of transfer size. We also
report performance for the MPICH and OpenMPI libraries
for MPI_Put. This is the mean observed bandwidth across
multiple trials. From the graph, we can see how bandwidth
improves with transfer size but it saturates at 60 MB/s (full
duplex) in the best case for large transfers across all three
scenarios. For small transfers, we note MPICH offer better
behavior while for larger transfers OpenMPI catches up.

Generally speaking, we fail to fully utilize the link band-
width for the 1G Ethernet port. Equivalent implementations
on x86 systems with 1G NICs can often reach 80–90% quite
easily. In Figure 7 we plot the MPI function latencies on the
x86 and SoC and identify a gap of almost a factor of two in
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Fig. 7: MPI Function Latency (Intel MPI Benchmark Suite).
x86-based MPI stacks run 2–4⇥ faster than equivalent ARM

implementations.

all cases. We attribute this gap to the faster CPU and better
NIC interfacing available on the x86 platform when compared
to the 32b ARMv7 CPU and its 1G network interface. Even
without MPI, when measuring raw TCP and UDP (lossless)
throughputs, we only managed ⇡70–80 MB/s throughputs on
the ARM SoC. The MPI throughput is calculated on the raw
data and does not include MPI metadata transfers. We also
performed a switch saturation test that setup multiple parallel
MPI transfers between various pairs of MPI nodes. In this test,
we noted no slowdown in the individual link bandwidths; each
link ran at the full 60 MB/s that was already possible.

In a cluster environment, MPI throughputs of the Zynq SoCs
running Xillinux OS saturates at ⇡50% of the theoretical 1G
peak capacity of the Ethernet port. This suggests opportunity
for careful optimization for sparse, small-message irregular
MPI traffic

IV. SPARSE GRAPH PROCESSING

In this paper, we are interested in mapping parallel graph
algorithms that fit the Bulk Synchronous Parallel (BSP) [18],
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[3], [4] model to the cluster. The BSP model is applicable to
a wide variety of parallel computations such as sparse matrix-
vector multiply, contextual reasoning, belief propagation, all-
pairs shortest path search, betweeness centrality, and many
others. In this discussion, we refer to two kinds of nodes (1)
graph node in the data-structure, and (2) MPI cluster node that
performs the computation. The BSP graph algorithm executes
as a sequence of steps where the steps are separated by a global
synchronization barrier. In each step, we perform parallel
operations on graph nodes where all graph nodes send and
receive messages from their corresponding neighbors. When
these neighbors are local to a cluster node, the messages are
managed internally in the memory space, whereas those that
are on remote cluster nodes use a specialized MPI message-
passing operation (details in Section IV-B) . Once all messages
reach their destinations, each graph node computes on data
received along incoming edges.

Function izhikevich(V,I,u,weight,spike)
/* loop over timesteps */

11 foreach t = time do
/* loop over all neurons */

2 foreach i = neuron in neurons do
/* loop over all synaptic inputs */

3 foreach j = synaptic inputs to neuron i do
4 I[i] = synapse(I[i],weight[j],spike[j]);

/* loop over all neurons */
5 foreach i = neuron in neurons do
6 V [i],u[i],spike[i] = neuron(I[i],V [i],u[i]);

A. Sparse Neural Network Simulation

As an example, consider the pseudocode shown in Func-
tion izhikevich based on the Izhikevich model [9] of a neuron.
This operates on a neural network, or sparse graph, where we
can represent the neurons as nodes while synaptic connections
between neurons are the edges of the network. They com-
municate using spikes and perform local computations that
recompute node membrane potentials V , recovery variables u
and input currents I in the neural network. The outer loop
in Function izhikevich (over t) steps through time to simulate
different stages of evolution in the network. The first inner loop
in Function izhikevich (over i and j) requires irregular graph-
oriented communication between neurons along the synaptic
connections. In our cluster, we partition and distribute a
subset of the neural network to each cluster node. Spike
communication is managed using local memory operations,
or MPI traffic as appropriate. The second inner loop in
Function izhikevich (over i) is a simple data-parallel operation
on neurons that performs local updates. This is implemented
using configurable logic on the FPGA.

Spinnaker [5] aims to build a large-scale platform for
simulation of billions of neurons over a custom ARM-based
processing and networking fabric. Our aim is somewhat

orthogonal to Spinnaker in that we focus on sparse graph
processing rather than brain-scale simulations. Furthermore,
our hardware design strategy considers using hybrid low-cost
COTS ARM-FPGA SoCs rather than developing a custom
ASIC. Other neural simulation accelerators based on VLSI
systems [11], GPUs [12], and FPGAs [13] have also explored
parallelism using alternative high-performance computing fab-
rics that are either harder to manufacture, more expensive
and some of them are power-hungry. Our goal is to minimize
cost and power, while delivering a programmable and scalable
computing platform.

Using Vivado HLS 2013.4, we compile high-level C++
descriptions of the neural network evaluations to FPGA logic.
Each processor with neural and synaptic computations in
IEEE single-precision arithmetic took 4418 LUTs (8%), 4081
FFs (4%) and 24 DSP blocks (9%) of the chip operating
at 200 MHz. While these utilization figures look low, system
performance is currently saturated by the ACP transfer band-
width. We still see value in distributing the processing across
32 parallel, independent ACP communication channels, each
operating at 400 MB/s throughputs.

B. Communication Engineering

As identified earlier, we need to carefully design our MPI
routines for small-message sparse graph traffic to exploit the
constrained MPI bandwidths possible using the ARMv7 CPUs.
To support this communication pattern between the FPGA
accelerators distributed across 32 boards, we use a multi-level
mechanism for data movement:
• Local ACP Traffic: For neurons connected to synapses

within the same chip, we simply use the ACP links to
communicate streaming data. ACP links operate at roughly
400 MB/s and we are careful to ensure the streaming op-
eration happens in a giant coalesced transfer. The shared
arrays are reordered in each BSP step on the host ARMv7
CPU to facilitate local sharing of data.

• MPI Traffic: Across-node communication that traverse
chip boundaries must use Ethernet links. We use the MPI
library to support these message transfers in a manner
that supports the sparse irregular nature of the transfers.
Efficiency of MPI transfers is critical as our bisection
bandwidth for the NETGEAR switch is 96 Gb/s with a
32-node MPI barrier latency of 1ms (and ⇡150µs ping
latency). The FPGA links to the ARM CPU over the ACP
channel as shown earlier in Figure 2, resulting in 400 MB/s
(sustained) egress and ingress capacity for external traffic
into the FPGA. Additionally the Ethernet link only sup-
ports ⇡480 Mb/s (full-duplex) operation further curtailing
network throughput.

C. Supporting MPI Communication

For sparse graph edges that cross SoC chip boundaries,
we use MPI to support communication in a manner that
is cognizant of (1) the irregularity of the traffic pattern,
(2) the short transfer sizes of each unique message, and
(2) the limited processing capacity of the host ARM CPU.
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This is a unique requirement and there are no out-of-the-
box MPI library routines that support this. In [7], the authors
introduce a two-sided solution that can outperform oblivious
MPI_alltoallv implementation for such irregular transfers
but aimed at commodity x86 clusters. In [16], the authors
develop a strategy for supporting inter-GPU communication
for irregular workloads over a high-performance Infiniband
cluster. In our approach, we develop a different strategy
that needs neither a heavy-duty x86 processor nor Infiniband
networks. The key idea is to buffer a sufficient amount of
remote traffic into local memory buffers on the CPU supplied
from the FPGA datapaths before initiating MPI transfers. This
avoids the need to launch a heavyweight MPI message for each
fine-grained transfer. We show the path taken by a packet from
FPGA in MPI node 0 to FPGA in MPI node 1 in Figure 8. We
allocate send and receive buffers that allow an aggregation of
messages into larger MPI packets prior to transfer. Data in the
send buffer is directly updated by messages from the FPGA
over the ACP interface as shown in Step 1� and Step 3� in
Figure 8. Once the send buffer is filled, we initiate an MPI
operation on the data to distribute the data to its intended
destination receive buffers as indicated by Step 2� in Figure 8.
After a global barrier, we then distribute the receive buffer data
into the local network. We discuss the specific details of our
MPI optimizations briefly below:
• Building MPI types: We first translate the adjacency lists
into MPI-compatible communication types that encode the
graph structure as a series of addresses and counts for send
and receive between all-possible pairs of MPI nodes. To
construct this type, we loop over all graph nodes and record
the destination MPI node for the output edges from the
node. Recall that, this is unlike the fine-grained shared-
memory access where we have a direct memory lookup
for each synaptic edge. Adapting that fine-grained method
to MPI access would impose an excessive per-message

Fig. 9: Basic MPI Communication Skeleton that shows how
the MPI_Datatype is built and the mechanism of using

MPI_SendRecv for sparse communication

overhead on the ARM CPU slowing down performance.
These counts and address arrays are helpful in aggregating
multiple transfers into a single fused MPI message.

• Optimizing MPI types: We perform a coalesced trans-
fer to one MPI target in a single function call to avoid
MPI overheads of finer-grained messages. To achieve this
coalesced transfer, we setup the MPI_Datatype using
MPI_Type_indexed to encode a custom sequence of
blocks with source and destination positions as shown in
Line 4–13 of the code sketch in Figure 9. Each pro-
cess receives the necessary displacement vectors from a
common master process at the start of execution, and
builds a pair of MPI_Datatype for every target process.
When using MPI_SendRecv, we do not need to send the
MPI_Datatype for the receive in each transmission step;
it is sent only once at the start. When using MPI_Put to
allow one-sided distribution of data items to their targets,
it is required to send this metadata each time resulting in
unnecessary overheads.
• Protocol Optimization: We first use Passive Target
Communication paradigm, using MPI_Win_lock and
MPI_Win_unlock functions, for executing Remote Mem-
ory Access (RMA) calls. In a naive implementation, each
process will start an RMA access epoch with win lock,
call a put operation, and close the epoch with win unlock
sequentially for every process, including itself. Profiling this
code allowed us to uncover opportunities for overlapping
communication in the system by (1) having simultaneous
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epoch sessions in progress and ensuring load-balanced
scheduling of message transfers in a cyclic fashion, and
(2) replacing local MPI_Put with simple array-indirection.
However, for RMA-based distribution of data, there is
an inherent need for the MPI protocols to encode the
receive metadata each time resulting in unnecessary network
communication overheads. By resorting to MPI two-sided
communication using MPI_SendRecv, this drawback is
rectified, by having both the origin and target process
specify the send and receive buffers in every matching MPI
call. Similar to the RMA approach, this approach schedules
data transfer in a periodic fashion to avoid contention across
nodes. We show this in Lines 21–26 in Figure 9.

V. EXPERIMENTAL RESULTS

In this section we present system-level performance and
power trends for the Zynq cluster as well as the x86 platforms
we use in this study. For our graph problems, we use the
MTEPS (Million Traversed Edges/second) metric which is
used to rank graph-processing platforms. We consider various
graph sizes 1–32M nodes/edges that fit the 512 MB/board
DRAM limits of 32 Zedboard platforms. We compare our
performance against a single x86 node running fully-optimized
neural evaluations directly across multiple (4–6) OpenMP
threads. We compare total system power including the power
of the network switch for the Zedwulf measurements using
the Energenie power meter. We use Boost graph library to
capture the graph structure and partition the neural networks
(or graphs) across multiple nodes at the start when building
the MPI data types for concurrent evaluation.

A. Comparing Zedwulf against x86

We are interested in comparing the performance-power
characteristics of a high-performance x86 platform against the
low-power Zynq SoCs. We plot the power utilization (W) vs.
overall performance (MTEPS) in Figure 10. As we can see, the
32-node Zynq system can match and exceed the performance
of the multi-threaded 1-node x86 platforms for graphs with
32M nodes and 32M edges. When we disable FPGA acceler-
ation and exclusively use the ARMv7 CPUs for both compute
and communication, we note a drop in performance by around
20–25% and a slight saving in power ⇡10 W due to fewer
ACP/DRAM IO activations. All platforms (except Zedwulf
with ARM-only processing) lie approximately along the iso-
energy-efficiency line suggesting that FPGA co-processing
allows the ARM SoCs to match the efficiency of the x86
machines for irregular problems.

We directly compare the energy efficiency (MTEPS/Watt)
as shown in Figure 11. This confirms our observation that the
Zynq SoCs offer near identical energy efficiency compared
to x86 implementations. They are within 8% of the best x86
efficiency reported by Intel Core i7-4770k system.

B. Scaling Trends on the Zedwulf cluster

In Figure 12, we show performance scaling trends for
the computation and communication phases of the sparse
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Fig. 11: Energy Efficiency Comparison between x86 and
32-node Zedwulf cluster (Higher MTEPS/Watt is better)

graph processing with and without FPGA co-processing across
varying number of Zedboards. As expected, we are able to
smoothly scale down the compute time with more MPI nodes
when using ARM processors alone but spend as much time
in MPI communication. When we use FPGA accelerators,
compute time drops significantly and only approaches com-
munication time at larger system sizes. It is interesting to note
that MPI overheads are disproportionately higher at smaller
system sizes even though the number of remote messages grow
with system size.

With 32 Zynq-nodes, we consider the impact of the size of
the graph on speedup over x86. Not surprisingly, we observe
higher speedups when the number of edges are low suggesting
less time spent communicating over MPI. As we increase the
number of edges, speedup starts to drop for most graphs with
8M or more nodes due to MPI overheads and good caching
behavior on the x86 system. When the number of nodes is
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small 1–4M, there are practically no speedups as the x86
caches can fit the complete graphs quite easily. Above 10M
edges, across all graph node counts, speedups start to increase
again, as the rising x86 cache misses (see Table II) match
Zedwulf MPI overheads.

Edges 1M 2M 4M 8M 16M 24M 32M

Miss Counts 10K 14K 18K 27K 91K 174K 260K
Miss Rate 15% 16% 16% 16% 29% 34% 37%

TABLE II: Last Level Cache (LLC) Misses
(E5-1650 x86, 32M nodes, varying edges)

VI. CONCLUSIONS

The Zedwulf 32-node Zynq cluster is able to deliver high
sparse graph processing throughput for neural network sim-
ulations of 94 MTEPS at an efficiency of 0.49 MTEPS/W.
This is competitive with optimized multi-threaded x86 im-
plementations because we use ARMv7 host CPUs to handle
MPI communication while relying on FPGA co-processing for

compute acceleration of irregular problems. While the current
generation Zynq SoCs show promise, we can widen their
energy efficiency margins over x86 by moving to modern
ARMv8 microarchitectures and providing support for faster
Ethernet and networking support. With process technology
advances, these improvements will likely accelerate and bridge
the gap between SoCs and conventional processors.
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